首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Envenoming by viper snakes constitutes an important public health problem in Brazil and other developing countries. Local hemorrhage is an important symptom of these accidents and is correlated with the action of snake venom metalloproteinases (SVMPs). The degradation of vascular basement membrane has been proposed as a key event for the capillary vessel disruption. However, SVMPs that present similar catalytic activity towards extracellular matrix proteins differ in their hemorrhagic activity, suggesting that other mechanisms might be contributing to the accumulation of SVMPs at the snakebite area allowing capillary disruption.

Methodology/Principal Findings

In this work, we compared the tissue distribution and degradation of extracellular matrix proteins induced by jararhagin (highly hemorrhagic SVMP) and BnP1 (weakly hemorrhagic SVMP) using the mouse skin as experimental model. Jararhagin induced strong hemorrhage accompanied by hydrolysis of collagen fibers in the hypodermis and a marked degradation of type IV collagen at the vascular basement membrane. In contrast, BnP1 induced only a mild hemorrhage and did not disrupt collagen fibers or type IV collagen. Injection of Alexa488-labeled jararhagin revealed fluorescent staining around capillary vessels and co-localization with basement membrane type IV collagen. The same distribution pattern was detected with jararhagin-C (disintegrin-like/cysteine-rich domains of jararhagin). In opposition, BnP1 did not accumulate in the tissues.

Conclusions/Significance

These results show a particular tissue distribution of hemorrhagic toxins accumulating at the basement membrane. This probably occurs through binding to collagens, which are drastically hydrolyzed at the sites of hemorrhagic lesions. Toxin accumulation near blood vessels explains enhanced catalysis of basement membrane components, resulting in the strong hemorrhagic activity of SVMPs. This is a novel mechanism that underlies the difference between hemorrhagic and non-hemorrhagic SVMPs, improving the understanding of snakebite pathology.  相似文献   

2.
Metalloproteinases are among the most abundant toxins in many Viperidae venoms. Snake venom metalloproteinases (SVMPs) are the primary factors responsible for hemorrhage and may also interfere with the hemostatic system, thus facilitating loss of blood from the vasculature of the prey. SVMPs are phylogenetically most closely related to mammalian ADAM (a disintegrin and metalloproteinase) and ADAMTS (ADAM with thrombospondin type-1 motif) family of proteins and, together with them, constitute the M12B clan of metalloendopeptidases. Large SVMPs, referred to as the P-III class of SVMPs, have a modular architecture with multiple non-catalytic domains. The P-III SVMPs are characterized by higher hemorrhagic and more diverse biological activities than the P-I class of SVMPs, which only have a catalytic domain. Recent crystallographic studies of P-III SVMPs and their mammalian counterparts shed new light on structure-function properties of this class of enzymes. The present review will highlight these structures, particularly the non-catalytic ancillary domains of P-III SVMPs and ADAMs that may target the enzymes to specific substrates. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.  相似文献   

3.
Snake venom metalloproteinases (SVMPs) are multifunctional enzymes involved in several symptoms following snakebite, such as severe local hemorrhage. Multidomain P-III SVMPs are strongly hemorrhagic, whereas single domain P-I SVMPs are not. This indicates that disintegrin-like and cysteine-rich domains allocate motifs that enable catalytic degradation of ECM components leading to disruption of capillary vessels. Interestingly, some P-III SVMPs are completely devoid of hemorrhagic activity despite their highly conserved disintegrin-like and cysteine-rich domains. This observation was approached in the present study by comparing the effects of jararhagin, a hemorrhagic P-III SVMP, and berythractivase, a pro-coagulant and non-hemorrhagic P-III SVMP. Both toxins inhibited collagen-induced platelet aggregation, but only jararhagin was able to bind to collagen I with high affinity. The monoclonal antibody MAJar 3, that neutralizes the hemorrhagic effect of Bothrops venoms and jararhagin binding to collagen, did not react with berythractivase. The three-dimensional structures of jararhagin and berythractivase were compared to explain the differential binding to collagen and MAJar 3. Thereby, we pinpointed a motif within the Da disintegrin subdomain located opposite to the catalytic domain. Jararhagin binds to both collagen I and IV in a triple helix-dependent manner and inhibited in vitro fibrillogenesis. The jararhagin-collagen complex retained the catalytic activity of the toxin as observed by hydrolysis of fibrin. Thus, we suggest that binding of hemorrhagic SVMPs to collagens I and IV occurs through a motif located in the Da subdomain. This allows accumulation of toxin molecules at the site of injection, close to capillary vessels, where their catalytic activity leads to a local hemorrhage. Toxins devoid of this motif would be more available for vascular internalization leading to systemic pro-coagulant effects. This reveals a novel function of the disintegrin domain in hemorrhage formation.  相似文献   

