首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
Mitochondria are dynamic organelles, and their fusion and fission regulate cellular signaling, development, and mitochondrial homeostasis, including mitochondrial DNA (mtDNA) distribution. Cardiac myocytes have a specialized cytoplasmic structure where large mitochondria are aligned into tightly packed myofibril bundles; however, recent studies have revealed that mitochondrial dynamics also plays an important role in the formation and maintenance of cardiomyocytes. Here, we precisely analyzed the role of mitochondrial fission in vivo. The mitochondrial fission GTPase, Drp1, is highly expressed in the developing neonatal heart, and muscle-specific Drp1 knockout (Drp1-KO) mice showed neonatal lethality due to dilated cardiomyopathy. The Drp1 ablation in heart and primary cultured cardiomyocytes resulted in severe mtDNA nucleoid clustering and led to mosaic deficiency of mitochondrial respiration. The functional and structural alteration of mitochondria also led to immature myofibril assembly and defective cardiomyocyte hypertrophy. Thus, the dynamics of mtDNA nucleoids regulated by mitochondrial fission is required for neonatal cardiomyocyte development by promoting homogeneous distribution of active mitochondria throughout the cardiomyocytes.  相似文献   

2.
Sirtuin1 (SIRT1) and Sirtuin3 (SIRT3) protects cardiac function against ischemia/reperfusion (I/R) injury. Mitochondria are critical in response to myocardial I/R injury as disturbance of mitochondrial dynamics contributes to cardiac dysfunction. It is hypothesized that SIRT1 and SIRT3 are critical components to maintaining mitochondria homeostasis especially mitochondrial dynamics to exert cardioprotective actions under I/R stress. The results demonstrated that deficiency of SIRT1 and SIRT3 in aged (24–26 months) mice hearts led to the exacerbated cardiac dysfunction in terms of cardiac systolic dysfunction, cardiomyocytes contractile defection, and abnormal cardiomyocyte calcium flux during I/R stress. Moreover, the deletion of SIRT1 or SIRT3 in young (4–6 months) mice hearts impair cardiomyocyte contractility and shows aging‐like cardiac dysfunction upon I/R stress, indicating the crucial role of SIRT1 and SIRT3 in protecting myocardial contractility from I/R injury. The biochemical and seahorse analysis showed that the deficiency of SIRT1/SIRT3 leads to the inactivation of AMPK and alterations in mitochondrial oxidative phosphorylation (OXPHOS) that causes impaired mitochondrial respiration in response to I/R stress. Furthermore, the remodeling of the mitochondria network goes together with hypoxic stress, and mitochondria undergo the processes of fusion with the increasing elongated branches during hypoxia. The transmission electron microscope data showed that cardiac SIRT1/SIRT3 deficiency in aging alters mitochondrial morphology characterized by the impairment of mitochondria fusion under I/R stress. Thus, the age‐related deficiency of SIRT1/SIRT3 in the heart affects mitochondrial dynamics and respiration function that resulting in the impaired contractile function of cardiomyocytes in response to I/R.  相似文献   

3.
Cardiomyocyte loss is the main cause of myocardial dysfunction following an ischemia-reperfusion (IR) injury. Mitochondrial dysfunction and altered mitochondrial network dynamics play central roles in cardiomyocyte death. Proteasome inhibition is cardioprotective in the setting of IR; however, the mechanisms underlying this protection are not well-understood. Several proteins that regulate mitochondrial dynamics and energy metabolism, including Mitofusin-2 (Mfn2), are degraded by the proteasome. The aim of this study was to evaluate whether proteasome inhibition can protect cardiomyocytes from IR damage by maintaining Mfn2 levels and preserving mitochondrial network integrity. Using ex vivo Langendorff-perfused rat hearts and in vitro neonatal rat ventricular myocytes, we showed that the proteasome inhibitor MG132 reduced IR-induced cardiomyocyte death. Moreover, MG132 preserved mitochondrial mass, prevented mitochondrial network fragmentation, and abolished IR-induced reductions in Mfn2 levels in heart tissue and cultured cardiomyocytes. Interestingly, Mfn2 overexpression also prevented cardiomyocyte death. This effect was apparently specific to Mfn2, as overexpression of Miro1, another protein implicated in mitochondrial dynamics, did not confer the same protection. Our results suggest that proteasome inhibition protects cardiomyocytes from IR damage. This effect could be partly mediated by preservation of Mfn2 and therefore mitochondrial integrity.  相似文献   

