首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Monoclonal antibodies can acquire the property of engagement of a second antigen via fusion methods or modification of their CDR loops, but also by modification of their constant domains, such as in the mAb2 format where a set of mutated amino acid residues in the CH3 domains enables a high-affinity specific interaction with the second antigen. We tested the possibility of introducing multiple binding sites for the second antigen by replacing the Fab CH1/CL domain pair with a pair of antigen-binding CH3 domains in a model scaffold with trastuzumab variable domains and VEGF-binding CH3 domains. Such bispecific molecules were produced in a “Fab-like” format and in a full-length antibody format. Novel constructs were of expected molecular composition using mass spectrometry. They were expressed at a high level in standard laboratory conditions, purified as monomers with Protein A and gel filtration and were of high thermostability. Their high-affinity binding to both target antigens was retained. Finally, the Her2/VEGF binding domain-exchanged bispecific antibody was able to mediate a potentiated surface Her2-internalization effect on the Her2-overexpressing cell line SK-BR-3 due to improved level of cross-linking with the endogenously secreted cytokine. To conclude, bispecific antibodies with Fabs featuring exchanged antigen-binding CH3 domains offer an alternative solution in positioning and valency of antigen binding sites.  相似文献   

3.
Large quantities of vitamin A are stored as retinyl esters (REs) in specialized liver cells, the hepatic stellate cells (HSCs). To date, the enzymes controlling RE degradation in HSCs are poorly understood. In this study, we identified KIAA1363 (also annotated as arylacetamide deacetylase 1 or neutral cholesterol ester hydrolase 1) as a novel RE hydrolase. We show that KIAA1363 is expressed in the liver, mainly in HSCs, and exhibits RE hydrolase activity at neutral pH. Accordingly, addition of the KIAA1363-specific inhibitor JW480 largely reduced RE hydrolase activity in lysates of cultured murine and human HSCs. Furthermore, cell fractionation experiments and confocal microscopy studies showed that KIAA1363 localizes to the endoplasmic reticulum. We demonstrate that overexpression of KIAA1363 in cells led to lower cellular RE content after a retinol loading period. Conversely, pharmacological inhibition or shRNA-mediated silencing of KIAA1363 expression in cultured murine and human HSCs attenuated RE degradation. Together, our data suggest that KIAA1363 affects vitamin A metabolism of HSCs by hydrolyzing REs at the endoplasmic reticulum, thereby counteracting retinol esterification and RE storage in lipid droplets.  相似文献   

4.
Polypharmacy, or the simultaneous use of multiple drugs to treat a single patient, is a common practice in psychiatry. Unfortunately, data on the health effects of commonly used combinations of medications are very limited. In this study, we therefore investigated the effects and interactions between two commonly prescribed psychotropic medications with sterol inhibiting side effects, trazodone (TRZ), an antidepressant, and aripiprazole (ARI), an antipsychotic. In vitro cell culture experiments revealed that both medications alone disrupted neuronal and astroglial sterol biosynthesis in dose-dependent manners. Furthermore, when ARI and TRZ were combined, exposure resulted in an additive 7-dehydrocholesterol (7-DHC) increase, as well as desmosterol (DES) and cholesterol decreases in both cell types. In adult mice, at baseline, we found that the three investigated sterols showed significant differences in distribution across the eight assessed brain regions. Furthermore, experimental mice treated with ARI or TRZ, or a combination of both medications for 8 days, showed strong sterol disruption across all brain regions. We show ARI or TRZ alone elevated 7-DHC and decreased DES levels in all brain regions, but with regional differences. However, the combined utilization of these two medications for 8 days did not lead to additive changes in sterol disturbances. Based on the complex roles of 7-DHC derived oxysterols, we conclude that individual and potentially simultaneous use of medications with sterol biosynthesis-inhibiting properties might have undesired side effects on the adult brain, with as yet unknown long-term consequences on mental or physical health.  相似文献   