4.
Hemorrhage is one of the most significant effects in envenomings induced by viperid snakebites. Damage to the microvasculature, induced by snake venom metalloproteinases (SVMPs), is the main event responsible for this effect. The precise mechanism by which SVMPs disrupt the microvasculature has remained elusive, although recent developments provide valuable clues to deciphering the details of this pathological effect. The main targets of hemorrhagic SVMPs are components of basement membrane (BM) and surrounding extracellular matrix (ECM), which provide mechanical stability to capillaries. P-III SVMPs, comprising disintegrin-like and cysteine-rich domains in addition to the catalytic domain, are more potent hemorrhagic toxins than P-I SVMPs, constituted only by the metalloproteinase domain. This is likely due to the presence of exosites in the additional domains, which contribute to the binding of SVMPs to relevant targets in the microvasculature. Recent in vivo studies have shown that P-III SVMPs are preferentially located in microvessels. On the other hand, the structural determinants responsible for the different hemorrhagic potential of P-I SVMPs remain largely unknown, although backbone flexibility in a loop located near the active site is likely to play a role. Moreover, hemorrhagic and non-hemorrhagic SVMPs differ in their capacity to hydrolyze in vivo key BM proteins, such as type IV collagen and perlecan, as well as other ECM proteins, like types VI and XV collagens, which play a critical role by connecting BM components to perivascular fibrillar collagens. The evidence gathered support a two-step model for the pathogenesis of SVMP-induced hemorrhage: initially, hemorrhagic SVMPs bind to and hydrolyze components of the BM and associated extracellular matrix proteins that play a key role in the mechanical stability of BM. In conditions of normal blood flow in the tissues, such cleavage results in the weakening, distension and eventual disruption of capillary wall due to the action of biophysical forces operating in vivo.  相似文献   

5.
Snake venom metalloproteinases (SVMPs) participate in a number of important biological, physiological and pathophysiological processes and are primarily responsible for the local tissue damage characteristic of viperid snake envenomations. The use of medicinal plant extracts as antidotes against animal venoms is an old practice, especially against snake envenomations. Such plants are sources of many pharmacologically active compounds and have been shown to antagonize the effects of some venoms and toxins. The present study explores the activity of triacontyl p-coumarate (PCT), an active compound isolated from root bark of Bombacopsis glabra vegetal extract (Bg), against harmful effects of Bothropoides pauloensis snake venom and isolated toxins (SVMPs or phospholipase A2). Before inhibition assays, Bg or PCT was incubated with venom or toxins at ratios of 1:1 and 1:5 (w/w; venom or isolated toxins/PCT) for 30 min at 37 °C. Treatment conditions were also assayed to simulate snakebite with PCT inoculated at either the same venom or toxin site. PCT neutralized fibrinogenolytic activity and plasmatic fibrinogen depletion induced by B. pauloensis venom or isolated toxin. PCT also efficiently inhibited the hemorrhagic (3MDH – minimum hemorrhagic dose injected i.d into mice) and myotoxic activities induced by Jararhagin, a metalloproteinase from B. jararaca at 1:5 ratio (toxin: inhibitor, w/w) when it was previously incubated with PCT and injected into mice or when PCT was administered after toxin injection. Docking simulations using data on a metalloproteinase (Neuwiedase) structure suggest that the binding between the protein and the inhibitor occurs mainly in the active site region causing blockade of the enzymatic reaction by displacement of catalytic water. Steric hindrance may also play a role in the mechanism since the PCT hydrophobic tail was found to interact with the loop associated with substrate anchorage. Thus, PCT may provide a alternative to complement ophidian envenomation treatments.  相似文献   