4.
Mitochondria are highly dynamic organelles that continuously move, fuse and divide. Mitochondrial dynamics modulate overall mitochondrial morphology and are essential for the proper function, maintenance and transmission of mitochondria and mitochondrial DNA (mtDNA). We have investigated mitochondrial fusion in yeast cells with severe defects in oxidative phosphorylation (OXPHOS) due to removal or various specific mutations of mtDNA. We find that, under fermentative conditions, OXPHOS deficient cells maintain normal levels of cellular ATP and ADP but display a reduced mitochondrial inner membrane potential. We demonstrate that, despite metabolic compensation by glycolysis, OXPHOS defects are associated to a selective inhibition of inner but not outer membrane fusion. Fusion inhibition was dominant and hampered the fusion of mutant mitochondria with wild-type mitochondria. Inhibition of inner membrane fusion was not systematically associated to changes of mitochondrial distribution and morphology, nor to changes in the isoform pattern of Mgm1, the major fusion factor of the inner membrane. However, inhibition of inner membrane fusion correlated with specific alterations of mitochondrial ultrastructure, notably with the presence of aligned and unfused inner membranes that are connected to two mitochondrial boundaries. The fusion inhibition observed upon deletion of OXPHOS related genes or upon removal of the entire mtDNA was similar to that observed upon introduction of point mutations in the mitochondrial ATP6 gene that are associated to neurogenic ataxia and retinitis pigmentosa (NARP) or to maternally inherited Leigh Syndrome (MILS) in humans. Our findings indicate that the consequences of mtDNA mutations may not be limited to OXPHOS defects but may also include alterations in mitochondrial fusion. Our results further imply that, in healthy cells, the dominant inhibition of fusion could mediate the exclusion of OXPHOS-deficient mitochondria from the network of functional, fusogenic mitochondria.  相似文献   

5.
BackgroundDoxorubicin (DOX) is an anti-tumor agent that is widely used in clinical setting for cancer treatment. The application of the DOX, however, is limited by its cardiac toxicity which can induce heart failure through an undefined mechanism. Mitofusin 2 (Mfn2) is a mitochondrial GTPase fusion protein that is located on the outer membrane of mitochondria (OMM). The Mfn2 plays an important role in mitochondrial fusion and fission. The aim of this study is to identify the role of the Mfn2 in DOX-induced cardiomyocyte apoptosis.MethodsCultured neonatal rat cardiomyocytes were used in this study. Mfn2 expression in cardiomyocytes was determined after the cardiomyocytes were challenged with DOX. Cardiomyocyte mitochondrial fission, mitochondrial reactive oxygen species (ROS) production was assessed with mitochondrial fragmentation and MitoSOX fluorescence probe, respectively. Cardiomyocyte apoptosis was determined with caspase3 activity and TUNEL staining.ResultsChallenging of the cardiomyocytes with DOX resulted in increasing in cardiomyocyte oxidative stress and apoptosis. In addition, levels of Mfn2 in cardiomyocytes were decreased after the cells were challenged with DOX which was associated with increased mitochondrial fission (fragmentation) and mitochondrial ROS production. An increase in cardiomyocyte levels of Mfn2 attenuated the DOX-induced increase in mitochondrial fission and prevented cardiomyocyte mitochondrial ROS production. An increase in cardiomyocyte levels of Mfn2 or pretreatment of cardiomyocytes with an anti-oxidant, Mito-tempo, also prevented the DOX-induced cardiomyocyte apoptosis.ConclusionOur results indicate that DOX results in a decreased cardiomyocyte Mfn2 expression which promotes mitochondrial fission and ROS production further leads to cardiomyocyte apoptosis.  相似文献   

6.
7.
Zhang Y  Chan DC 《FEBS letters》2007,581(11):2168-2173
Fusion controls mitochondrial morphology and is important for normal mitochondrial function, including roles in respiration, development, and apoptosis. Key components of the mitochondrial fusion machinery have been identified, allowing an initial dissection of its molecular mechanism. Outer and inner membrane fusion events are coordinately coupled but are mechanistically distinct. Mitofusins are mitochondrial GTPases that likely mediate outer membrane fusion. The dynamin-related protein OPA1/Mgm1p is required for inner membrane fusion and maintenance of normal cristae structure. We highlight recent findings that have advanced our understanding of the mechanism, function, and regulation of mitochondrial fusion.  相似文献   

