首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The embryonic heart is composed of two cell layers: the myocardium, which contributes to cardiac muscle tissue, and the endocardium, which covers the inner lumen of the heart. Whereas significant progress has been made toward elucidating the embryonic origins of the myocardium, the origins of the endocardium remain unclear. Here, we have identified an endocardium-forming field medial to the cardiac crescent, in a continuum with the endothelial plexus. In vivo live imaging of quail embryos revealed that endothelial progenitors, like second/anterior heart field progenitors, migrate to, and enter, the heart from the arterial pole. Furthermore, embryonic endothelial cells implanted into the cardiac crescent contribute to the endocardium, but not to the myocardium. In mouse, lineage analysis focusing on endocardial cells revealed an unexpected heterogeneity in the origins of the endocardium. To gain deeper insight into this heterogeneity, we conditionally ablated Flk1 in distinct cardiovascular progenitor populations; FLK1 is required in vivo for formation of the endocardium in the Mesp1 and Tie2 lineages, but not in the Isl1 lineage. Ablation of Flk1 coupled with lineage analysis in the Isl1 lineage revealed that endothelium-derived Isl1(-) endocardial cells were significantly increased, whereas Isl1(+) endocardial cells were reduced, suggesting that the endocardium is capable of undergoing regulative compensatory growth. Collectively, our findings demonstrate that the second heart field contains distinct myocardial and endocardial progenitor populations. We suggest that the endocardium derives, at least in part, from vascular endothelial cells.  相似文献   

2.
The cardiovascular system consists of many cell types with distinct embryonic origins. Cells from an Islet1 (Isl1)-expressing progenitor population make a substantial contribution to the developing heart. We reasoned that cells derived from Isl1-expressing progenitors might contribute more widely to the cardiovascular system. We show that cells derived from an Isl1-expressing progenitor lineage make a wide contribution to the systemic vasculature and that embryos conditionally deficient for Rac1 within this cell population develop defects in the non-cardiac vasculature. These data define new roles for Isl1 in the developing embryo and demonstrate a contribution of Isl1-expressing progenitors to vascular endothelium in vivo.  相似文献   

3.
Global inactivation of the metalloproteinase ADAM17 during mouse development results in perinatal lethality and abnormalities of the heart, including late embryonic cardiomegaly and thickened semilunar and atrioventricular valves. These defects have been attributed in part to a lack of ADAM17-mediated processing of HB-EGF, as absence of soluble HB-EGF results in similar phenotypes. Because valvular mesenchymal cells are largely derived from cardiac endothelial cells, we generated mice with a floxed Adam17 allele and crossed these animals with Tie2-Cre transgenics to focus on the role of endothelial ADAM17 in valvulogenesis. We find that although hearts from late-stage embryos with ablation of endothelial ADAM17 appear normal, an increase in valve size and cell number is evident, but only in the semilunar cusps. Unlike Hbegf?/? valves, ADAM17-null semilunar valves do not differ from controls in acute cell proliferation at embryonic day 14.5 (E14.5), suggesting compensatory processing of HB-EGF. However, levels of the proteoglycan versican are significantly reduced in mutant hearts early in valve remodeling (E12.5). After birth, aortic valve cusps from mutants are not only hyperplastic but also show expansion of the glycosaminoglycan-rich component, with the majority of adults exhibiting aberrant compartmentalization of versican and increased deposition of collagen. The inability of mutant outflow valve precursors to transition into fully mature cusps is associated with decreased postnatal viability, progressive cardiomegaly, and systolic dysfunction. Together, our data indicate that ADAM17 is required in valvular endothelial cells for regulating cell content as well as extracellular matrix composition and organization in semilunar valve remodeling and homeostasis.  相似文献   

4.
Distinct families of multipotent heart progenitors play a central role in the generation of diverse cardiac, smooth muscle and endothelial cell lineages during mammalian cardiogenesis. The identification of precise paracrine signals that drive the cell-fate decision of these multipotent progenitors, and the development of novel approaches to deliver these signals in vivo, are critical steps towards unlocking their regenerative therapeutic potential. Herein, we have identified a family of human cardiac endothelial intermediates located in outflow tract of the early human fetal hearts (OFT-ECs), characterized by coexpression of Isl1 and CD144/vWF. By comparing angiocrine factors expressed by the human OFT-ECs and non-cardiac ECs, vascular endothelial growth factor (VEGF)-A was identified as the most abundantly expressed factor, and clonal assays documented its ability to drive endothelial specification of human embryonic stem cell (ESC)-derived Isl1+ progenitors in a VEGF receptor-dependent manner. Human Isl1-ECs (endothelial cells differentiated from hESC-derived ISL1+ progenitors) resemble OFT-ECs in terms of expression of the cardiac endothelial progenitor- and endocardial cell-specific genes, confirming their organ specificity. To determine whether VEGF-A might serve as an in vivo cell-fate switch for human ESC-derived Isl1-ECs, we established a novel approach using chemically modified mRNA as a platform for transient, yet highly efficient expression of paracrine factors in cardiovascular progenitors. Overexpression of VEGF-A promotes not only the endothelial specification but also engraftment, proliferation and survival (reduced apoptosis) of the human Isl1+ progenitors in vivo. The large-scale derivation of cardiac-specific human Isl1-ECs from human pluripotent stem cells, coupled with the ability to drive endothelial specification, engraftment, and survival following transplantation, suggest a novel strategy for vascular regeneration in the heart.  相似文献   