6.
Snake venom metalloproteinases (SVMPs) are major components in most viperid venoms that induce disturbances in the hemostatic system and tissues of animals envenomated by snakes. These disturbances are involved in human pathology of snake bites and appear to be essential for the capture and digestion of snake''s prey and avoidance of predators. SVMPs are a versatile family of venom toxins acting on different hemostatic targets which are present in venoms in distinct structural forms. However, the reason why a large number of different SVMPs are expressed in some venoms is still unclear. In this study, we evaluated the interference of five isolated SVMPs in blood coagulation of humans, birds and small rodents. P-III class SVMPs (fractions Ic, IIb and IIc) possess gelatinolytic and hemorrhagic activities, and, of these, two also show fibrinolytic activity. P-I class SVMPs (fractions IVa and IVb) are only fibrinolytic. P-III class SVMPs reduced clotting time of human plasma. Fraction IIc was characterized as prothrombin activator and fraction Ic as factor X activator. In the absence of Ca2+, a firm clot was observed in chicken blood samples with fractions Ic, IIb and partially with fraction IIc. In contrast, without Ca2+, only fraction IIc was able to induce a firm clot in rat blood. In conclusion, functionally distinct forms of SVMPs were found in B. neuwiedi venom that affect distinct mechanisms in the coagulation system of humans, birds and small rodents. Distinct SVMPs appear to be more specialized to rat or chicken blood, strengthening the current hypothesis that toxin diversity enhances the possibilities of the snakes for hunting different prey or evading different predators. This functional diversity also impacts the complexity of human envenoming since different hemostatic mechanisms will be targeted by SVMPs accounting for the complexity of the response of humans to venoms.  相似文献   

7.
In Latin America, Bothrops snakes account for most snake bites in humans, and the recommended treatment is administration of multispecific Bothrops antivenom (SAB – soro antibotrópico). However, Bothrops snakes are very diverse with regard to their venom composition, which raises the issue of which venoms should be used as immunizing antigens for the production of pan-specific Bothrops antivenoms. In this study, we simultaneously compared the composition and reactivity with SAB of venoms collected from six species of snakes, distributed in pairs from three distinct phylogenetic clades: Bothrops, Bothropoides and Rhinocerophis. We also evaluated the neutralization of Bothrops atrox venom, which is the species responsible for most snake bites in the Amazon region, but not included in the immunization antigen mixture used to produce SAB. Using mass spectrometric and chromatographic approaches, we observed a lack of similarity in protein composition between the venoms from closely related snakes and a high similarity between the venoms of phylogenetically more distant snakes, suggesting little connection between taxonomic position and venom composition. P-III snake venom metalloproteinases (SVMPs) are the most antigenic toxins in the venoms of snakes from the Bothrops complex, whereas class P-I SVMPs, snake venom serine proteinases and phospholipases A2 reacted with antibodies in lower levels. Low molecular size toxins, such as disintegrins and bradykinin-potentiating peptides, were poorly antigenic. Toxins from the same protein family showed antigenic cross-reactivity among venoms from different species; SAB was efficient in neutralizing the B. atrox venom major toxins. Thus, we suggest that it is possible to obtain pan-specific effective antivenoms for Bothrops envenomations through immunization with venoms from only a few species of snakes, if these venoms contain protein classes that are representative of all species to which the antivenom is targeted.  相似文献   