5.
BackgroundThe patients who require transfusion are prevalent in the Jazan Province, Saudi Arabia. Therefore, it is essential to know the frequency of blood group antigens in such a population. The Kidd blood group system (JK) has two antithetical antigens, Jka and Jkb. Antibodies to these antigens may result in delayed hemolytic transfusion reactions. The present study investigated the frequencies of Jka and Jkb and the phenotypes among Saudi blood donors living in the Jazan Province.MethodsOne hundred and forty-three samples from anonymous Saudi volunteer blood donors in the Jazan Province were serotype to detect Jka and Jkb using gel card technology and determine the phenotypes of the JK blood group system.ResultsThe prevalence of Jka and Jkb antigens were 90.64% (n = 126) and 69.40% (n = 93), respectively. The JK phenotypes were 34.96% Jk(a + b ? ) (n = 51), 12.59% Jk(a ? b + ) (n = 18), 52.45% Jk(a + b + ) (n = 75), and 0% Jk(a ? b ? ). The frequencies of the JK phenotypes in the Jazan population were significantly different from those in the Asian population (P < 0.05).ConclusionsWe reported the frequencies of the Jka and Jkb antigens and the distribution of the JK phenotypes in a group of Saudi blood donors in the Jazan Province, Saudi Arabia. The phenotype Jk(a + b + ) was the most common among the study population. Furthermore, this study emphasizes the significance of identifying the frequency of JK antigens and phenotypes in the provinces of Saudi Arabia.  相似文献   

6.
Amyloidogenic proteins form aggregates in cells, thereby leading to neurodegenerative disorders, including Alzheimer's and prion's disease, amyotrophic lateral sclerosis (ALS) in humans, and degenerative myelopathy (DM) and cognitive dysfunction in dogs. Hence, many small-molecule compounds have been screened to examine their inhibitory effects on amyloidogenic protein aggregation. However, no effective drug suitable for transition to clinical use has been found. Here we examined several novel oxindole compounds (GIF compounds) for their inhibitory effects on aggregate formation of the canine mutant superoxide dismutase 1 (cSOD1 E40K), a causative mutation resulting in DM, using Thioflavin-T fluorescence. Most GIF compounds inhibited the aggregation of cSOD1 E40K. Among the compounds, GIF-0854-r and GIF-0890-r were most effective. Their inhibitory effects were also observed in cSOD1 E40K-transfected cells. Additionally, GIF-0890-r effectively inhibited the aggregate formation of human SOD1 G93A, a causative mutation of ALS. GIF-0827-r and GIF-0856-r also effectively inhibited aggregate formation of human prion protein (hPrP). Subsequently, the correlation between their inhibitory effects on cSOD1 and hPrP aggregation was shown, indicating GIF compounds inhibited the aggregate formation of multiple amyloidogenic proteins. Conclusively, the novel oxindole compounds (GIF-0827-r, GIF-0854-r, GIF-0856-r, and GIF-0890-r) are proposed as useful therapeutic candidates for amyloidogenic neurodegenerative disorders.  相似文献   

7.
Tyrosine kinase inhibitors (TKIs) induce autophagy in many types of cancer cells. We previously reported that gefitinib (GEF) and imatinib (IMA) induce autophagy in epidermal growth factor receptor (EGFR) knock-out A549 and non-BCR-ABL-expressing leukemia cell lines, respectively. This evidence suggests that TKI-induced autophagy is independent of the original target molecules. The present study compared the autophagy-inducing abilities of various TKIs, regardless of their targets, by quantitative autophagy flux assay. We established stable clones expressing the GFP-LC3-mCherry-LC3ΔG plasmid in A549, PC-9, and CAL 27 cell lines and assessed autophagy inducibility by monitoring the fluorescent ratios of GFP-LC3 to mCherry-LC3ΔG using an IncuCyte live cell imaging system during exposure to TKIs viz; GEF, osimertinib (OSI), lapatinib (LAP), lenvatinib (LEN), sorafenib (SOR), IMA, dasatinib (DAS), and tivantinib (TIV). Among these TKIs, DAS, GEF, and SOR exhibited prominent autophagy induction in A549 and PC-9 cells. In CAL 27 cells, IMA, SOR, and LEN, but not GEF, TIV, or OSI, exhibited autophagy induction. In the presence of azithromycin (AZM), which showed an inhibitory effect on autophagy flux, TKIs with prominent autophagy inducibility exhibited enhanced cytotoxicity via non-apoptotic cell death relative to effects of TKI alone. Therefore, autophagy inducibility of TKIs differed in the context of cancer cells. However, once induced, they appeared to have cytoprotective functions. Thus, blocking TKI-induced autophagy with AZM may improve the therapeutic effect of TKIs in cancer cells.  相似文献   