5.
About two-thirds of human congenital heart disease involves second heart field-derived structures. Histone-modifying enzymes, histone deacetylases (HDACs), regulate the epigenome; however, their functions within the second heart field remain elusive. Here we demonstrate that histone deacetylase 3 (HDAC3) orchestrates epigenetic silencing of Tgf1, a causative factor in congenital heart disease pathogenesis, in a deacetylase-independent manner to regulate development of second heart field-derived structures. In murine embryos lacking HDAC3 in the second heart field, increased TGF-β1 bioavailability is associated with ascending aortic dilatation, outflow tract malrotation, overriding aorta, double outlet right ventricle, aberrant semilunar valve development, bicuspid aortic valve, ventricular septal defects, and embryonic lethality. Activation of TGF-β signaling causes aberrant endothelial-to-mesenchymal transition and altered extracellular matrix homeostasis in HDAC3-null outflow tracts and semilunar valves, and pharmacological inhibition of TGF-β rescues these defects. HDAC3 recruits components of the PRC2 complex, methyltransferase EZH2, EED, and SUZ12, to the NCOR complex to enrich trimethylation of Lys-27 on histone H3 at the Tgf1 regulatory region and thereby maintains epigenetic silencing of Tgf1 specifically within the second heart field-derived mesenchyme. Wild-type HDAC3 or catalytically inactive HDAC3 expression rescues aberrant endothelial-to-mesenchymal transition and epigenetic silencing of Tgf1 in HDAC3-null outflow tracts and semilunar valves. These findings reveal that epigenetic dysregulation within the second heart field is a predisposing factor for congenital heart disease.  相似文献   

6.
Summary : Heart valve development begins with the endothelial‐to‐mesenchymal transition (EMT) of endocardial cells. Although lineage studies have demonstrated contributions from cardiac neural crest and epicardium to semilunar and atrioventricular (AV) valve formation, respectively, most valve mesenchyme derives from the endocardial EMT. Specific Cre mouse lines for fate‐mapping analyses of valve endocardial cells are limited. Msx1 displayed expression in AV canal endocardium and cushion mesenchyme between E9.5 and E11.5, when EMT is underway. Additionally, previous studies have demonstrated that deletion of Msx1 and its paralog Msx2 results in hypoplastic AV cushions and impaired endocardial signaling. A knock‐in tamoxifen‐inducible Cre line was recently generated (Msx1CreERT2) and characterized during embryonic development and after birth, and was shown to recapitulate the endogenous Msx1 expression pattern. Here, we further analyze this knock‐in allele and track the Msx1‐expressing cells and their descendants during cardiac development with a particular focus on their contribution to the valves and their precursors. Thus, Msx1CreERT2 mice represent a useful model for lineage tracing and conditional gene manipulation of endocardial and mesenchymal cushion cells essential to understand mechanisms of valve development and remodeling. genesis 53:337–345, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
The heart is divided into four chambers by membranous septa and valves. Although evidence suggests that formation of the membranous septa requires migration of neural crest cells into the developing heart, the functional significance of these neural crest cells in the development of the endocardial cushion, an embryonic tissue that gives rise to the membranous appendages, is largely unknown. Mice defective in the protease region of Meltrin beta/ADAM19 show ventricular septal defects and defects in valve formation. In this study, by expressing Meltrin beta in either endothelial or neural crest cell lineages, we showed that Meltrin beta expressed in neural crest cells but not in endothelial cells was required for formation of the ventricular septum and valves. Although Meltrin beta-deficient neural crest cells migrated into the heart normally, they could not properly fuse the right and left ridges of the cushion tissues in the proximal outflow tract (OT), and this led to defects in the assembly of the OT and AV cushions forming the ventricular septum. These results genetically demonstrated a critical role of cardiac neural crest cells expressing Meltrin beta in triggering fusion of the proximal OT cushions and in formation of the ventricular septum.  相似文献   

