首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein Surface Dynamics: Interaction with Water and Small Solutes   总被引:1,自引:0,他引:1  
Previous time resolved measurements had indicated that protons could propagate on the surface of a protein, or a membrane, by a special mechanism that enhances the shuttle of the proton towards a specific site [1]. It was proposed that a proper location of residues on the surface contributes to the proton shuttling function. In the present study, this notion was further investigated using molecular dynamics, with only the mobile charge replaced by Na+ and Cl ions. A molecular dynamics simulation of a small globular protein (the S6 of the bacterial ribosome) was carried out in the presence of explicit water molecules and four pairs of Na+ and Cl ions. A 10 ns simulation indicated that the ions and the protein's surface were in equilibrium, with rapid passage of the ions between the protein's surface and the bulk. Yet it was noted that, close to some domains, the ions extended their duration near the surface, suggesting that the local electrostatic potential prevented them from diffusing to the bulk. During the time frame in which the ions were detained next to the surface, they could rapidly shuttle between various attractor sites located under the electrostatic umbrella. Statistical analysis of molecular dynamics and electrostatic potential/entropy consideration indicated that the detainment state is an energetic compromise between attractive forces and entropy of dilution. The similarity between the motion of free ions next to a protein and the proton transfer on the protein's surface are discussed.  相似文献   

2.
Energization-induced redistribution of charge carriers near membranes   总被引:1,自引:0,他引:1  
The electric field arising from proton pumping across a topologically closed biological membrane causes accumulation close to the membrane of ionic charges equivalent to the charge of the pumped protons, positive on the side towards which protons are pumped, negative on the other side. We shall call this the 'active surface charge'. We here use the Poisson-Boltzmann equation to evaluate the effects of zwitterionic buffer molecules and uncharged proteins in the aqueous phase bordering the membrane on the magnitude and ionic composition of the active surface charge. For the positive side of the membrane, the main results are: (1) If the membrane is freely accessible to bulk phase ions, pumped protons exchange with these ions, such that the active surface charge consists of salt cations. (2) If a significant fraction of the ions in bulk solution consists of buffer molecules, then some of the pumped protons will remain close to the membrane and constitute a major fraction of the active surface charge. (3) If a protein layer borders the membrane, a significant part of the transmembrane electric potential difference exists within that protein layer and protons inside this layer dominate the active surface charge. (4) On the negative side of the membrane the corresponding phenomena would occur. (5) All these effects are strictly dependent on the transmembrane electric potential difference arising from proton pumping and would come in addition to the well known effects of buffers and electrically charged proteins on the retention of scalar protons. (6) No additional proton diffusion barrier may be required to account for a deficit in number of protons observed in the aqueous bulk phase upon aeration-induced proton pumping.  相似文献   

3.
Guidoni L  Torre V  Carloni P 《FEBS letters》2000,477(1-2):37-42
Molecular dynamics simulations and electrostatic modeling are used to investigate structural and dynamical properties of the potassium ions and of water molecules inside the KcsA channel immersed in a membrane-mimetic environment. Two potassium ions, initially located in the selectivity filter binding sites, maintain their position during 2 ns of dynamics. A third potassium ion is very mobile in the water-filled cavity. The protein appears engineered so as to polarize water molecules inside the channel cavity. The resulting water induced dipole and the positively charged potassium ion within the cavity are the key ingredients for stabilizing the two K(+) ions in the binding sites. These two ions experience single file movements upon removal of the potassium in the cavity, confirming the role of the latter in ion transport through the channel.  相似文献   

4.
The surface of a protein, or a membrane, is spotted with a multitude of proton binding sites, some of which are only few Å apart. When a proton is released from one site, it propagates through the water by a random walk under the bias of the local electrostatic potential determined by the distribution of the charges on the protein. Eventually, the released protons are dispersed in the bulk, but during the first few nanoseconds after the dissociation, the protons can be trapped by encounter with nearby acceptor sites. While the study of this reaction on the surface of a protein suffers from experimental and theoretical difficulties, it can be investigated with simple model compounds like derivatives of fluorescein. In the present study, we evaluate the mechanism of proton transfer reactions that proceed, preferentially, inside the Coulomb cage of the dye molecules. Kinetic analysis of the measured dynamics reveals the role of the dimension of the Coulomb cage on the efficiency of the reaction and how the ordering of the water molecules by the dye affects the kinetic isotope effect.  相似文献   