8.
Current cerebral organoid technology provides excellent in vitro models mimicking the structure and function of the developing human brain, which enables studies on normal and pathological brain; however, further improvements are necessary to overcome the problems of immaturity and dearth of non-parenchymal cells. Vascularization is one of the major challenges for recapitulating processes in the developing human brain. Here, we examined the formation of blood vessel-like structures in cerebral organoids induced by vascular endothelial growth factor (VEGF) in vitro. The results indicated that VEGF enhanced differentiation of vascular endothelial cells (ECs) without reducing neuronal markers in the embryonic bodies (EBs), which then successfully developed into cerebral organoids with open-circle vascular structures expressing an EC marker, CD31, and a tight junction marker, claudin-5, characteristic of the blood-brain barrier (BBB). Further treatment with VEGF and Wnt7a promoted the formation of the outer lining consisting of pericyte-like cells, which surrounded the vascular tubes. RNA sequencing revealed that VEGF upregulated genes associated with tube formation, vasculogenesis, and the BBB; it also changed the expression of genes involved in brain embryogenesis, suggesting a role of VEGF in neuronal development. These results indicate that VEGF treatment can be used to generate vessel-like structures with mature BBB characteristics in cerebral organoids in vitro.  相似文献   

9.
Neuronal growth regulator 1 (NEGR1) is a glycosylphosphatidylinositol-anchored membrane protein associated with several human pathologies, including obesity, depression, and autism. Recently, significantly enlarged white adipose tissue, hepatic lipid accumulation, and decreased muscle capacity were reported in Negr1-deficient mice. However, the mechanism behind these phenotypes was not clear. In the present study, we found NEGR1 to interact with cluster of differentiation 36 (CD36), the major fatty acid translocase in the plasma membrane. Binding assays with a soluble form of NEGR1 and in situ proximal ligation assays indicated that NEGR1-CD36 interaction occurs at the outer leaflet of the cell membrane. Furthermore, we show that NEGR1 overexpression induced CD36 protein destabilization in vitro. Both mRNA and protein levels of CD36 were significantly elevated in the white adipose tissue and liver tissues of Negr1?/? mice. Accordingly, fatty acid uptake rate increased in NEGR1-deficient primary adipocytes. Finally, we demonstrated that Negr1?/? mouse embryonic fibroblasts showed elevated reactive oxygen species levels and decreased adenosine monophosphate-activated protein kinase activation compared with control mouse embryonic fibroblasts. Based on these results, we propose that NEGR1 regulates cellular fat content by controlling the expression of CD36.  相似文献   

10.
IntroductionBreastmilk contains proteins and cells which have stem cell properties. The human breastmilk stem cell mimick mesenchymal stem cells and expresses pluripotency genes. The protein level of breastmilk is high in colostrum and gradually subsides in the first year of lactation. The mesenchymal stem cells from breastmilk can be an alternative source of stem cells that can potentially affect cardiovascular therapy. This study aimed to identify the proteomic analysis of secretome mesenchymal stem-like cells under hypoxia compared to non-hypoxia from human breastmilk stem cells.Material and methodsThe human breastmilk was collected from six healthy breastfeeding women and transported to the laboratory under aseptic conditions. The breastmilk cells were isolated then cultured. After 72 h, the human breastmilk stem cells reached confluence then cleaned up and isolated in serum-free media (spheroid) to allow serial passaging every 48 h. The acquisition stem cell was made with flow cytometry. The cells were divided into hBSC secretomes under hypoxia (A) and non-hypoxia (B) and analyzed for LC-MS to identify the peptide structure.ResultsThe human breastmilk cells contained several mesenchymal stem-like cells in density 2.4 × 106 cell/mL for hypoxia and 2 × 106 cell/mL for non-hypoxia conditions. The human breastmilk stem cell surface markers derived from the third cell passage process were 93.77% for CD44, 98.69% for CD73, 88.45% for CD90, and 96.30% for CD105. The protein level of secretome mesenchymal stem -like cells under hypoxia was measured at 5.56 μg/mL and 4.28 μg/mL for non-hypoxia. The liquid chromatography-mass spectrometry analysis identified 130 and 59 peptides from hypoxia and non-hypoxia of the human breastmilk stem cell secretome sequentially. Some important proteomics structures were found in the hypoxic human breastmilk stem cell secretome, such as transforming growth factor-β, VE-cadherin, and caspase.ConclusionThe human breastmilk cells contain mesenchymal stem-like cells and a high concentration of CD44, CD73, CD90, and CD105 as surface markers at third passage culture. The hypoxic hBSC secretome produces a higher protein level compare to non-hypoxia. The transforming growth factor -β was found in the hypoxic hBSC secretome as a modulator of VEGF-mediated angiogenesis.  相似文献   