8.
Bone morphogenetic proteins (BMPs) constitute a family of approximately 20 growth factors involved in a tremendous variety of embryonic inductive processes. BMPs elicit dose-dependent effects on patterning during gastrulation and gradients of BMP activity are thought to be established through regulation of the relative concentrations of BMP receptors, ligands and antagonists. We tested whether later developmental events also are sensitive to reduced levels of BMP signaling. We engineered a knockout mouse that expresses a BMP type II receptor that lacks half of the ligand-binding domain. This altered receptor is expressed at levels comparable with the wild-type allele, but has reduced signaling capability. Unlike Bmpr2-null mice, mice homozygous for this hypomorphic receptor undergo normal gastrulation, providing genetic evidence of the dose-dependent effects of BMPs during mammalian development. Mutants, however, die at midgestation with cardiovascular and skeletal defects, demonstrating that the development of these tissues requires wild-type levels of BMP signaling. The most striking defects occur in the outflow tract of the heart, with absence of septation of the conotruncus below the valve level and interrupted aortic arch, a phenotype known in humans as persistent truncus arteriosus (type A4). In addition, semilunar valves do not form in mutants, while the atrioventricular valves appear unaffected. Abnormal septation of the heart and valve anomalies are the most frequent forms of congenital cardiac defects in humans; however, most mouse models display broad defects throughout cardiac tissues. The more restricted spectrum of cardiac anomalies in Bmpr2(deltaE2) mutants makes this strain a key murine model to understand the embryonic defects of persistent truncus arteriosus and impaired semilunar valve formation in humans.  相似文献   

9.
Heart valve malformations are one of the most common types of birth defects, illustrating the complex nature of valve development. Vascular endothelial growth factor (VEGF) signaling is one pathway implicated in valve formation, however its specific spatial and temporal roles remain poorly defined. To decipher these contributions, we use two inducible dominant negative approaches in mice to disrupt VEGF signaling at different stages of embryogenesis. At an early step in valve development, VEGF signals are required for the full transformation of endocardial cells to mesenchymal cells (EMT) at the outflow tract (OFT) but not atrioventricular canal (AVC) endocardial cushions. This role likely involves signaling mediated by VEGF receptor 1 (VEGFR1), which is highly expressed in early cushion endocardium before becoming downregulated after EMT. In contrast, VEGFR2 does not exhibit robust cushion endocardium expression until after EMT is complete. At this point, VEGF signaling acts through VEGFR2 to direct the morphogenesis of the AVC cushions into mature, elongated valve leaflets. This latter role of VEGF requires the VEGF-modulating microRNA, miR-126. Thus, VEGF roles in the developing valves are dynamic, transitioning from a differentiation role directed by VEGFR1 in the OFT to a morphogenetic role through VEGFR2 primarily in the AVC-derived valves.  相似文献   

10.
Ma Q  Zhou B  Pu WT 《Developmental biology》2008,323(1):98-104
Isl1 and Nkx2-5-expressing cardiovascular progenitors play pivotal roles in cardiogenesis. Previously reported Cre-based fate-mapping studies showed that Isl1 progenitors contribute predominantly to the derivatives of the second heart field, and Nkx2-5 progenitors contributed mainly to the cardiomyocyte lineage. However, partial recombination of Cre reporter genes can complicate interpretation of Cre fate-mapping experiments. We found that a Gata4-based Cre-activated reporter was recombined by Isl1Cre and Nkx2-5Cre in a substantially broader domain than previously reported using standard Cre-activated reporters. The expanded Isl1 and Nkx2-5 cardiac fate maps were remarkably similar, and included extensive contributions to cardiomyocyte, endocardial, and smooth muscle lineages in all four cardiac chambers. These data indicate that Isl1 is expressed in progenitors of both primary and secondary heart fields, and that Nkx2-5 is expressed in progenitors of cardiac endothelium and smooth muscle, in addition to cardiomyocytes. These results have important implications for our understanding of cardiac lineage diversification in vivo, and for the interpretation of Cre-based fate maps.  相似文献   

