首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three-dimensional (3D) maps of proteins within the context of whole cells are important for investigating cellular function. However, 3D reconstructions of whole cells are challenging to obtain using conventional transmission electron microscopy (TEM). We describe a methodology to determine the 3D locations of proteins labeled with gold nanoparticles on whole eukaryotic cells. The epidermal growth factor receptors on COS7 cells were labeled with gold nanoparticles, and critical-point dried whole-mount cell samples were prepared. 3D focal series were obtained with aberration-corrected scanning transmission electron microscopy (STEM), without tilting the specimen. The axial resolution was improved with deconvolution. The vertical locations of the nanoparticles in a whole-mount cell were determined with a precision of 3nm. From the analysis of the variation of the axial positions of the labels we concluded that the cellular surface was ruffled. To achieve sufficient stability of the sample under electron beam irradiation during the recording of the focal series, the sample was carbon coated. A quantitative method was developed to analyze the stability of the ultrastructure after electron beam irradiation using TEM. The results of this study demonstrate the feasibility of using aberration-corrected STEM to study the 3D nanoparticle distribution in whole cells.  相似文献   

2.
Biogenic gold nanotriangles and spherical silver nanoparticles were synthesized by a simple procedure using Aloe vera leaf extract as the reducing agent. This procedure offers control over the size of the gold nanotriangle and thereby a handle to tune their optical properties, particularly the position of the longitudinal surface plasmon resonance. The kinetics of gold nanotriangle formation was followed by UV-vis-NIR absorption spectroscopy and transmission electron microscopy (TEM). The effect of reducing agent concentration in the reaction mixture on the yield and size of the gold nanotriangles was studied using transmission electron microscopy. Monitoring the formation of gold nanotriangles as a function of time using TEM reveals that multiply twinned particles (MTPs) play an important role in the formation of gold nanotriangles. It is observed that the slow rate of the reaction along with the shape directing effect of the constituents of the extract are responsible for the formation of single crystalline gold nanotriangles. Reduction of silver ions by Aloe vera extract however, led to the formation of spherical silver nanoparticles of 15.2 nm +/- 4.2 nm size.  相似文献   

3.
Gold nanoparticles were obtained by reduction of a tetrachloroaurate aqueous solution in the presence of a RGD-(GC)(2) peptide as stabilizer. As comparison, the behavior of the (GC)(2) peptide has been studied. The (GC)(2) and RGD-(GC)(2) peptides were prepared ad hoc by Fmoc synthesis. The colloidal systems have been characterized by UV-visible, TGA, ATR-FTIR, mono and bidimensional NMR techniques, confocal and transmission (TEM) microscopy, ζ-potential, and light scattering measurements. The efficient cellular uptake of Au-RGD-(GC)(2) and Au-(GC)(2) stabilized gold nanoparticles into U87 cells (human glioblastoma cells) were investigated by confocal microscopy and compared with the behavior of (GC)(2) capped gold nanoparticles. A quantitative determination of the nanoparticles taken up has been carried out by measuring the pixel brightness of the images, a measure that highlighted the importance of the RGD termination of the peptide. Insight in the cellular uptake mechanism was investigated by TEM microscopy. Various important evidences indicated the selective uptake of RGD-(GC)(2) gold nanoparticles into the nucleus.  相似文献   

4.
Surface-modified gold nanoparticles (AuNPs) are nanomaterials that hold promise in drug delivery applications. In this study, the cytotoxicity, uptake, intracellular localization, and the exocytosis of citrate-stabilized (Cit-AuNP) and polyethylene glycol (PEG)-modified gold nanoparticles with the carboxyl (COOH) terminal functional group were assessed in human embryonic kidney (HEK 293) and the human caucasian hepatocytes carcinoma (Hep G2) cell systems, representing two major accumulation sites for AuNPs. The zeta (ζ)-potential measurements confirmed the negative surface charge of the AuNPs in water and in cell growth medium. The transmission electron microscopy confirmed the size and morphology of the AuNPs. Both types of AuNPs were shown to induce cytotoxic effects in cells. The Hep G2 cells were more sensitive cell type, with the COOH-PEG-AuNPs inducing the highest toxicity at higher concentrations. Dark field microscopy and TEM images revealed that the AuNPs were internalized in cells, mostly as agglomerates. TEM micrographs further revealed that the AuNPs were confined as agglomerates inside vesicle-like compartments, likely to be endosomal and lysosomal structures as well as in the cytosol, mostly as individual particles. The AuNPs were shown to remain in cellular compartments for up to 3 weeks, but thereafter, clearance of the gold nanoparticles from the cells by exocytosis was evident. The results presented in this study may therefore give an indication on the fate of AuNPs on long-term exposure to cells and may also assist in safety evaluation of AuNPs.  相似文献   

