首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autophagy is a conserved catabolic process that plays an important role in cellular homeostasis. The study of the interplay between autophagy and zinc has gained interest over the last years. Multiple studies have indicated that zinc stimulates autophagy and is critical for basal and induced autophagy in mammalian cells. Conversely, autophagy is induced by zinc starvation in yeast. There are no studies analyzing the role of zinc in either Microautophagy or Chaperone-Mediated-Autophagy. The mechanisms by which zinc modulates autophagy are still poorly understood. Studies examining loss of function of genes involved in cellular zinc homeostasis have provided novel insights into the role of zinc in autophagy. Autophagy may help cells adapt to changes in zinc availability in medium by controlling zinc mobilization, recycling, and secretion. Zinc is a key player in toxic and protective autophagy.  相似文献   

2.
目的:探讨锌转运蛋白ZIP8在骨关节炎患者中的表达及其对软骨细胞生长及基质金属蛋白酶(MMPs)表达的影响。方法:收集20例骨关节炎患者(OA组)和20例非骨关节炎患者(对照组)血清和软骨组织;采用原子吸收分光光度计测定患者血清和软骨组织中锌离子的表达水平;MTT方法检测软骨细胞的生长活力;采用小RNA干扰沉默ZIP8基因的表达;实时荧光定量PCR方法检测ZIP8及金属基质蛋白酶MMP3、MMP9、MMP12和MMP13等基因的m RNA表达水平;蛋白免疫印迹检测ZIP8及MMP3、MMP9、MMP12和MMP13等蛋白的表达水平。结果:OA组的血清和软骨组织中的锌离子浓度明显高于对照组(P0.01)。OA组软骨组织中ZIP8的m RNA(P0.05)和蛋白(P0.01)表达水平显著高于对照组。ZIP8小RNA干扰片段可以有效的沉默ZIP的基因表达(P0.01);沉默ZIP8的表达促进骨关节炎患者来源的软骨细胞的生长(P0.05),并且降低基质金属蛋白酶包括MMP3,MMP9,MMP12和MMP13的表达水平(P0.05)。结论:ZIP8与骨关节炎密切相关,沉默ZIP8的表达可以提高软骨细胞的生长活力,并且抑制基质金属蛋白酶的表达,为骨关节炎的治疗提供了新的靶点。  相似文献   

3.
Normal cellular function is dependent on a number of highly regulated homeostatic mechanisms, which act in concert to maintain conditions suitable for life. During periods of nutritional deficit, cells initiate a number of recycling programs which break down complex intracellular structures, thus allowing them to utilize the energy stored within. These recycling systems, broadly named “autophagy”, enable the cell to maintain the flow of nutritional substrates until they can be replenished from external sources. Recent research has shown that a number of regulatory components of the autophagy program are controlled by lysine acetylation. Lysine acetylation is a reversible post-translational modification that can alter the activity of enzymes in a number of cellular compartments. Strikingly, the main substrate for this modification is a product of cellular energy metabolism: acetyl-CoA. This suggests a direct and intricate link between fuel metabolites and the systems which regulate nutritional homeostasis. In this review, we examine how acetylation regulates the systems that control cellular autophagy, and how global protein acetylation status may act as a trigger for recycling of cellular components in a nutrient-dependent fashion. In particular, we focus on how acetylation may control the degradation and turnover of mitochondria, the major source of fuel-derived acetyl-CoA.  相似文献   

4.
5.
ObjectiveHypertension induces end-organ damage through inflammation, and autophagy plays a crucial role in the regulation of cellular homeostasis. In the present study, we aimed to define the role of autophagy in the development of inflammation and cardiac injury induced by angiotensin II (Ang II).Methods and ResultsAutophagy protein 5 (Atg5) haplodeficiency (Atg5+/−) and age-matched wild-type (WT) C57BL/6 J mice were infused with Ang II (1500 ng/kg/min) or saline for 7 days. Heart sections were stained with hematoxylin and eosin (H&E), Masson's trichrome, and immunohistochemical stains. Cytokine and LC3 levels were measured using real-time PCR or western blot analysis. After Ang II infusion, the WT mice exhibited marked macrophage accumulation, cytokine expression, and reactive oxygen species (ROS) production compared with saline-infused controls. However, these effects induced by Ang II infusion were aggravated in Atg5+/− mice. These effects were associated with Atg5-mediated impaired autophagy, accompanied by increased production of ROS and activation of nuclear factor-κB (NF-κB) in macrophages. Finally, increased cardiac inflammation in Atg5 haplodeficient mice was associated with increased cardiac fibrosis.ConclusionAtg5 deficiency-mediated autophagy increases ROS production and NF-κB activity in macrophages, thereby contributing to cardiac inflammation and injury. Thus, improving autophagy may be a novel therapeutic strategy to ameliorate hypertension-induced inflammation and organ damage.  相似文献   