8.
Phosphatidylserine decarboxylase 1 (Psd1p) catalyzes the formation of the majority of phosphatidylethanolamine (PE) in the yeast Saccharomyces cerevisiae. Psd1p is localized to mitochondria, anchored to the inner mitochondrial membrane (IMM) through membrane spanning domains and oriented towards the mitochondrial intermembrane space. We found that Psd1p harbors at least two inner membrane-associated domains, which we named IM1 and IM2. IM1 is important for proper orientation of Psd1p within the IMM (Horvath et al., J. Biol. Chem. 287 (2012) 36744–55), whereas it remained unclear whether IM2 is important for membrane-association of Psd1p. To discover the role of IM2 in Psd1p import, processing and assembly into the mitochondria, we constructed Psd1p variants with deletions in IM2. Removal of the complete IM2 led to an altered topology of the protein with the soluble domain exposed to the matrix and to decreased enzyme activity. Psd1p variants lacking portions of the N-terminal moiety of IM2 were inserted into IMM with an altered topology. Psd1p variants with deletions of C-terminal portions of IM2 accumulated at the outer mitochondrial membrane and lost their enzyme activity. In conclusion we showed that IM2 is essential for full enzymatic activity, maturation and correct integration of yeast Psd1p into the inner mitochondrial membrane.  相似文献   

9.
Fusion and fission of mitochondria maintain the functional integrity of mitochondria and protect against neurodegeneration, but how mitochondrial dysfunctions trigger neuronal loss remains ill-defined. Prohibitins form large ring complexes in the inner membrane that are composed of PHB1 and PHB2 subunits and are thought to function as membrane scaffolds. In Caenorhabditis elegans, prohibitin genes affect aging by moderating fat metabolism and energy production. Knockdown experiments in mammalian cells link the function of prohibitins to membrane fusion, as they were found to stabilize the dynamin-like GTPase OPA1 (optic atrophy 1), which mediates mitochondrial inner membrane fusion and cristae morphogenesis. Mutations in OPA1 are associated with dominant optic atrophy characterized by the progressive loss of retinal ganglion cells, highlighting the importance of OPA1 function in neurons. Here, we show that neuron-specific inactivation of Phb2 in the mouse forebrain causes extensive neurodegeneration associated with behavioral impairments and cognitive deficiencies. We observe early onset tau hyperphosphorylation and filament formation in the hippocampus, demonstrating a direct link between mitochondrial defects and tau pathology. Loss of PHB2 impairs the stability of OPA1, affects mitochondrial ultrastructure, and induces the perinuclear clustering of mitochondria in hippocampal neurons. A destabilization of the mitochondrial genome and respiratory deficiencies manifest in aged neurons only, while the appearance of mitochondrial morphology defects correlates with tau hyperphosphorylation in the absence of PHB2. These results establish an essential role of prohibitin complexes for neuronal survival in vivo and demonstrate that OPA1 stability, mitochondrial fusion, and the maintenance of the mitochondrial genome in neurons depend on these scaffolding proteins. Moreover, our findings establish prohibitin-deficient mice as a novel genetic model for tau pathologies caused by a dysfunction of mitochondria and raise the possibility that tau pathologies are associated with other neurodegenerative disorders caused by deficiencies in mitochondrial dynamics.  相似文献   

10.
The inner membrane of mitochondria is especially protein rich and displays a unique morphology characterized by large invaginations, the mitochondrial cristae, and the inner boundary membrane, which is in proximity to the outer membrane. Mitochondrial inner membrane proteins appear to be not evenly distributed in the inner membrane, but instead organize into functionally distinct subcompartments. It is unknown how the organization of the inner membrane is achieved. We identified MINOS1/MIO10 (C1orf151/YCL057C-A), a conserved mitochondrial inner membrane protein. mio10-mutant yeast cells are affected in growth on nonfermentable carbon sources and exhibit altered mitochondrial morphology. At the ultrastructural level, mutant mitochondria display loss of inner membrane organization. Proteomic analyses reveal MINOS1/Mio10 as a novel constituent of Mitofilin/Fcj1 complexes in human and yeast mitochondria. Thus our analyses reveal new insight into the composition of the mitochondrial inner membrane organizing machinery.  相似文献   

11.
In this work, the effects of two non-ionic, non-hydroxyl organic solvents, dimethyl sulfoxide (DMSO) and dimethyl formamide (DMF) on the morphology and function of isolated rat hepatic mitochondria were investigated and compared. Mitochondrial ultrastructures impaired by DMSO and DMF were clearly observed by transmission electron microscopy. Spectroscopic and polarographic results demonstrated that organic solvents induced mitochondrial swelling, enhanced the permeation to H+/K+, collapsed the potential inner mitochondrial membrane (IMM), and increased the IMM fluidity. Moreover, with organic solvents addition, the outer mitochondrial membrane (OMM) was broken, accompanied with the release of Cytochrome c, which could activate cell apoptosis signaling pathway. The role of DMSO and DMF in enhancing permeation or transient water pore formation in the mitochondrial phospholipid bilayer might be the main reason for the mitochondrial morphology and function impaired. Mitochondrial dysfunctions induced by the two organic solvents were dose-dependent, but the extents varied. Ethanol (EtOH) showed the highest potential damage on the mitochondrial morphology and functions, followed by DMF and DMSO.  相似文献   