8.
Little is known about the biochemical properties of the non-catalytic domains of snake venom metalloproteinases (SVMPs). The ECD sequence of the disintegrin-like domain (D-domain) has been assigned as the disintegrin motif and, recently, the hyper-variable region (HVR) of the cysteine-rich domain (C-domain) was suggested to constitute a potential protein-protein adhesive interface. Here we show that the recombinant C-domain of HF3, a hemorrhagic SVMP from Bothrops jararaca, as well as three peptides resembling its HVR, inhibit collagen-induced platelet aggregation, which indicates a role for the C-domain and its HVR in targeting HF3 to platelets. Site-directed mutagenesis was used for the first time to identify charged residues essential for the functionality of the disintegrin-like/cysteine-rich domains (DC-domains). Residues of the disintegrin loop (E467 and D469), and of the HVR (K568, K569 and K575) of HF3 were individually mutated to Ala. Interestingly, only the mutant D469A was obtained in soluble form in Escherichia coli and this single mutation caused loss of two functional activities of the DC-domains: inhibition of platelet aggregation and increase of leukocyte rolling in the microcirculation. In summary we demonstrate that the C-domain and its HVR are critical for HF3 to affect platelets and leukocytes, however, the disintegrin loop may be important for the functionality of the D-domain in the context of the C-domain.  相似文献   

9.
The biochemical and the pharmacological characterization of snake venoms revealed an important structural and functional polymorphism of proteins which they contain. Among them, snake venom metalloproteases (SVMPs) constitute approximatively 20 to 60% of the whole venom proteins. During the last decades, a significant progress was performed against structure studies and the biosynthesis of the SVMPs. Indeed, several metalloproteases were isolated and characterized against their structural and pharmacological properties. In this review, we report the most important properties concerning the classification, the structure of the various domains of the SVMPs as well as their biosynthesis and their activities as potential therapeutic agents.  相似文献   

10.
Snake venom metalloproteinases (SVMPs) are members of the Reprolysin family of metalloproteinases to which the ADAM (a disintegrin and metalloproteinase) proteins also belong. The disintegrin-like/cysteine-rich domains of the ADAMs have been implicated in their function. In the case of the SVMPs, we hypothesized that these domains could function to target the metalloproteinases to key extracellular matrix proteins or cell surface proteins. Initially we detected interaction of collagen XIV, a fibril-associated collagen with interrupted triple helices containing von Willebrand factor A (VWA) domains, with the PIII SVMP catrocollastatin. Next we investigated whether other VWA domain-containing matrix proteins could support the binding of PIII SVMPs. Using surface plasmon resonance, the PIII SVMP jararhagin and a recombinant cysteine-rich domain from a PIII SVMP were demonstrated to bind to collagen XIV, collagen XII, and matrilins 1, 3, and 4. Jararhagin was shown to cleave these proteins predominantly at sites localized at or near the VWA domains suggesting that it is the VWA domains to which the PIII SVMPs are binding via their cysteine-rich domain. In light of the fact that these extracellular matrix proteins function to stabilize matrix, targeting the SVMPs to these proteins followed by their specific cleavage could promote the destabilization of extracellular matrix and cell-matrix interactions and in the case of capillaries could contribute to their disruption and hemorrhage. Although there is only limited structural homology shared by the cysteine-rich domains of the PIII SVMPs and the ADAMs our results suggest an analogous function for the cysteine-rich domains in certain members of the expanded ADAM family of proteins to target them to VWA domain-containing proteins.  相似文献   