5.
Nanoscale imaging techniques are needed to investigate cellular function at the level of individual proteins and to study the interaction of nanomaterials with biological systems. We imaged whole fixed cells in liquid state with a scanning transmission electron microscope (STEM) using a micrometer-sized liquid enclosure with electron transparent windows providing a wet specimen environment. Wet-STEM images were obtained of fixed E. coli bacteria labeled with gold nanoparticles attached to surface membrane proteins. Mammalian cells (COS7) were incubated with gold-tagged epidermal growth factor and fixed. STEM imaging of these cells resulted in a resolution of 3 nm for the gold nanoparticles. The wet-STEM method has several advantages over conventional imaging techniques. Most important is the capability to image whole fixed cells in a wet environment with nanometer resolution, which can be used, e.g., to map individual protein distributions in/on whole cells. The sample preparation is compatible with that used for fluorescent microscopy on fixed cells for experiments involving nanoparticles. Thirdly, the system is rather simple and involves only minimal new equipment in an electron microscopy (EM) laboratory.  相似文献   

6.
PEGylated PAMAM conjugated fluorescein-doped magnetic silica nanoparticles (PEGylated PFMSNs) have been synthesized for evaluating their ability across the blood-brain barrier (BBB) and distribution in rat brain. The obtained nanoparticles were characterized by transmission electron microscopy (TEM), thermal gravimetry analyses (TGA), zeta potential (ζ-potential) titration, and X-ray photoelectron spectroscopy (XPS). The BBB penetration and distribution of PEGylated PFMSNs and FMSNs in rat brain were investigated not only at the cellular level with Confocal laser scanning microscopy (CLSM), but also at the subcellular level with transmission electron microscopy (TEM). The results provide direct evidents that PEGylated PFMSNs could penetrate the BBB and spread into the brain parenchyma.  相似文献   

7.
Clonable contrasting agents for light microscopy, such as green fluorescent protein, have revolutionized biology, but few such agents have been developed for transmission electron microscopy (TEM). As an attempt to develop a novel clonable contrasting agent for TEM, we have evaluated metallothionein, a small metal-binding protein, reacted with aurothiomalate, an anti-arthritic gold compound. Electro spray ionization and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry measurements show a distribution of gold atoms bound to individual metallothionein molecules. Unlike previous reports, these data show gold binding occurred as the addition of single atoms without retention of additional ligands. Moreover, under certain conditions, MALDI spectra show gold binding ratios of greater than 1:1 with the cysteine residues of metallothionein. Together, this may hint at a gold-binding mechanism similar to gold nanocluster formation. Finally, metallothionein-gold complexes visualized in the TEM show a range of sizes similar to those used as current TEM labels, and show the potential of the protein as a clonable TEM label in which the gold cluster is grown on the label, thereby circumventing the problems associated with attaching gold clusters.  相似文献   

8.
Low density lipoproteins (LDL) were conjugated to colloidal gold for investigation of the ultrastructural aspects of binding and receptor-mediated internalization of LDL by cultured endothelial cells from the human umbilical artery and vein. The number of LDL receptors was increased by preincubation in lipoprotein-depleted serum. When the cells were incubated with LDL-gold particles for 2 h at 4 degrees C, the complexes were found in coated pits as well as in clusters attached to the plasma membrane. Small vesicles containing a few LDL-gold complexes appeared in the cytoplasm close to the plasma membrane when the cells were incubated with the conjugate for 5 min at 37 degrees C. After 15 min at 37 degrees C, larger vesicles with a pale matrix and membrane-orientated LDL-gold complexes were seen. After incubation for 30 min at 37 degrees C, colloidal gold particles were present in dense bodies. Quantification of the binding of LDL-gold complexes to the plasma membrane at 4 degrees C showed no differences between arterial and venous endothelial cells.  相似文献   

