首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Integration of a DNA copy of the viral RNA genome is a crucial step in the life cycle of human immunodeficiency virus type 1 (HIV-1) and other retroviruses. While the virally encoded integrase is key to this process, cellular factors yet to be characterized are suspected to participate in its completion. DNA damage sensors such as ATM (ataxia-telangiectasia mutated), ATR (ATM- and Rad3-related), DNA-PK (DNA-dependent protein kinase), and PARP-1 [poly(ADP-ribose) polymerase 1] play central roles in responses to various forms of DNA injury and as such could facilitate HIV integration. To test this hypothesis, we examined the susceptibility to infection with wild-type HIV-1 and to transduction with a vesicular stomatitis virus G protein (VSV-G)-pseudotyped HIV-1-derived lentiviral vector of human cells stably expressing small interfering RNAs against ATM, ATR, and PARP-1. We found that integration normally occurred in these knockdown cells. Similarly, the VSV-G-pseudotyped HIV-1-based vector could effectively transduce ATM and PARP-1 knockout mouse cells as well as human cells deficient for DNA-PK. Finally, treatment of target cells with the ATM and ATR inhibitors caffeine and wortmannin was without effect in these infectivity assays. We conclude that the DNA repair enzymes ATM, ATR, DNA-PKcs, and PARP-1 are not essential for HIV-1 integration.  相似文献   

3.
4.
Siva AC  Bushman F 《Journal of virology》2002,76(23):11904-11910
The DNA-breaking and -joining steps initiating retroviral integration are well understood, but the later steps, thought to be carried out by cellular DNA repair enzymes, have not been fully characterized. Poly(ADP-ribose) polymerase 1 (PARP-1) has been proposed to play a role late during retroviral integration, because infection by human immunodeficiency virus (HIV)-based vectors was reported to be strongly inhibited in PARP-1-deficient fibroblasts. PARP-1, a nuclear enzyme, binds tightly to nicked DNA and synthesizes poly(ADP-ribose) as an early response to DNA damage. To investigate the role of PARP-1 in retroviral integration, we infected wild-type and PARP-1-deficient mouse embryonic fibroblasts (MEFs) separately with two HIV type 1-derived, vesicular stomatitis virus G-pseudotyped lentivirus vectors. Surprisingly, infection of both wild-type and PARP-1-deficient cells was observed with both vectors. Marker gene transduction and provirus formation by one vector was reduced by 45 to 75% compared to the wild type, but the other vector was unaffected by the PARP-1 mutant. In addition, PARP-1-deficient MEFs infected with Moloney murine leukemia virus showed no decrease in virus output after infection compared to the wild type. We conclude that PARP-1 cannot be strictly required for retroviral infection because replication steps, including integration, can proceed efficiently in its absence.  相似文献   

5.
Integration, one of the hallmarks of retrovirus replication, is mediated by a nucleoprotein complex called the preintegration complex (PIC), in which viral DNA is associated with many protein components that are required for completion of the early phase of infection. A striking feature of the PIC is its powerful integration activity in vitro. The PICs from a freshly isolated cytoplasmic extract of infected cells are able to insert viral DNA into exogenously added target DNA in vitro. Therefore, a PIC-based in vitro assay is a reliable system for assessing protein factors influencing retroviral integration. In this study, we applied a microtiter plate-based in vitro assay to a screening study using a protein library that was produced by the wheat germ cell-free protein synthesis system. Using a library of human E3 ubiquitin ligases, we identified RFPL3 as a potential stimulator of human immunodeficiency virus, type 1 (HIV-1) PIC integration activity in vitro. This enhancement of PIC activity by RFPL3 was likely to be attributed to its N-terminal RING domain. To further understand the functional role of RFPL3 in HIV infection, we created a human cell line overexpressing RFPL3. Immunoprecipitation analysis revealed that RFPL3 was associated with the human immunodeficiency virus, type 1 PICs in infected cells. More importantly, single-round HIV-1 infection was enhanced significantly by RFPL3 expression. Our proteomic approach displays an advantage in the identification of new cellular proteins affecting the integration activity of the PIC and, therefore, contributes to the understanding of functional interaction between retroviral integration complexes and host factors.  相似文献   