5.
The surface of a protein, or a membrane, is spotted with a multitude of proton binding sites, some of which are only few A apart. When a proton is released from one site, it propagates through the water by a random walk under the bias of the local electrostatic potential determined by the distribution of the charges on the protein. Eventually, the released protons are dispersed in the bulk, but during the first few nanoseconds after the dissociation, the protons can be trapped by encounter with nearby acceptor sites. While the study of this reaction on the surface of a protein suffers from experimental and theoretical difficulties, it can be investigated with simple model compounds like derivatives of fluorescein. In the present study, we evaluate the mechanism of proton transfer reactions that proceed, preferentially, inside the Coulomb cage of the dye molecules. Kinetic analysis of the measured dynamics reveals the role of the dimension of the Coulomb cage on the efficiency of the reaction and how the ordering of the water molecules by the dye affects the kinetic isotope effect.  相似文献   

6.
Pfeiffer S  Fushman D  Cowburn D 《Proteins》1999,35(2):206-217
A nonzero net charge of proteins at pH 7 is usually compensated by the addition of charge-balancing counter ions during molecular dynamics simulation, which reduces electrostatic interactions. For highly charged proteins, like the betaARK1 PH domain used here, it seems reasonable to also add explicit salt ions. To assess the impact of explicit salt ions, two molecular dynamics simulations of solvated betaARK1 PH domain have been carried out with different numbers of Cl- and Na+ ions, based on the Cornell et al. force field and the Ewald summation, which was used in the treatment of long-range electrostatic interactions. Initial positions of ions were obtained from the AMBER CION program. Increasing the number of ions alters the average structure in loop regions, as well as the fluctuation amplitudes of dihedral angles. We found unnaturally strong interactions between side chains in the absence of salt ions. The presence of salt ions reduces these electrostatic interactions. The time needed for the equilibration of the ionic environment around the protein, after initial placement of ions close to oppositely charged side chains, is in the nanosecond time range, which can be shortened by using a higher ionic strength. Our results also suggest selecting those methods that do not place the ions initially close to the protein surface.  相似文献   

7.
In this paper, we describe a Monte Carlo method for determining the volume of a molecule. A molecule is considered to consist of hard, overlapping spheres. The surface of the molecule is defined by rolling a probe sphere over the surface of the spheres. To determine the volume of the molecule, random points are placed in a three-dimensional box, which encloses the whole molecule. The volume of the molecule in relation to the volume of the box is estimated by calculating the ratio of the random points placed inside the molecule and the total number of random points that were placed. For computational efficiency, we use a grid-cell based neighbor list to determine whether a random point is placed inside the molecule or not. This method in combination with a graph-theoretical algorithm is used to detect internal cavities and surface clefts of molecules. Since cavities and clefts are potential water binding sites, we place water molecules in the cavities. The potential water positions can be used in molecular dynamics calculations as well as in other molecular calculations. We apply this method to several proteins and demonstrate the usefulness of the program. The described methods are all implemented in the program McVol, which is available free of charge from our website at .  相似文献   

8.
The mechanism of proton transfer at the interface is the most prevalent reaction in the biosphere, yet its modeling at atomic level is still technically impossible. The difficulties emerge from the quantum mechanical nature of the proton, the modulation of the local electrostatic potential by the protein-water dielectric boundary and the formation of covalent bonds with proton binding sites whenever encounters take place. To circumvent some of these difficulties, and to identify the effect of the local electrostatic field, we present molecular dynamics simulations, where Na+ and Cl- ions diffuse at the surface of a small model protein, the S6 of the bacterial ribosome. The analysis reveals the presence of a detained state, where an ion is located for a relatively long period within the immediate environment of certain attractor residues. In the detained state the ion retains its ability to diffuse, yet the local field deters it from leaving to the bulk. When an ion is detained inside a Coulomb cage, it has a high probability to be transferred between nearby attractors, thus forming a mechanism similar to that responsible for the proton collecting antenna present on proton proteins.  相似文献   