9.
Leaf extracts of two plants, Magnolia kobus and Diopyros kaki, were used for ecofriendly extracellular synthesis of metallic gold nanoparticles. Stable gold nanoparticles were formed by treating an aqueous HAuCl4 solution using the plant leaf extracts as reducing agents. UV–visible spectroscopy was used for quantification of gold nanoparticle synthesis. Only a few minutes were required for >90% conversion to gold nanoparticles at a reaction temperature of 95 °C, suggesting reaction rates higher or comparable to those of nanoparticle synthesis by chemical methods. The synthesized gold nanoparticles were characterized with inductively coupled plasma spectrometry (ICP), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), and particle analysis using a particle analyzer. SEM and TEM images showed that a mixture of plate (triangles, pentagons, and hexagons) and spherical structures (size, 5–300 nm) were formed at lower temperatures and leaf broth concentrations, while smaller spherical shapes were obtained at higher temperatures and leaf broth concentrations.  相似文献   

10.
Gold nanoparticles were prepared and loaded into the bilayer of dipalmitoylphosphatidylcholine (DPPC) liposomes, named as gold-loaded liposomes. Biophysical characterization of gold-loaded liposomes was studied by transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy as well as turbidity and rheological measurements. FTIR measurements showed that gold nanoparticles made significant changes in the frequency of the CH2 stretching bands, revealing that gold nanoparticles increased the number of gauche conformers and create a conformational change within the acyl chains of phospholipids. The transmission electron micrographs (TEM) revealed that gold nanoparticles were loaded in the liposomal bilayer. The zeta potential of DPPC liposomes had a more negative value after incorporating of Au NPs into liposomal membranes. Turbidity studies revealed that the loading of gold nanoparticles into DPPC liposomes results in shifting the temperature of the main phase transition to a lower value. The membrane fluidity of DPPC bilayer was increased by loading the gold nanoparticles as shown from rheological measurements. Knowledge gained in this study may open the door to pursuing liposomes as a viable strategy for Au NPs delivery in many diagnostic and therapeutic applications.  相似文献   

11.
The localization of scarce antigens in thin sections of biological material can be accomplished by pre-embedment labeling with ultrasmall immuno-gold labels. Moreover, with this method, labeling is not restricted to the section surface but occurs throughout the section volume. Thus, when combined with electron tomography, antigens can be localized in three dimensions in relation to the 3D (three-dimensional) ultrastructure of the cell. However, for visualization in a transmission electron microscope, these labels need to be enlarged by silver or gold enhancement. The increase in particle size reduces the resolution of the antigen detection and the large particles obscure ultrastructural details in the tomogram. In this paper we show for the first time that these problems can be avoided and that ultrasmall gold labels can be localized in three dimensions without the need for gold or silver enhancement by using HAADF-STEM (high angular annular dark-field-scanning transmission electron microscopy) tomography. This method allowed us to three-dimensionally localize Aurion ultrasmall goat anti-rabbit immuno-gold labels on sections of Epon-embedded, osmium-uranium-lead-stained biological material. Calculations show that a 3D reconstruction obtained from HAADF-STEM projection images can be spatially aligned to one obtained from transmission electron microscopy (TEM) projections with subpixel accuracy. We conclude that it is possible to combine the high-fidelity structural information of TEM tomograms with the ultrasmall label localization ability of HAADF-STEM tomograms.  相似文献   

12.
Roy S  Dasgupta AK 《FEBS letters》2007,581(28):5533-5542
Fibrinogen conjugated gold nanoparticles (fibrinogen-Au) and thrombin conjugated silver nanoparticles (thrombin-Ag) were synthesized by heating (90 degrees C) the proteins (50 microg protein/ml) with 1mM AgNO(3) or AuCl(3). The resultant particles were harvested and examined by flow cytometry, scanning electron microscopy (SEM), transmission emission microscopy (TEM), optical microscopy and dynamic light scattering. SEM and TEM images revealed that the fibrinogen-Au and thrombin-Ag particles interacted. The emergent bio-nanoconjugate population could be controlled by addition of thrombin-Ag. The method may be exploited in parametrizing coagulation factors and other clinically important protein-protein interactions.  相似文献   