11.
The PIII class of the snake venom metalloproteinases (SVMPS) are acknowledged to be one of the major hemorrhage producing toxins in crotalid venoms. This class of SVMPS are structurally distinguished by the presence of disintegrin-like and cysteine-rich domains carboxy to the metalloproteinase domain and thus share structural homology with many of the ADAMs proteins. It has been suggested that the presence of the carboxy domain are the key structural determinants for potent hemorrhagic activity in that they may serve to target the proteinases to specific key extracellular matrix and cell surface substrates for proteolysis leading to hemorrhage production at the capillaries. Following from previous studies in our laboratory in this investigation we scanned the cysteine-rich domain of the PIII hemorrhagic SVMP jararhagin using synthetic peptides in an attempt to identify regions which could bind to von Willebrand factor (vWF), a known binding partner for jararhagin. From these studies we identified two such peptide, Jar6 and Jar7 that could support binding to vWF as well as block the recombinant cysteine-rich domain of jararhagin binding to vWF. Using the coordinates for the recently solved crystal structure of the PIII SVMP VAP1, we modeled the structure of jararhagin and attempted to dock the modeled cysteine-rich structure of that protein to the A1 domain of vWF. These studies indicated that effective protein-protein interaction between the two ligands was possible and supported the data indicating that the Jar6 peptide was involved, whereas the Jar7 peptide was observed to be sterically blocked from interaction. In summary, our studies have identified a region on the cysteine-rich domain of a PIII SVMP that interacts with vWF and based on molecular modeling could be involving in the interaction of the cysteine-rich domain of the SVMP with the A1 domain of vWF thus serving to target the toxin to the protein for subsequent proteolytic degradation.  相似文献   

12.
Snake venom metalloproteinases (SVMPs) have recently been shown to interact with proteins containing von Willebrand factor A (VWA) domains, including the extracellular matrix proteins collagen XII, collagen XIV, matrilins 1, 3 and 4, and von Willebrand factor (VWF) via their cysteine-rich domain. We extended those studies using surface plasmon resonance to investigate the interaction of SVMPs with VWF, and demonstrated that jararhagin, a PIII SVMP containing a metalloproteinase domain followed by disintegrin-like and cysteine-rich domains, catrocollastatin C, a disintegrin-like/cysteine-rich protein, and the recombinant cysteine-rich domain of atrolysin A (A/C) all interacted with immobilized VWF in a dose-dependent fashion. Binding of VWF in solution to immobilized A/C was inhibited by ristocetin and preincubation of platelets with A/C abolished ristocetin/VWF-induced platelet aggregation, indicating that the interaction of A/C with VWF is mediated by the VWA1 domain. Jararhagin cleaved VWF at sites adjacent to the VWA1 domain, whereas atrolysin C, a SVMP lacking the cysteine-rich domain, cleaved VWF at dispersed sites. A/C and catrocollastatin C completely inhibited the digestion of VWF by jararhagin, demonstrating that the specific interaction of jararhagin with VWF via the VWA1 domain is necessary for VWF proteolysis. In summary, we localized the binding site of PIII SVMPs in VWF to the A1 domain. This suggests additional mechanisms by which SVMPs may interfere with the adhesion of platelets at the site of envenoming. Thus, specific interaction of cysteine-rich domain-containing SVMPs with VWF may function to promote the hemorrhage caused by SVMP proteolysis of capillary basements and surrounding stromal extracellular matrix.  相似文献   

13.

Background

Snake Venom Metalloproteinases (SVMPs) are amongst the key enzymes that contribute to the high toxicity of snake venom. We have recently shown that snake venoms from the Bothrops genus activate the Complement system (C) by promoting direct cleavage of C-components and generating anaphylatoxins, thereby contributing to the pathology and spread of the venom. The aim of the present study was to isolate and characterize the C-activating protease from Bothrops pirajai venom.

Results

Using two gel-filtration chromatography steps, a metalloproteinase of 23 kDa that activates Complement was isolated from Bothrops pirajai venom. The mass spectrometric identification of this protein, named here as C-SVMP, revealed peptides that matched sequences from the P-I class of SVMPs. C-SVMP activated the alternative, classical and lectin C-pathways by cleaving the α-chain of C3, C4 and C5, thereby generating anaphylatoxins C3a, C4a and C5a. In vivo, C-SVMP induced consumption of murine complement components, most likely by activation of the pathways and/or by direct cleavage of C3, leading to a reduction of serum lytic activity.