11.
12.
Coronin-1, a hematopoietic cell-specific actin-binding protein, is thought to be involved in the phagocytic process through its interaction with actin filaments. The dissociation of coronin-1 from phagosomes after its transient accumulation on the phagosome surface is associated with lysosomal fusion. We previously reported that 1) coronin-1 is phosphorylated by protein kinase C (PKC), 2) coronin-1 has two phosphorylation sites, Ser-2 and Thr-412, and 3) Thr-412 of coronin-1 is phosphorylated during phagocytosis. In this study, we examined which PKC isoform is responsible for the phosphorylation of coronin-1 at Thr-412 by using isotype-specific PKC inhibitors and small interfering RNAs (siRNAs). Thr-412 phosphorylation of coronin-1 was suppressed by Gö6976, an inhibitor of PKCα and PKCβI. This phosphorylation was attenuated by siRNA for PKCα, but not by siRNA for PKCβ. Furthermore, Thr-412 of coronin-1 was phosphorylated by recombinant PKCα in vitro, but not by recombinant PKCβ. We next examined the effects of Gö6976 on the intracellular distribution of coronin-1 in HL60 cells during phagocytosis. The confocal fluorescence microscopic observation showed that coronin-1 was not dissociated from phagosomes in Gö6976-treated cells. These results indicate that phosphorylation of coronin-1 at Thr-412 by PKCα regulates intracellular distribution during phagocytosis.  相似文献   

13.
Sialic acid, a terminal monosaccharide present in N-glycans, plays an important role in determining both the in vivo half-life and the therapeutic efficacy of recombinant glycoproteins. Low sialylation levels of recombinant human erythropoietin (rhEPO) in recombinant Chinese hamster ovary (rCHO) cell cultures are considered a major obstacle to the production of rhEPO in fed-batch mode. This is mainly due to the accumulation of extracellular sialidases released from the cells. To overcome this hurdle, three sialidase genes (Neu1, 2, and 3) were initially knocked-out using the CRISPR/Cas9-mediated large deletion method in the rhEPO-producing rCHO cell line. Unlike wild type cells, sialidase knockout (KO) clones maintained the sialic acid content and proportion of tetra-sialylated rhEPO throughout fed-batch cultures without exhibiting a detrimental effect with respect to cell growth and rhEPO production. Additional KO of two pro-apoptotic genes, BAK and BAX, in sialidase KO clones (5X KO clones) further improved rhEPO production without any detrimental effect on sialylation. On day 10 in fed-batch cultures, the 5X KO clones had 1.4-times higher rhEPO concentration and 3.0-times higher sialic acid content than wild type cells. Furthermore, the proportion of tetra-sialylated rhEPO on day 10 in fed-batch cultures was 42.2–44.3% for 5X KO clones while it was only 2.2% for wild type cells. Taken together, KO of sialidase and pro-apoptotic genes in rCHO cells is a useful tool for producing heavily sialylated glycoproteins such as rhEPO in fed-batch mode.  相似文献   

14.
Plasmodium falciparum malaria can cause severe anemia. Even after treatment, hematocrit can decrease. The role of autoantibodies against erythrocytes is not clearly elucidated and how common they are, or what they are directed against, is still largely unknown.We have investigated antibodies against erythrocytes in healthy adult men living in a highly malaria endemic area in Uganda. We found antibodies in more than half of the individuals, which is significantly more than in a non-endemic area (Sweden). Some of the Ugandan samples had a broad reactivity where it was not possible to determine the exact target of the autoantibodies, but we also found specific antibodies directed against erythrocyte surface antigens known to be of importance for merozoite invasion such as glycophorin A (anti-Ena, anti-M) and glycophorin B (anti-U, anti-S). In addition, several autoantibodies had partial specificities against glycophorin C and the blood group systems Rh, Diego (located on Band 3), Duffy (located on ACKR1), and Cromer (located on CD55), all of which have been described to be important for malaria and therefore of interest for understanding how autoantibodies could potentially stop parasites from entering the erythrocyte.In conclusion, specific autoantibodies against erythrocytes are common in a malaria endemic area.  相似文献   