13.
Identification of proteins in 3D maps of cells is a main challenge in structural cell biology. For light microscopy (LM) clonable reagents such as green fluorescent protein represented a real revolution and equivalent reagents for transmission electron microscopy (TEM) have been pursued for a long time. To test the viability of the metal-binding protein metallothionein (MT) as a tag for TEM in cells we have studied three MT-fusion proteins in Escherichia coli: AmiC, a component of the division ring, RecA, a DNA-binding protein, and a truncated cytoplasmic form of maltose-binding protein (MBP). Proteins fused to MT were expressed in E. coli. live cells treated with gold salts were processed by fast-freezing and freeze-substitution. Small electron-dense particles were detected in sections of bacteria expressing the MT-fusion proteins and immunogold labelling confirmed that these particles were associated to the fusion proteins. The distribution of the particles correlated with the functional locations of these proteins: MBP–MT3 concentrated in the cytoplasm, AmiC-MT1 in the bacterial division ring and RecA-MT1 in the nucleoid. The electron-dense tag was easily visualized by electron tomography and in frozen-hydrated cells.  相似文献   

14.
Advancement of biological process for the synthesis of bionanoparticles is evolving into a key area of research in nanotechnology. The present study deals with the biosynthesis, characterization of gold bionanoparticles by Nocardiopsis sp. MBRC-48 and evaluation of their antimicrobial, antioxidant and cytotoxic activities. The gold bionanoparticles obtained were characterized by UV–visible spectroscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray analysis and transmission electron microscopy (TEM). The synthesized gold bionanoparticles were spherical in shape with an average of 11.57 ± 1.24 nm as determined by TEM and dynamic light scattering (DLS) particle size analyzer, respectively. The biosynthesized gold nanoparticles exhibited good antimicrobial activity against pathogenic microorganisms. It showed strong antioxidant activity as well as cytotoxicity against HeLa cervical cancer cell line. The present study demonstrated the potential use of the marine actinobacterial strain of Nocardiopsis sp. MBRC-48 as an important source for gold nanoparticles with improved biomedical applications including antimicrobial, antioxidant as well as cytotoxic agent.  相似文献   

15.
We describe a method based on fluorescence in situ hybridisation (FISH) that allows the identification of individual cells by electron microscopy. We hybridised universal and specific fluorescein-labelled oligonucleotide probes to the ribosomal RNA of prokaryotic microorganisms in heterogeneous cell mixtures. We then used antibodies against fluorescein coupled to sub-nanometer gold particles to label the hybridised probes in the ribosome. After increasing the diameter of the metal particles by silver enhancement, the specific gold-silver signal was visualised by optical microscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). It is the first time that SEM is applied to the detection of gold nanoparticles hybridised to an intracellular target, such as the ribosome. The possibility to couple phylogenetic identification by FISH to cell surface and ultrastructure observation at electron microscopy resolution has promising potential applications in microbial ecology.  相似文献   

16.
This work represents the results of the study on applicability of the modern methods of analytical transmission electron microscopy (TEM) for detection, identification and visualization of localization of nanoparticles of titanium and cerium oxides in A549, human lung adenocarcinoma cell line. Comparative analysis was performed for images of the nanoparticles in cells obtained in the bright-field mode of TEM, bright-field scanning TEM, and high-angle annular dark field scanning TEM. For identification of nanoparticles in the cells, the analytical techniques, energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy, were compared when used in the modes of obtaining energy spectra from different particles and of element mapping. It was shown that electron tomography is applicable to confirm that nanoparticles are localized in the sample rather than brought in by contamination. The possibilities and fields of using different techniques of analytical TEM for detection, visualization and identification of nanoparticles in biological samples are discussed.  相似文献   

17.
Summary Wheat germ agglutinin—gold and chitinase—gold complexes were used to demonstrate the presence of chitin on the surfaces of eggs of the animal parasitic nematodeOnchocerca gibsoni. The gold complexes were enhanced by silver intensification and examined by light microscopy (LM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Distinctive labelling of the egg surfaces was obtained with both probes in all three microscope modes. The results indicate that the small colloidal gold markers (3–10 nm) commonly used for high resolution TEM studies may be silver enhanced and also used for sensitive LM and SEM studies.  相似文献   