Conclusion

We show here that a P-I metalloproteinase from Bothrops pirajai snake venom activated the Complement system by direct cleavage of the central C-components, i.e., C3, C4 and C5, thereby generating biologically active fragments, such as anaphylatoxins, and by cleaving the C1-Inhibitor, which may affect Complement activation control. These results suggest that direct complement activation by SVMPs may play a role in the progression of symptoms that follow envenomation.  相似文献   

14.
Atrolysin A and jararhagin are class P-III snake venom metalloproteinases (SVMPs) with three distinct domains: a metalloproteinase, a disintegrin-like and a cysteine-rich. The metalloproteinase and the disintegrin-like domains of atrolysin A and jararhagin contain peptide sequences that interact with alpha2beta1 integrin and inhibit the platelet responses to collagen. Recently, the recombinant cysteine-rich domain of atrolysin A was shown to have similar effects, but the sequence(s) responsible for this is unknown. In this report, we demonstrate two complete peptide sequences from the homologous cysteine-rich domains of atrolysin A and jararhagin that inhibit both platelet aggregation by collagen and adhesion of alpha2-expressing K562 cells to this protein. In addition, the peptide effects on platelets do not seem to involve an inhibition of GPVI. These results identify, for the first time, sites in the cysteine-rich domain of SVMPs that inhibit cell responses to collagen and reveal the complexity of the potential biological effects of these enzymes with multifunctional domains.  相似文献   

15.
16.
从菜花烙铁头蛇的毒腺中 ,利用RT PCR进行体外扩增 ,克隆到 2个金属蛋白酶 去整合素基因 ,命名为TJM 1、TJM 2 .TJM 1cDNA全长为 15 2 8bp ,编码 4 81个氨基酸 ;TJM 2cDNA全长为 15 78bp ,编码 4 84个氨基酸 .TJM 1和TJM 2都属于Ⅱ型蛇毒金属蛋白酶 ,由信号肽、前肽、金属蛋白酶、间隔肽和去整合素 5部分组成 .Ⅱ型蛇毒金属蛋白酶氨基酸序列的比较及进化分析显示 ,它可进一步分为两类 ,一类包括大多数Ⅱ型蛇毒金属蛋白酶 (其中含有TJM 1) ,而TJM 2和agkistin则组成了另一类 .并且TJM 2和agkistin的第 4 0 7位和第 4 2 6位残基都是半胱氨酸 ,而在其它Ⅱ型金属蛋白酶的相应位置 ,4 0 7位是丝氨酸 ,4 2 6位则缺失 .TJM 2和agkistin均有可与整合素α2 Ⅰ区域特异性结合的片段Q NRKRHDNAQ(残基 2 76~ 2 84 ) ,这个片段在其它Ⅱ型金属蛋白酶中并没有发现 .因此推断 ,TJM 2和agkistin可能属于一类新型的Ⅱ型蛇毒金属蛋白酶 .  相似文献   

17.
The disulfide bond pattern of catrocollastatin-C was determined by N-terminal sequencing and mass spectrometry. The N-terminal disintegrin-like domain is a compact structure including eight disulfide bonds, seven of them in the same pattern as the disintegrin bitistatin. The protein has two extra cysteine residues (XIII and XVI) that form an additional disulfide bond that is characteristically found in the disintegrin-like domains of cellular metalloproteinases (ADAMs) and PIII snake venom Zn-metalloproteinases (SVMPs). The C-terminal cysteine-rich domain of catrocollastatin-C contains five disulfide bonds between nearest-neighbor cysteines and a long range disulfide bridge between CysV and CysX. These results provide structural evidence for a redefinition of the disintegrin-like and cysteine-rich domain boundaries. An evolutionary pathway for ADAMs, PIII, and PII SVMPs based on disulfide bond engineering is also proposed.  相似文献   