15.
Brain development and function are governed by precisely regulated protein expressions in different regions. To date, multiregional brain proteomes have been systematically analyzed only for adult human and mouse brains. To understand the underpinnings of brain development and function, we generated proteomes from six regions of the postnatal brain at three developmental stages of domestic dogs (Canis familiaris), which are special among animals in terms of their remarkable human-like social cognitive abilities. Quantitative analysis of the spatiotemporal proteomes identified region-enriched synapse types at different developmental stages and differential myelination progression in different brain regions. Through integrative analysis of inter-regional expression patterns of orthologous proteins and genome-wide cis-regulatory element frequencies, we found that proteins related with myelination and hippocampus were highly correlated between dog and human but not between mouse and human, although mouse is phylogenetically closer to human. Moreover, the global expression patterns of neurodegenerative disease and autism spectrum disorder–associated proteins in dog brain more resemble human brain than in mouse brain. The high similarity of myelination and hippocampus-related pathways in dog and human at both proteomic and genetic levels may contribute to their shared social cognitive abilities. The inter-regional expression patterns of disease-associated proteins in the brain of different species provide important information to guide mechanistic and translational study using appropriate animal models.  相似文献   

16.
Creatine kinase (CK) is an energy storage enzyme that plays an important role in energy metabolism. CK/phosphocreatine functions as an energy buffer and links ATP production sites with ATP utilization sites. Several key mutations in the αA-crystallin (cryaa) and αB-crystallin (cryab) genes have been linked with autosomal-dominant, hereditary human cataracts. The cryaa-R49C mutation was identified in a four-generation Caucasian family. We previously identified an increase in the quantity of CK complexed with α-crystallin in the lenses of knock-in mice expressing the cryaa-R49C mutation using proteomic analyses. Increased levels of CK in postnatal cataractous lenses may indicate increased ATP requirements during early cataract development. To gain a further understanding of the relationship between CK and α-crystallin, we investigated whether α-crystallin interacts with and forms complexes with CK, in vitro. Isothermal titration calorimetry (ITC) showed that each CK dimer bound to 28 α-crystallin subunits, with a Kd of 3.3 × 10?7 M, and that the interaction between α-crystallin and CK was endothermic, thermodynamically favorable, and entropy-driven. High-salt concentrations did not affect the interaction between CK and α-crystallin, suggesting that the interaction between CK and α-crystallin is primarily hydrophobic. Gel permeation chromatography (GPC) detected water-soluble α-crystallin and CK complexes, as determined by increased light scattering after complex formation. In addition, CK and α-crystallin formed partially-water-insoluble, high-molecular-mass complexes. Enzyme-linked immunosorbent assay (ELISA)-based enzymatic activity analyses of lens homogenates showed a 17-fold increase in CK activity in the postnatal lenses of cryaa-R49C knock-in mice. These studies indicate that the interaction between α-crystallin and CK is functionally important and that increased CK levels may be necessary to meet the increased ATP demands of ATP-dependent functions in cataractous lenses.  相似文献   

17.
With the emergence of new CRISPR/dCas9 tools that enable site specific modulation of DNA methylation and histone modifications, more detailed investigations of the contribution of epigenetic regulation to the precise phenotype of cells in culture, including recombinant production subclones, is now possible. These also allow a wide range of applications in metabolic engineering once the impact of such epigenetic modifications on the chromatin state is available.In this study, enhanced DNA methylation tools were targeted to a recombinant viral promoter (CMV), an endogenous promoter that is silenced in its native state in CHO cells, but had been reactivated previously (β-galactoside α-2,6-sialyltransferase 1) and an active endogenous promoter (α-1,6-fucosyltransferase), respectively. Comparative ChIP-analysis of histone modifications revealed a general loss of active promoter histone marks and the acquisition of distinct repressive heterochromatin marks after targeted methylation. On the other hand, targeted demethylation resulted in autologous acquisition of active promoter histone marks and loss of repressive heterochromatin marks. These data suggest that DNA methylation directs the removal or deposition of specific histone marks associated with either active, poised or silenced chromatin. Moreover, we show that de novo methylation of the CMV promoter results in reduced transgene expression in CHO cells. Although targeted DNA methylation is not efficient, the transgene is repressed, thus offering an explanation for seemingly conflicting reports about the source of CMV promoter instability in CHO cells.Importantly, modulation of epigenetic marks enables to nudge the cell into a specific gene expression pattern or phenotype, which is stabilized in the cell by autologous addition of further epigenetic marks. Such engineering strategies have the added advantage of being reversible and potentially tunable to not only turn on or off a targeted gene, but also to achieve the setting of a desirable expression level.  相似文献   