18.
The development of an eco-friendly and reliable process for the synthesis of gold nanomaterials (AuNPs) using microorganisms is gaining importance in the field of nanotechnology. In the present study, AuNPs have been synthesized by bio-reduction of chloroauric acid (HAuCl4) using the fungal culture filtrate (FCF) of Alternaria alternata. The synthesis of the AuNPs was monitored by UV–visible spectroscopy. The particles thereby obtained were characterized by UV, dynamic light scattering (DLS), X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis, Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM) and transmission electron microscopy (TEM). Energy-dispersive X-ray study revealed the presence of gold in the nanoparticles. Fourier transform infrared spectroscopy confirmed the presence of a protein shell outside the nanoparticles which in turn also support their stabilization. Treatment of the fungal culture filtrate with aqueous Au+ ions produced AuNPs with an average particle size of 12 ± 5 nm. This proposed mechanistic principal might serve as a set of design rule for the synthesis of nanostructures with desired architecture and can be amenable for the large scale commercial production and technical applications.  相似文献   

19.
This paper proposes a method for diagnosing intracellular conditions and organelles of cells with localized surface plasmonic resonance (LSPR) by directly internalizing the gold nanoparticles (AuNPs) into the cells and measuring their plasmonic properties through hyperspectral imaging. This technique will be useful for direct diagnosis of cellular organelles, which have potential for cellular biology, proteomics, pharmaceuticals, drug discovery etc. Furthermore, localization and characterization of citrate-capped gold nanoparticles in HeLa cells were studied, by hyperspectral microscopy and other imaging techniques. Here, we present the method of internalizing the gold nanoparticles into the cells and subcellular organelles to facilitate subcellular plasmonic measurements. An advanced label-free visualization technique, namely hyperspectral microscopy providing images and spectral data simultaneously, was used to confirm the internalization of gold nanoparticles and to reveal their optical properties for possible intracellular plasmonic detection. Hyperspectral technology has proved to be effective in the analysis of the spectral profile of gold nanoparticles, internalized under different conditions. Using this relatively novel technique, it is possible to study the plasmonic properties of particles, localized in different parts of the cell. The position of the plasmon bands reflects the interactions of gold nanoparticles with different subcellular systems, including particle-nucleus interactions. Our results revealed the effect of the different intracellular interactions on the aggregation pattern of gold nanoparticles, inside the cells. This novel technique opens the door to intracellular plasmonics, an entirely new field, with important potential applications in life sciences. Similarly, the characterization of AuNP inside the cell was validated using traditional methods such as light microscopy and scanning electron microscopy. Under the conditions studied in this work, gold nanoparticles were found to be non-toxic to HeLa (cervical cancer) cells.  相似文献   

20.
Chang TC  Lai SM  Wen CY  Hsiao YL 《Acta cytologica》2004,48(2):155-160
OBJECTIVE: To elucidate 3-dimensional (3-D) cytomorphology in fine needle aspiration biopsy (FNAB) of subacute thyroiditis. STUDY DESIGN: Ultrasound-guided FNAB was performed on the inflamed area of the thyroid from 4 patients with subacute thyroiditis. The aspirates were stained and observed under a light microscope (LM). The aspirates were also fixed, dehydrated, critical point dried, spattered with gold ions and observed with a scanning electron microscope (SEM). For transmission electron microscopy (TEM), the specimen was fixed, dehydrated, embedded in an Epon mixture, cut with an ultramicrotome, mounted on copper grids, electron doubly stained with uranium acetate and lead citrate, and observed with TEM. Findings with SEM were correlated with those with LM and TEM. RESULTS: Under SEM, 3-D cytomorphology of subacute thyroiditis displayed loss of a uniform, honeycomb cellular arrangement; variation in size; and decrease or shortening of microvilli in follicular cells, which corresponded to varying degrees of cellular degeneration under TEM. Giant cells that were round or ovoid were also noted with SEM. CONCLUSION: Loss of a uniform, honeycomb cellular arrangement; variation in size and decrease or shortening of microvilli in follicular cells; and appearance of round or ovoid giant cells were characteristic 3-D cytomorphology findings in FNAB of subacute thyroiditis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号