9.
Time-resolved measurements indicated that protons could propagate on the surface of a protein or a membrane by a special mechanism that enhanced the shuttle of the proton toward a specific site. It was proposed that a suitable location of residues on the surface contributes to the proton shuttling function. In this study, this notion was further investigated by the use of molecular dynamics simulations, where Na(+) and Cl(-) are the ions under study, thus avoiding the necessity for quantum mechanical calculations. Molecular dynamics simulations were carried out using as a model a few Na(+) and Cl(-) ions enclosed in a fully hydrated simulation box with a small globular protein (the S6 of the bacterial ribosome). Three independent 10-ns-long simulations indicated that the ions and the protein's surface were in equilibrium, with rapid passage of the ions between the protein's surface and the bulk. However, it was noted that close to some domains the ions extended their duration near the surface, thus suggesting that the local electrostatic potential hindered their diffusion to the bulk. During the time frame in which the ions were detained next to the surface, they could rapidly shuttle between various attractor sites located under the electrostatic umbrella. Statistical analysis of the molecular dynamics and electrostatic potential/entropy consideration indicated that the detainment state is an energetic compromise between attractive forces and entropy of dilution. The similarity between the motion of free ions next to a protein and the proton transfer on the protein's surface are discussed.  相似文献   

10.
Water permeation and electrostatic interactions between water and channel are investigated in the Escherichia coli glycerol uptake facilitator GlpF, a member of the aquaporin water channel family, by molecular dynamics simulations. A tetrameric model of the channel embedded in a 16:0/18:1c9-palmitoyloleylphosphatidylethanolamine membrane was used for the simulations. During the simulations, water molecules pass through the channel in single file. The movement of the single file water molecules through the channel is concerted, and we show that it can be described by a continuous-time random-walk model. The integrity of the single file remains intact during the permeation, indicating that a disrupted water chain is unlikely to be the mechanism of proton exclusion in aquaporins. Specific hydrogen bonds between permeating water and protein at the channel center (at two conserved Asp-Pro-Ala "NPA" motifs), together with the protein electrostatic fields enforce a bipolar water configuration inside the channel with dipole inversion at the NPA motifs. At the NPA motifs water-protein electrostatic interactions facilitate this inversion. Furthermore, water-water electrostatic interactions are in all regions inside the channel stronger than water-protein interactions, except near a conserved, positively charged Arg residue. We find that variations of the protein electrostatic field through the channel, owing to preserved structural features, completely explain the bipolar orientation of water. This orientation persists despite water translocation in single file and blocks proton transport. Furthermore, we find that for permeation of a cation, ion-protein electrostatic interactions are more unfavorable at the conserved NPA motifs than at the conserved Arg, suggesting that the major barrier against proton transport in aquaporins is faced at the NPA motifs.  相似文献   

11.
The passage of proton trough proteins is common to all membranal energy conserving enzymes. While the routes differ among the various proteins, the mechanism of proton propagation is based on the same chemical-physical principles. The proton progresses through a sequence of dissociation association steps where the protein and water molecules function as a solvent that lowers the energy penalty associated with the generation of ions in the protein. The propagation of the proton in the protein is a random walk, between the temporary proton binding sites that make the conducting path, that is biased by the intra-protein electrostatic potential. Kinetic measurements of proton transfer reactions, in the sub-ns up to micros time frame, allow to monitor the dynamics of the partial reactions of an overall proton transfer through a protein.  相似文献   