18.
Reliability, robustness, and interlaboratory comparability of quantitative measurements is critical for clinical lipidomics studies. Lipids’ different ex vivo stability in blood bears the risk of misinterpretation of data. Clear recommendations for the process of blood sample collection are required. We studied by UHPLC-high resolution mass spectrometry, as part of the “Preanalytics interest group” of the International Lipidomics Society, the stability of 417 lipid species in EDTA whole blood after exposure to either 4°C, 21°C, or 30°C at six different time points (0.5 h–24 h) to cover common daily routine conditions in clinical settings. In total, >800 samples were analyzed. 325 and 288 robust lipid species resisted 24 h exposure of EDTA whole blood to 21°C or 30°C, respectively. Most significant instabilities were detected for FA, LPE, and LPC. Based on our data, we recommend cooling whole blood at once and permanent. Plasma should be separated within 4 h, unless the focus is solely on robust lipids. Lists are provided to check the ex vivo (in)stability of distinct lipids and potential biomarkers of interest in whole blood. To conclude, our results contribute to the international efforts towards reliable and comparable clinical lipidomics data paving the way to the proper diagnostic application of distinct lipid patterns or lipid profiles in the future.  相似文献   

19.
Ceramides are essential lipids for skin permeability barrier function, and a wide variety of ceramide species exist in the stratum corneum (SC). Although ceramides with long-chain bases (LCBs) of various lengths have been identified in the human SC, a quantitative analysis that distinguishes ceramide species with different LCB chain lengths has not been yet published. Therefore, the whole picture of human SC ceramides remains unclear. Here, we conducted LC/MS/MS analyses to detect individual ceramide species differing in both the LCB and FA chain lengths and quantified 1,327 unbound ceramides and 254 protein-bound ceramides: the largest number of ceramide species reported to date. Ceramides containing an LCB whose chain length was C16–26 were present in the human SC. Of these, C18 (28.6%) was the most abundant, followed by C20 (24.8%) and C22 (12.8%). Each ceramide class had a characteristic distribution of LCB chain lengths and was divided into five groups according to this distribution. There was almost no difference in FA composition between the ceramide species containing LCBs of different chain lengths. Furthermore, we demonstrated that one of the serine palmitoyltransferase (SPT) complexes, SPTLC1/SPTLC3/SPTSSB, was able to produce C16–24 LCBs. The expression levels of all subunits constituting the SPT complexes increased during keratinocyte differentiation, resulting in the observed chain-length diversity of LCBs in the human SC. This study provides a molecular basis for elucidating human SC ceramide diversity and the pathogenesis of skin disorders.  相似文献   

20.
《Endocrine practice》2023,29(6):498-507
ObjectiveThe impact of gender-affirming hormone therapy (GAHT) on cardiovascular (CV) health is still not entirely established. A systematic review was conducted to summarize the evidence on the risk of subclinical atherosclerosis in transgender people receiving GAHT.MethodsA systematic review was performed following Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines, and data were searched in PubMed, LILACS, EMBASE, and Scopus databases for cohort, case-control, and cross-sectional studies or randomized clinical trials, including transgender people receiving GAHT. Transgender men and women before and during/after GAHT for at least 2 months, compared with cisgender men and women or hormonally untreated transgender persons. Studies reporting changes in variables related to endothelial function, arterial stiffness, autonomic function, and blood markers of inflammation/coagulation associated with CV risk were included.ResultsFrom 159 potentially eligible studies initially identified, 12 were included in the systematic review (8 cross-sectional and 4 cohort studies). Studies of trans men receiving GAHT reported increased carotid thickness, brachial-ankle pulse wave velocity, and decreased vasodilation. Studies of trans women receiving GAHT reported decreased interleukin 6, plasminogen activator inhibitor-1, and tissue plasminogen activator levels and brachial-ankle pulse wave velocity, with variations in flow-mediated dilation and arterial stiffness depending on the type of treatment and route of administration.ConclusionsThe results suggest that GAHT is associated with an increased risk of subclinical atherosclerosis in transgender men but may have either neutral or beneficial effects in transgender women. The evidence produced is not entirely conclusive, suggesting that additional studies are warranted in the context of primary prevention of CV disease in the transgender population receiving GAHT.Systematic Review RegistrationPROSPERO, identifier CRD42022323757.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号