6.
7.
Cells sense and respond to mechanical loads in a process called mechanotransduction. These processes are disrupted in the chondrocytes of cartilage during joint disease. A key driver of cellular mechanotransduction is the stiffness of the surrounding matrix. Many cells are surrounded by extracellular matrix that allows for tissue mechanical function. Although prior studies demonstrate that extracellular stiffness is important in cell differentiation, morphology and phenotype, it remains largely unknown how a cell’s biological response to cyclical loading varies with changes in surrounding substrate stiffness. Understanding these processes is important for understanding cells that are cyclically loaded during daily in vivo activities (e.g. chondrocytes and walking). This study uses high-performance liquid chromatography – mass spectrometry to identify metabolomic changes in primary chondrocytes under cyclical compression for 0–30 minutes in low- and high-stiffness environments. Metabolomic analysis reveals metabolites and pathways that are sensitive to substrate stiffness, duration of cyclical compression, and a combination of both suggesting changes in extracellular stiffness in vivo alter mechanosensitive signaling. Our results further suggest that cyclical loading minimizes matrix deterioration and increases matrix production in chondrocytes. This study shows the importance of modeling in vivo stiffness with in vitro models to understand cellular mechanotransduction.  相似文献   

8.
Gpx4 protects mitochondrial ATP generation against oxidative damage   总被引:2,自引:0,他引:2  
Mitochondrial ATP production can be impaired by oxidative stress. Glutathione peroxidase 4 (Gpx4) is an antioxidant defense enzyme found in mitochondria as well as other subcellular organelles that directly detoxifies membrane lipid hydroperoxides. To determine if Gpx4 protects ATP production in vivo, we compared mitochondrial ATP production between wild-type mice and Gpx4 transgenic mice using a diquat model. Diquat (50 mg/kg) significantly decreased mitochondrial ATP synthesis in livers of wild-type mice; however, no decrease in mitochondrial ATP synthesis was detected in Gpx4 transgenic mice after diquat. We observed no differences in activities of mitochondrial respiratory chain complexes between Gpx4 transgenic mice and wild-type mice. However, compared to wild-type mice, diquat-induced loss of mitochondrial membrane potential was attenuated in Gpx4 transgenic mice. Therefore, our results indicate that decreased ATP production under oxidative stress is primarily due to reduced mitochondrial membrane potential and overexpression of Gpx4 maintains mitochondrial membrane potential under oxidative stress.  相似文献   

9.
Wu W  Gao X  Xu X  Luo Y  Liu M  Xia Y  Dai Y 《Cytotechnology》2013,65(2):287-295
Our previous study reported that the saponin-rich fraction from Clematis chinensis Osbeck roots (SFC) could effectively alleviate experimental osteoarthritis induced by monosodium iodoacetate in rats through protecting articular cartilage and inhibiting local inflammation. The present study was performed to investigate the preventive effects of SFC on articular chondrocyte, and explore the underlying mechanisms. Primary rabbit chondrocytes were cultured and exposed to sodium nitroprusside (SNP), a NO donor. After treatment with different concentrations of SFC (30, 100, 300, 1,000 μg/ml) for 24 h, nucleic morphology, apoptotic rate, mitochondrial function and caspase-3 activity of chondrocytes were examined. The results showed that SNP induced remarkable apoptosis of rabbit chondrocytes evidenced by Hoechst 33258 staining and flow cytometry analysis, and SFC prevented the apoptosis in a concentration-dependent manner. Further studies indicated that SFC could prevent the depolarization of mitochondrial membrane potential (∆ψm) in SNP-treated chondrocytes and suppress the activation of caspase-3. It can be concluded that the protection of SFC on articular chondrocytes is associated with the anti-apoptosis effects via inhibiting the mitochondrion impairment and caspase-3 activation.  相似文献   