12.
Mitochondrial structural dynamics are regulated through the opposing processes of membrane fission and fusion, which are conserved from yeast to man. The chronic inhibition of mitochondrial fusion as a result of genetic mutation is the cause of human autosomal dominant optic atrophy (ADOA) and Charcot-Marie-Tooth syndrome type 2A (CMT-2A). Here, we demonstrate that genetic fragmentation of the mitochondrial network in Caenorhabditis elegans induces cellular acidification in a broad range of tissues from the intestine, to body wall muscles, and neurons. Genetic epistasis analyses demonstrate that fragmentation itself, and not the loss of a particular protein, leads to acidosis, and the worm''s fitness matches the extent of acidification. We suggest that fragmentation may cause acidification through two distinct processes: oxidative signaling after the loss of the ability of the mitochondrial inner membrane to undergo fusion and lactic acidosis after the loss of outer membrane fusion. Finally, experiments in cultured mammalian cells demonstrate a conserved link between mitochondrial morphology and cell pH homeostasis. Taken together these data reveal a potential role for acidosis in the differing etiology of diseases associated with mitochondrial morphology defects such as ADOA and CMT-2A.  相似文献   

13.
Mitochondria are the site where oxidative phosphorylations (OXPHOSs) take place. Fusion and fission reactions allow them to change their overall morphology, which ranges from networks of elongated and branched filaments to collections of small individual organelles. It is assumed that mitochondrial bioenergetics and dynamics are linked and that mitochondrial morphology reflects their functional status. This review shows that the links between mitochondrial dynamics and bioenergetics are complex and that mitochondrial deficiencies are not systematically associated to fragmentation. In mammals, mitochondrial fragmentation is observed upon inhibition of OXPHOS with drugs, but not in most cellular models with OXPHOS deficits of genetic origin. In yeast, mitochondrial biogenesis and filament interconnectivity augment with increasing respiratory capacity, but mutation or inhibition of the respiratory chain does not provoke major morphological changes. Significant structural and morphological alterations appear restricted to mutation of genes involved in assembly or function of the F1F0-ATP-synthase. Finally, ex vivo studies (in mammals) and in vitro studies (in yeast) confirm the essential role of the inner membrane potential for mitochondrial fusion.  相似文献   

14.
Mitochondrial distribution and morphology depend on MDM33, a Saccharomyces cerevisiae gene encoding a novel protein of the mitochondrial inner membrane. Cells lacking Mdm33 contain ring-shaped, mostly interconnected mitochondria, which are able to form large hollow spheres. On the ultrastructural level, these aberrant organelles display extremely elongated stretches of outer and inner membranes enclosing a very narrow matrix space. Dilated parts of Delta mdm33 mitochondria contain well-developed cristae. Overexpression of Mdm33 leads to growth arrest, aggregation of mitochondria, and generation of aberrant inner membrane structures, including septa, inner membrane fragments, and loss of inner membrane cristae. The MDM33 gene is required for the formation of net-like mitochondria in mutants lacking components of the outer membrane fission machinery, and mitochondrial fusion is required for the formation of extended ring-like mitochondria in cells lacking the MDM33 gene. The Mdm33 protein assembles into an oligomeric complex in the inner membrane where it performs homotypic protein-protein interactions. Our results indicate that Mdm33 plays a distinct role in the mitochondrial inner membrane to control mitochondrial morphology. We propose that Mdm33 is involved in fission of the mitochondrial inner membrane.  相似文献   

15.
Mitochondrial morphology is determined by the balance between the opposing processes of fission and fusion, each of which is regulated by a distinct set of proteins. Abnormalities in mitochondrial dynamics have been associated with a variety of diseases, including neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, and dominant optic atrophy. Although the genetic determinants of fission and fusion are well recognized, less is known about the mechanism(s) whereby altered morphology contributes to the underlying pathophysiology of these disease states. Previous work from our laboratory identified a role for mitochondrial dynamics in intracellular pH homeostasis in both mammalian cell culture and in the genetic model organism Caenorhabditis elegans. Here we show that the acidification seen in mutant animals that have lost the ability to fuse their mitochondrial inner membrane occurs through a reactive oxygen species (ROS)-dependent mechanism and can be suppressed through the use of pharmacological antioxidants targeted specifically at the mitochondrial matrix. Physiological approaches examining the activity of endogenous mammalian acid-base transport proteins in rat liver Clone 9 cells support the idea that ROS signaling to sodium-proton exchangers contributes to acidification. Because maintaining pH homeostasis is essential for cell function and viability, the results of this work provide new insight into the pathophysiology associated with the loss of inner mitochondrial membrane fusion.  相似文献   