18.
Snake venom hemorrhagic metalloproteinases (SVMPs) of the PI, PII and PIII classes were compared in terms of tissue localization and their ability to hydrolyze basement membrane components in vivo, as well as by a proteomics analysis of exudates collected in tissue injected with these enzymes. Immunohistochemical analyses of co-localization of these SVMPs with type IV collagen revealed that PII and PIII enzymes co-localized with type IV collagen in capillaries, arterioles and post-capillary venules to a higher extent than PI SVMP, which showed a more widespread distribution in the tissue. The patterns of hydrolysis by these three SVMPs of laminin, type VI collagen and nidogen in vivo greatly differ, whereas the three enzymes showed a similar pattern of degradation of type IV collagen, supporting the concept that hydrolysis of this component is critical for the destabilization of microvessel structure leading to hemorrhage. Proteomic analysis of wound exudate revealed similarities and differences between the action of the three SVMPs. Higher extent of proteolysis was observed for the PI enzyme regarding several extracellular matrix components and fibrinogen, whereas exudates from mice injected with PII and PIII SVMPs had higher amounts of some intracellular proteins. Our results provide novel clues for understanding the mechanisms by which SVMPs induce damage to the microvasculature and generate hemorrhage.  相似文献   

19.

Background

Envenoming by Bothrops jararaca can result in local pain, edema, hemorrhage and necrosis, partially mediated by snake venom metalloproteinases (SVMPs). Here, we describe the characterization of BJ-PI2, a P-I class SVMP from B. jararaca venom, and its local tissue actions.

Methods

BJ-PI2 was purified by a combination of gel filtration, anion-exchange chromatography and reverse phase HPLC, and identified by mass spectrometry. Clotting and fibrin(ogen)olytic activities were assayed using conventional methods. Hemorrhagic activity and changes in vascular permeability were examined in rat dorsal skin. Myonecrosis and inflammatory activity were examined in mouse gastrocnemius muscle.

Results

BJ-PI2 was a 23.08 kDa single-chain polypeptide. Tryptic fragments showed highest homology with SVMP insularinase A from Bothrops insularis, but also with B. jararaca SVMP bothrojaractivase; less similarity was observed with B. jararaca SVMPs BJ-PI and jararafibrases II and IV. BJ-PI2 did not clot fibrinogen or rat citrated plasma but had α- and β-fibrinogenolytic activity (inhibited by EDTA and 1,10-phenanthroline but not by PMSF) and attenuated coagulation after plasma recalcification. BJ-PI2 had fibrinolytic activity. BJ-PI2 increased the vascular permeability of rat dorsal skin (inhibited by 1,10-phenanthroline). BJ-PI2 was not hemorrhagic or myonecrotic but caused migration of inflammatory cells. In contrast, venom was strongly hemorrhagic and myonecrotic but caused less infiltration of inflammatory cells.

Conclusions

BJ-PI2 is a non-hemorrhagic, non-myonecrotic, non-coagulant P-I class SVMP that may enhance vascular permeability and inflammatory cell migration in vivo.

General significance

BJ-PI2 contributes to enhanced vascular permeability and inflammatory cell migration after envenoming, but not to venom-induced hemorrhage and necrosis.  相似文献   

20.
Ruta V  MacKinnon R 《Biochemistry》2004,43(31):10071-10079
A variety of venomous animals produce small protein toxins that impair the function of voltage-dependent cation channels by affecting the motions of the voltage-sensor domains and altering the energetics of the opening of the channel. In this study, we investigate the location of the receptor for tarantula venom voltage-sensor toxins on the voltage-dependent K+ channel from Aeropyrum pernix (KvAP), an archeabacterial channel that is functionally inhibited by members of this toxin family. We show that it is possible to purify the same set of toxins from venom of the tarantula Grammostola spatulata using either the purified KvAP voltage-sensor domain or the full-length KvAP channel. The equivalence of toxin retention profiles for the two channel proteins implies that the tarantula voltage-sensor toxin receptor resides exclusively on the voltage-sensor domain and that the pore is not required for the toxin-channel interaction. We have identified and characterized the functional properties of a subset of the tarantula toxins that bind to the KvAP voltage-sensor domain. Some of these toxins, VSTX1 and GSMTX4, have been previously isolated, while others, VSTX2 and VSTX3, are new members of the tarantula voltage-sensor toxin family. Some but not all toxins that bind to the voltage-sensor domain affect voltage-dependent gating of KvAP channels in lipid membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号