10.
Osteoarthritis (OA) is aggravated in menopausal women possibly because of changed serum estrogen levels. Estradiol has been postulated to affect oxidative stress induced by reactive oxygen species (ROS) in articular chondrocytes. We generated ROS in cultured bovine articular chondrocytes by incubating them with combined Fe2SO4, vitamin C, and hydrogen peroxide. The release of thiobarbituric-acid-reactive substances (TBARS, lipid peroxidation) and lactate dehydrogenase (LDH, membrane damage) was measured photometrically. Various estradiol doses and vitamin E, serving as control with an established anti-oxidative capacity, were applied either upon each exchange of medium and during radical production (strategy 1) or only during radical production (strategy 2). In chondrocytes incubated according to strategy 1, the production of TBARS and LDH release were significantly suppressed by 10–10–10–4 M estradiol or by vitamin E. Under strategy 2, the production of TBARS was significantly suppressed at estradiol concentrations higher than 10–6 M, whereas LDH release was inhibited at concentrations of 10–6–10–4 M. Vitamin E showed no significant effects. As repeated application of estradiol and vitamin E produced the best results, estradiol, like vitamin E, was speculated to accumulate in the plasma membrane and to decrease membrane fluidity resulting in protection against lipid peroxidation (non-genomic effect). Thus, in contrast to the neuroprotective effect of 17-estradiol in supraphysiological doses reported recently, the anti-oxidative potential of estradiol appears to protect articular chondrocytes from ROS-induced damage when the hormone is given repeatedly in a physiological range. Decreased estradiol levels may therefore contribute to menopausal OA in the long term.  相似文献   

11.
Although being largely used for pathobiological models of cartilage diseases such as osteoarthritis (OA), human chondrocytes are still enigmatic cells, in as much as a large part of their secretome is unknown. We took advantage of the recent development of antibody-based microarrays to study multiple protein expression by human chondrocytes obtained from one healthy and five osteoarthritic joints, in unstimulated conditions or after stimulation by the proinflammatory cytokines interleukin-1 (IL-1) or tumour necrosis factor (TNF). The secretion media of chondrocytes were incubated with array membranes consisting of 79 antibodies directed against cytokines, chemokines, and angiogenic or growth factors. Several proteins were identified as new secretion products of chondrocytes, including the growth or angiogenic factors EGF, thrombopoietin, GDNF, NT-3 and -4, and PlGF, the chemokines ENA-78, MCP-2, IP-10, MIP-3alpha, NAP-2, PARC, and the cytokines MIF, IL-12, and IL-16. Most of the newly identified chemokines were increased intensely after stimulation by IL-1 or TNF, as for other proteins of the array, including GRO proteins, GM-CSF, IL-6, IL-8, MIP-1beta, GCP-2, and osteoprotegerin. The up-regulation by cytokines suggested that these proteins may participate in the destruction of cartilage and/or in the initiation of chemotactic events within the joint during OA. In conclusion, the microarray approach enabled to unveil part of an as yet unexplored chondrocyte secretome. Our findings demonstrated that chondrocytes were equipped with a proinflammatory arsenal of proteins which may play an important part in the pathogenesis of OA and/or its drift towards an inflammatory, rheumatoid phenotype.  相似文献   

12.
Mutations in PTEN-induced putative kinase 1 (PINK1) cause recessive form of Parkinson’s disease (PD). PINK1 acts upstream of parkin, regulating mitochondrial integrity and functions. Here, we show that PINK1 in combination with parkin results in the perinuclear mitochondrial aggregation followed by their elimination. This elimination is reduced in cells expressing PINK1 mutants with wild-type parkin. Although wild-type PINK1 localizes in aggregated mitochondria, PINK1 mutants localization remains diffuse and mitochondrial elimination is not observed. This phenomenon is not observed in autophagy-deficient cells. These results suggest that mitophagy controlled by the PINK1/parkin pathway might be associated with PD pathogenesis.