16.
Inoptopic effect of yttrium acetate (Y3+) on myocardium of the marsh frog Rana ridibunda and its effect on ion transport across the inner mitochondrial membrane (IMM) of rat heart was studied. Y3+ was found to decrease the rate of heart contractions and to stimulate ion transport in the rat heart mitochondria in media with 10 mM glutamate and 2 mM malate. Presence of Y3+ induced inhibition of energy-dependent Ca2+ transport into mitochondria, which was expressed as a marked decrease of their swelling in the media containing 125 mM NH4NO3 and Ca2+ or 25 mM potassium acetate, 100 mM sucrose and Ca2+. It is suggested that the Y3+-induced decrease in rat muscle contractions is determined not only by direct suppressing effect of Y3+ on potential-modulated Ca2+-channels of pacemaker and contractile cardiomyocytes (CM), but also by its indirect effect on Ca2+-carrier in IMM. The data confirming that Y3+ activates energy-dependent K+ transport catalyzed by mitochondrial uniporter and blocks Ca2+-channels in the mitochondrial membrane are important for more complete understanding of mechanisms of the Y3+ action on vertebrates and human CM.  相似文献   

17.
Heat stress results in cardiac dysfunction and even cardiac failure. To elucidate the cellular and molecular mechanism of cardiomyocyte injury induced by heat stress, the changes of structure and function in cardiac mitochondria of heat-exposed Wistar rats and its role in cardiomyocyte injury were investigated. Heat stress induced apoptosis and necrosis of cardiomyocytes in a time- and dose-dependent fashion. In the mitochondria of heat-stressed cardiomyocytes, the respiratory control rate and oxidative phosphorylation efficiency (P:O) were decreased gradually with the rise of rectal temperature. The Ca2+ -adenosine triphosphatase activity and Ca2+ content were also reduced. Exposing isolated mitochondria to the heat stress induced special internal environmental states including Ca2+ overload, oxidative stress, and altered mitochondrial membrane permeability transition (MPT). In vivo, the heat stress-induced mitochondrial MPT alteration was also found. The changes of mitochondrial MPT resulted in the release of cytochrome c from mitochondria into the cytosol, and in turn, caspase-3 was activated. Transfection of bcl-2 caused Bcl-2 overexpression in cardiomyocyte, which protected the mitochondria and reduced the heat stress-induced cardiomyocyte injury. In conclusion, it appears that the destruction of mitochondrial structure and function not only resulted in the impairment of physiological function of cardiomyocytes under heat stress but may also further lead to severe cellular injury and even cell death. These findings underline the contribution of mitochondria to the injury process in cardiomyocytes under heat stress.  相似文献   

18.
19.
We have a limited understanding of the proximate mechanisms that are responsible for the development of variation in animal performance and life‐history strategies. Provided that components of an organism's successful life history – for example, mate competition, gestation, lactation, etc. – are energetically demanding, increased energy production within mitochondria is likely the foundation from which organisms are able to perform these tasks. Mitochondrial behaviour (positioning within the cell and communication between mitochondria) and morphology affect variation in energy production at the molecular, cellular, and organismal levels. Therefore, adaptations in mitochondrial behaviour and morphology that favour efficient energy production likely influence variation in animal performance. Previous work has linked greater proportions of inter‐mitochondrial junctions and density of the inner mitochondrial membrane, among other traits, with increased energetic demand. Future research should focus on how inter‐mitochondrial junctions and morphology of the inner mitochondrial membrane, in particular, influence animal performance in accordance with mitochondrial density, fission, and fusion.  相似文献   

20.
A broad range of cellular processes are regulated by proteolytic events. Proteolysis has now also been established to control mitochondrial morphology which results from the balanced action of fusion and fission. Two out of three known core components of the mitochondrial fusion machinery are under proteolytic control. The GTPase Fzo1 in the outer membrane of mitochondria is degraded along two independent proteolytic pathways. One controls mitochondrial fusion in vegetatively growing cells, the other one acts upon mating factor-induced cell cycle arrest. Fusion also depends on proteolytic processing of the GTPase Mgm1 by the rhomboid protease Pcp1 in the inner membrane of mitochondria. Functional links of AAA proteases or other proteolytic components to mitochondrial dynamics are just emerging. This review summarises the current understanding of regulatory roles of proteolytic processes for mitochondrial plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号