12.
Due to the surface charge inherent on all microorganism cell surfaces, the consumption of charged molecules by these microorganisms will be affected by the electrostatic interactions between the substrate and the cell surface. This article derives an equation that shows that these electrostatic interactions result in a change in the Monod half-velocity constant. The resulting rate of consumption is affected and can be either higher or lower than the rate of consumption of an uncharged substrate molecule.  相似文献   

13.
Molecular dynamics simulation was employed to investigate the restructuring process of CTAB monolayer at mica/water interface. The reversing process of CTAB monolayer was exploited by diffusion of water molecules, reversing of CTAB molecules with time evolution and restructuring of the surfactant monolayer. The results showed that bromide ions around surfactant head groups diffused into bulk water readily due to the electrostatic repulsion caused by negatively charged mica surface. Meanwhile, because of the electrostatic attraction between water molecules and mica surface, part of water molecules can penetrate the surfactant monolayer to form water channel which bridges bulk water and mica surface. The monolayer structure was disturbed by diffusion of bromide ions and formation of water channel. Few of the head groups of surfactants tended to reverse and enter into aqueous solution. The number of reversed surfactant molecules increased with time evolution. The monolayer restructured into bilayer structure gradually. Finally, a cylindrical aggregate was obtained.  相似文献   

14.
Youn Jo Ko 《Biophysical journal》2010,98(10):2163-2169
Several prokaryotic ClC proteins have been demonstrated to function as exchangers that transport both chloride ions and protons simultaneously in opposite directions. However, the path of the proton through the ClC exchanger, and how the protein brings about the coupled movement of both ions are still unknown. In this work, we use an atomistic molecular dynamics (MD) simulation to demonstrate that a previously unknown secondary water pore is formed inside an Escherichia coli ClC exchanger. The secondary water pore is bifurcated from the chloride ion pathway at E148. From the systematic simulations, we determined that the glutamate residue exposed to the intracellular solution, E203, plays an important role as a trigger for the formation of the secondary water pore, and that the highly conserved tyrosine residue Y445 functions as a barrier that separates the proton from the chloride ion pathways. Based on our simulation results, we conclude that protons in the ClC exchanger are conducted via a water network through the secondary water pore, and we propose a new mechanism for the coupled transport of chloride ions and protons. It has been reported that several members of ClC proteins are not just channels that simply transport chloride ions across lipid bilayers; rather, they are exchangers that transport both the chloride ion and proton in opposite directions. However, the ion transit pathways and the mechanism of the coupled movement of these two ions have not yet been unveiled. In this article, we report a new finding (to our knowledge) of a water pore inside a prokaryotic ClC protein as revealed by computer simulation. This water pore is bifurcated from the putative chloride ion, and water molecules inside the new pore connect two glutamate residues that are known to be key residues for proton transport. On the basis of our simulation results, we conclude that the water wire that is formed inside the newly found pore acts as a proton pathway, which enables us to resolve many problems that could not be addressed by previous experimental studies.  相似文献   

15.
16.
A method of calculating the electrostatic potential energy between two molecules, using finite difference potential, is presented. A reduced charge set is used so that the interaction energy can be calculated as the two static molecules explore their full six-dimensional configurational space. The energies are contoured over surfaces fixed to each molecule with an interactive computer graphics program. For two crystal structures (trypsin-trypsin inhibitor and anti-lysozyme Fab-lysozyme), it is found that the complex corresponds to highly favourable interacting regions in the contour plots. These matches arise from a small number of protruding basic residues interacting with enhanced negative potential in each case. The redox pair cytochrome c peroxidase-cytochrome c exhibits an extensive favourably interacting surface within which a possible electron transfer complex may be defined by an increased electrostatic complementarity, but a decreased electrostatic energy. A possible substrate transfer configuration for the glycolytic enzyme pair glyceraldehyde phosphate dehydrogenase-phosphoglycerate kinase is presented.  相似文献   