Structured summary

MINT-7557195: PINK1 (uniprotkb:Q9BXM7) physically interacts (MI:0915) with LC3 (uniprotkb:Q9GZQ8) by anti tag coimmunoprecipitation (MI:0007)MINT-7557109: LC3 (uniprotkb:Q9GZQ8) and PINK1 (uniprotkb:Q9BXM7) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7557121: tom20 (uniprotkb:Q15388) and PINK1 (uniprotkb:Q9BXM7) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7557138: parkin (uniprotkb:O60260), PINK1 (uniprotkb:Q9BXM7) and tom20 (uniprotkb:Q15388) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7557173: LC3 (uniprotkb:Q9GZQ8) physically interacts (MI:0915) with PINK1 (uniprotkb:Q9BXM7) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

13.
Ultraviolet Al (UVA1) radiation generates reactive oxygen species and the oxidative stress is known as a mediator of DNA damage and of apoptosis. We exposed cultured human cutaneous fibroblasts to UVA1 radiation (wavelengths in the 340–450-nm range with emission peak at 365 nm) and, using the alkaline unwinding method, we showed an immediate significant increase of DNA strand breaks in exposed cells. Apoptosis was determined by detecting cytoplasmic nucleosomes (enzyme-linked immunosorbent assay method) at different time points in fibroblasts exposed to different irradiation doses. In our conditions, UVA1 radiation induced an early (8 h) and a delayed (18 h) apoptosis. Delayed apoptosis increased in a UVA dosedependent manner. Zinc is an important metal for DNA protection and has been shown to have inhibitory effects on apoptosis. The addition of zinc (6.5 mg/L) as zinc chloride to the culture medium significantly decreased immediate DNA strand breaks in human skin fibroblasts. Moreover, zinc chloride significantly decreased UVA1-induced early and delayed apoptosis. Thus, these data show for the first time in normal cutaneous cultured cells that UVA1 radiation induces apoptosis. This apoptosis is biphasic and appears higher 18 h after the stress. Zinc supplementation can prevent both immediate DNA strand breakage and early and delayed apoptosis, suggesting that this metal could be of interest for skin cell protection against UVA1 irradiation.  相似文献   

14.
The role of zinc (Zn) in the protection of germ cells against testicular toxicants has long been elucidated, but the exact molecular mechanisms have not yet been explored. Cyclophosphamide (CP), one of the most commonly used anticancer drugs survived ages of treatment, but the unwanted toxicity limits its clinical usage. The present investigation was aimed to explore the role of Zn and its associated pathways in CP-induced testicular toxicity in S.D. rat. CP was administered in saline 30 mg/kg 5× weekly for 3 weeks (total dose of 450 mg/kg) by i.p. route, while Zn was supplemented by oral route at the doses of 1, 3, 10 mg/kg/day for 3 weeks. CP significantly reduced Zn levels in serum and testes, body and testicular weight, sperm count and motility, spermiogenic cells, plasma testosterone and significantly increased the oxidative stress, sperm head abnormalities, sperm DNA damage with decreased chromatin and acrosome integrity; while Zn supplementation ameliorated the same. The present results demonstrated that Zn supplementation protected against CP-induced testicular damages by modulating metallothionein (MT), tesmin and Nrf2 associated pathways. Thus Zn supplementation during anticancer therapy might be potentially beneficial in reducing the off target effects associated with oxidative stress.  相似文献   

15.
In the present study, we investigated the protective effect of zinc on the glucose-induced cytotoxicity in HeLa wild and HeLa-tat cells (30 and 20 mmol/l glucose, respectively). HeLa cells transfected with the protein Tat exhibit a lower antioxidant defense system. Incubation of HeLa wild and HeLa-tat cells with high glucose levels led to a rapid increase in generation of reactive oxygen species (ROS). As expected in the presence of high glucose concentrations, the viability was reduced for both cell lines. The redox status essentially regulated by thiol groups may play an important role in the apoptotic process. Thus, we developed a new method using the p-nitrophenyl disulfide to measure cytosolic thiol groups in intact cells. Cellular zinc was measured using inductively coupled plasma mass spectrometry. Intracellular thiol groups and intracellular zinc concentrations were significantly lower in HeLa cells cultured in hyperglycemic conditions, and their concentrations were significantly lower in HeLa-tat cells than in HeLa wild cells. However, the generation of ROS and the induction of apoptosis by a glucose specific mechanism were prevented by zinc (50 micromol/l) and the intracellular thiol groups and zinc concentrations significantly increased in both cell lines to become similar to the initial values. These results suggest that the glucose oxidation and its subsequent effects on the cells can be prevented by a biological antioxidant such as zinc.  相似文献   