6.
7.
8.
高效抗逆转录病毒治疗(HAART)可以有效地抑制人类免疫缺陷病毒Ⅰ型(HIV-1)的复制及血浆病毒载量,延缓发病进程,改善、提高患者的生活质量和存活时间。但是,一旦停止治疗就会导致血浆病毒血症迅速反弹,HIV-1以原病毒的形式在静息记忆CD4+T等细胞中的持续存在是清除HIV-1的一个障碍。HIV-1基因转录的激活与阻抑决定了受感染细胞进入产毒性感染或潜伏感染。本文从原病毒整合位置与转录干扰、细胞转录因子与HIV-1启动子相互作用招募RNA聚合酶起始转录、转录的表观遗传调控和反式激活因子Tat及其相关蛋白促进转录延伸等方面探讨了HIV-1原病毒转录调控机制。  相似文献   

9.
10.
11.
12.
13.
One of the most crucial steps in the life cycle of a retrovirus is the integration of the viral DNA (vDNA) copy of the RNA genome into the genome of an infected host cell. Integration provides for efficient viral gene expression as well as for the segregation of viral genomes to daughter cells upon cell division. Some integrated viruses are not well expressed, and cells latently infected with human immunodeficiency virus type 1 (HIV-1) can resist the action of potent antiretroviral drugs and remain dormant for decades. Intensive research has been dedicated to understanding the catalytic mechanism of integration, as well as the viral and cellular determinants that influence integration site distribution throughout the host genome. In this review, we summarize the evolution of techniques that have been used to recover and map retroviral integration sites, from the early days that first indicated that integration could occur in multiple cellular DNA locations, to current technologies that map upwards of millions of unique integration sites from single in vitro integration reactions or cell culture infections. We further review important insights gained from the use of such mapping techniques, including the monitoring of cell clonal expansion in patients treated with retrovirus-based gene therapy vectors, or patients with acquired immune deficiency syndrome (AIDS) on suppressive antiretroviral therapy (ART). These insights span from integrase (IN) enzyme sequence preferences within target DNA (tDNA) at the sites of integration, to the roles of host cellular proteins in mediating global integration distribution, to the potential relationship between genomic location of vDNA integration site and retroviral latency.  相似文献   

14.
15.
16.
Integrase is the only viral protein necessary for integration of retroviral DNA into chromosomal DNA of the host cell. Biochemical analysis of human immunodeficiency virus type 1 (HIV-1) integrase with purified protein and synthetic DNA substrates has revealed extensive information regarding the mechanism of action of the enzyme, as well as identification of critical residues and functional domains. Since in vitro reactions are carried out in the absence of other viral proteins and they analyze strand transfer of only one end of the donor substrate, they do not define completely the process of integration as it occurs during the course of viral infection. In an effort to further understand the role of integrase during viral infection, we initially constructed a panel of 24 HIV-1 mutants with specific alanine substitutions throughout the integrase coding region and analyzed them in a human T-cell line infection. Of these mutant viruses, 12 were capable of sustained viral replication, 11 were replication defective, and 1 was temperature sensitive for viral growth. The replication defective viruses express and correctly process the integrase and Gag proteins. Using this panel of mutants and an additional set of 18 mutant viruses, we identified nine amino acids which, when replaced with alanine, destroy integrase activity. Although none of the replication-defective mutants are able to integrate into the host genome, a subset of them with alterations in the catalytic triad are capable of Tat-mediated transactivation of an indicator gene linked to the viral long terminal repeat promoter. We present evidence that integration of the HIV-1 provirus is essential not only for productive infection of T cells but also for virus passage in both cultured peripheral blood lymphocytes and macrophage cells.  相似文献   

17.
18.
19.
20.
This study examined the efficiency of human immunodeficiency virus type 1 (HIV-1) integration in poly(ADP-ribose)polymerase-1 (PARP-1)-deficient murine cells and in human cell lines transfected with small interfering RNA against PARP-1 (PARP-1 siRNA). To semi-quantify the amount of integrated HIV-1 genome, real-time nested PCR was carried out using primers specific for Alu and alphoid DNA combined with primers for the HIV-1 genome. The results showed that the integration efficiency of the HIV-1 genome near Alu DNA, which is randomly distributed in the chromosome, is reduced in PARP-1-deficient murine cells, but not in PARP-1 siRNA-transfected human cells. By contrast, the integration efficiency of the HIV-1 genome near alphoid DNA, which is localized in the centromere region, is significantly reduced in PARP-1-deficient murine cells and in PARP-1 siRNA-transfected human cells. These results suggest that PARP-1 is required for HIV-1 integration near the centromere region both in human and murine cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号