17.
The viability of a biological system depends upon careful regulation of the rates of various processes. These rates have limits imposed by intrinsic chemical or physical steps (e.g., diffusion). These limits can be expanded by interactions and dynamics of the biomolecules. For example, (a) a chemical reaction is catalyzed when its transition state is preferentially bound to an enzyme; (b) the folding of a protein molecule is speeded up by specific interactions within the transition-state ensemble and may be assisted by molecular chaperones; (c) the rate of specific binding of a protein molecule to a cellular target can be enhanced by mechanisms such as long-range electrostatic interactions, nonspecific binding and folding upon binding; (d) directional movement of motor proteins is generated by capturing favorable Brownian motion through intermolecular binding energy; and (e) conduction and selectivity of ions through membrane channels are controlled by interactions and the dynamics of channel proteins. Simple physical models are presented here to illustrate these processes and provide a unifying framework for understanding speed attainment and regulation in biomolecular systems.  相似文献   

18.
Influenza A virus is capable of rapidly infecting large human populations, warranting the development of novel drugs to efficiently inhibit virus replication. A transmembrane ion channel formed by the M2 protein plays an important role in influenza virus replication. A reasonable approach to designing an effective antivirus drug is constructing a molecule that binds in the M2 transmembrane proton channel, blocks H+ proton diffusion through the channel, and thus the influenza A virus cycle. The known anti-influenza drugs amantadine and rimantadine have a weak effect on influenza A virus replication. A new class of positively charged molecules, diazabicyclooctane derivatives with a constant charge of +2, was proposed to block proton diffusion through the M2 ion channel. Molecular dynamics simulations were performed to study the temperature fluctuations in the M2 structure, and ionization states of histidine residues were established at physiological pH values. Two types of diazabicyclooctane derivatives were analyzed for binding with the M2 ion channel. An optimal structure was determined for a blocker to most efficiently bind with the M2 ion channel and block proton diffusion. The new molecule is advantageous over amantadine and rimantadine in having a positive charge of +2, which creates a positive electrostatic potential barrier to proton transport through the M2 ion channel in addition to a steric barrier.  相似文献   

19.
The outer membrane of Gram-negative bacteria is of great scientific interest because it mediates the action of antimicrobial agents. The membrane surface is composed of lipopolysaccharide (LPS) molecules with negatively charged oligosaccharide headgroups. To a certain fraction, LPSs additionally display linear polysaccharides termed O-side chains (OSCs). Structural studies on bacterial outer surfaces models, based on LPS monolayers at air-water interfaces, have so far dealt only with rough mutant LPSs lacking these OSCs. Here, we characterize monolayers of wild-type LPS from Escherichia coli O55:B5 featuring strain-specific OSCs in the presence of defined concentrations of monovalent and divalent ions. Pressure-area isotherms yield insight into in-plane molecular interactions and monolayer elastic moduli. Structural investigations by x-ray and neutron reflectometry reveal the saccharide conformation and allow quantifying the area per molecule and the fraction of LPS molecules carrying OSCs. The OSC conformation is satisfactorily described by the self-consistent field theory for end-grafted polymer brushes. The monolayers exhibit a significant structural response to divalent cations, which goes beyond generic electrostatic screening.  相似文献   

20.
We present the results of molecular dynamics simulations of small peptide nucleic acid (PNA) molecules, synthetic analogs of DNA, at a lipid bilayer in water. At neutral pH, without any salt, and in the NP(n)gammaT ensemble, two similar PNA molecules (6-mers) with the same nucleic base sequence and different terminal groups are investigated at the interface between water and a 1-palmitoyl-2-oleoylphosphatidylcholine lipid bilayer. The results of our simulations suggest that at low ionic strength of the solution, both PNA molecules adsorb at the lipid-water interface. In the case where the PNA molecule has charged terminal groups, the main driving force of adsorption is the electrostatic attraction between the charged groups of PNA and the lipid heads. The main driving force of adsorption of the PNA molecule with neutral terminal groups is the hydrophobic interaction of the nonpolar groups. Our simulations suggest that the system free energy change associated with PNA adsorption at the lipid-water interface is on the order of several tens of kT per PNA molecule in both cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号