16.
目的:检测用阿霉素(doxorubicin DOXO)处理的骨髓瘤细胞株NCI-H929中ATP与自噬表达水平的变化,探讨两者之间的关联。方法:分别以DOXO 2umol/l 24h、DOXO 2umol/l联用自噬抑制剂3MA 10mmol/l 24h处理H-929细胞后,采用MTT法检测细胞存活率;ATP生物发光法检测ATP表达量;Western Blot检测靶细胞自噬标志分子LC3蛋白的表达。结果:各组相对未处理组存活率分别为54%、35%;相对未处理组%ATP分别为400%、150%;DOXO 24h LC3表达显著上调。结论:经DOXO处理H-929细胞系自噬形成,进而ATP上升以保护细胞。  相似文献   

17.
Wilson’s disease (WD) is characterized by accumulation of high levels of copper in liver due to malfunction of copper transporter ATP7B which is central for copper homeostasis. Here we report for the first time that mesenchymal stem cells (MSC) derived from bone marrow express detectable levels of ATP7B. The role of ATP7B overexpression for MSC survival and selection in high copper was investigated. Hepatoma cell line HepG2 that has a high intrinsic expression of ATP7B served as a control. Using retroviral vector a significant higher expression level of ATP7B could be achieved in MSCs. Whereas copper treatment resulted in cell death in untransduced MSCs, viability assays demonstrated a unique copper resistance of ATP7B overexpressing MSCs that outcompeted HepG2. In long-term cell culture stable transgene expression for up to 9 weeks was shown for ATP7B overexpressing MSCs which rapidly overgrew untransduced cells. Our findings suggest that ATP7B overexpression provides an important selection advantage to MSCs in high copper microenvironments, and may represent novel cell transplants for therapy of WD.  相似文献   

18.
The utilization efficiency of a secondary energy source in a cell-free protein synthesis system can be improved by use of a metabolic inhibitor. Oxalate, a potent inhibitor of phophoenolpyruvate synthetase, substantially increased the yield of chloramphenicol acetyltransferase synthesis through the enhanced supply of ATP. Oxalate, at 2.7 mM, increased the synthesis yield by 47% when successive amino acids additions prevent amino acid depletion during protein synthesis. These results suggest that cell-free protein synthesis efficiency could also be improved by disrupting the gene encoding phosphoenolpyruvate synthetase.  相似文献   

19.
Parkinson’s disease (PD) is one of the most common neurodegenerative diseases in the elderly population and is caused by the loss of dopaminergic neurons. PD has been predominantly attributed to mitochondrial dysfunction. The structural alteration of α-synuclein triggers toxic oligomer formation in the neurons, which greatly contributes to PD. In this article, we discuss the role of several familial PD-related proteins, such as α-synuclein, DJ-1, LRRK2, PINK1, and parkin in mitophagy, which entails a selective degradation of mitochondria via autophagy. Defective changes in mitochondrial dynamics and their biochemical and functional interaction induce the formation of toxic α-synuclein-containing protein aggregates in PD. In addition, these gene products play an essential role in ubiquitin proteasome system (UPS)-mediated proteolysis as well as mitophagy. Interestingly, a few deubiquitinating enzymes (DUBs) additionally modulate these two pathways negatively or positively. Based on these findings, we summarize the close relationship between several DUBs and the precise modulation of mitophagy. For example, the USP8, USP10, and USP15, among many DUBs are reported to specifically regulate the K48- or K63-linked de-ubiquitination reactions of several target proteins associated with the mitophagic process, in turn upregulating the mitophagy and protecting neuronal cells from α-synuclein-derived toxicity. In contrast, USP30 inhibits mitophagy by opposing parkin-mediated ubiquitination of target proteins. Furthermore, the association between these changes and PD pathogenesis will be discussed. Taken together, although the functional roles of several PD-related genes have yet to be fully understood, they are substantially associated with mitochondrial quality control as well as UPS. Therefore, a better understanding of their relationship provides valuable therapeutic clues for appropriate management strategies.  相似文献   

20.
提高毛霉菌转化合成腺三磷产率的研究   总被引:1,自引:0,他引:1  
采用毛霉菌由腺嘌呤转化合成腺三磷(ATP),在综合研究其转化条件的基础上,进一步研究添加剂对提高ATP产率的影响。经过筛选获得较佳的添加剂新洁尔灭,在含有3g/L腺嘌呤的反应液中,加入50mg/L新洁尔灭,经33℃转化反应5h,能产生6g/L以上的腺三磷,比对照提高75%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号