11.
The anatomic relationship of the aortic and mitral valves is a useful landmark in assessing congenital heart malformations. The atrioventricular and semilunar valve regions originate in widely separated parts of the early embryonic heart tube, and the process by which the normal fibrous continuity between the aortic and mitral valves is acquired has not been clearly defined. The development of the aortic and mitral valve relationship was studied in normal human embryos in the Carnegie Embryological Collection, and specimens of Carnegie stages 13, 15, 17, 19, and 23, prepared as serial histologic sections cut in the sagittal plane, were selected for reconstruction. In stage 13, the atrioventricular valve area is separated from the semilunar valve area by the large bend between the atrioventricular and outflow-tract components of the single lumen heart tube created by the left interventricular sulcus. In stages 15 and 17, the aortic valve rotates into a position near the atrioventricular valves with development of four chambers and a double circulation. In stage 19, there is fusion of aortic and mitral endocardial cushion material along the endocardial surface of the interventricular flange, and this relationship is maintained in subsequent stages. Determination of three-dimensional Cartesian coordinates of the midpoints of valve positions shows that, while there is growth of intervalvular distances up to stage 17, the aortic to mitral distance is essentially unchanged thereafter. During the period studied, the left ventricle increases in length over threefold. The relative lack of growth in the saddle-shaped fold between the atrioventricular and outflow tract components of the heart, contrasting with the rapid growth of the outwardly convex components of most of the atrial and ventricular walls, may be attributed to the different mechanical properties of the two configurations. It is postulated that the pathogenesis of congenital heart malformations, which characteristically have failure of development of aortic and mitral valve continuity, may involve abnormalities of rotation of the aortic region or malpositioning of the fold in the heart tube.  相似文献   

12.
Endocardial to mesenchymal transformation (EMT) is a fundamental cellular process required for heart valve formation. Notch, Wnt and Bmp pathways are known to regulate this process. To further address how these pathways coordinate in the process, we specifically disrupted Notch1 or Jagged1 in the endocardium of mouse embryonic hearts and showed that Jagged1-Notch1 signaling in the endocardium is essential for EMT and early valvular cushion formation. qPCR and RNA in situ hybridization assays reveal that endocardial Jagged1-Notch1 signaling regulates Wnt4 expression in the atrioventricular canal (AVC) endocardium and Bmp2 in the AVC myocardium. Whole embryo cultures treated with Wnt4 or Wnt inhibitory factor 1 (Wif1) show that Bmp2 expression in the AVC myocardium is dependent on Wnt activity; Wnt4 also reinstates Bmp2 expression in the AVC myocardium of endocardial Notch1 null embryos. Furthermore, while both Wnt4 and Bmp2 rescue the defective EMT resulting from Notch inhibition, Wnt4 requires Bmp for its action. These results demonstrate that Jagged1-Notch1 signaling in endocardial cells induces the expression of Wnt4, which subsequently acts as a paracrine factor to upregulate Bmp2 expression in the adjacent AVC myocardium to signal EMT.  相似文献   

13.
Wnt signaling mediated by β-catenin has been implicated in early endocardial cushion development, but its roles in later stages of heart valve maturation and homeostasis have not been identified. Multiple Wnt ligands and pathway genes are differentially expressed during heart valve development. At E12.5, Wnt2 is expressed in cushion mesenchyme, whereas Wnt4 and Wnt9b are predominant in overlying endothelial cells. At E17.5, both Wnt3a and Wnt7b are expressed in the remodeling atrioventricular (AV) and semilunar valves. In addition, the TOPGAL Wnt reporter transgene is active throughout the developing AV and semilunar valves at E16.5, with more localized expression in the stratified valve leaflets after birth. In chicken embryo aortic valves, genes characteristic of osteogenic cell lineages including periostin, osteonectin, and Id2 are expressed specifically in the collagen-rich fibrosa layer at E14. Treatment of E14 aortic valve interstitial cells (VICs) in culture with osteogenic media results in increased expression of multiple genes associated with bone formation. Treatment of VIC with Wnt3a leads to nuclear localization of β-catenin and induction of periostin and matrix gla protein but does not induce genes associated with later stages of osteogenesis. Together, these studies provide evidence for Wnt signaling as a regulator of endocardial cushion maturation as well as valve leaflet stratification, homeostasis, and pathogenesis.  相似文献   

14.
15.
16.
Origins and patterning of avian outflow tract endocardium   总被引:3,自引:0,他引:3  
Outflow tract endocardium links the atrioventricular lining, which develops from cardiogenic plate mesoderm, with aortic arches, whose lining forms collectively from splanchnopleuric endothelial channels, local endothelial vesicles, and invasive angioblasts. At two discrete sites, outflow tract endocardial cells participate in morphogenetic events not within the repertoire of neighboring endocardium: they form mesenchymal precursors of endocardial cushions. The objectives of this research were to document the history of outflow tract endocardium in the avian embryo immediately prior to development of the heart, and to ascertain which, if any, aspects of this history are necessary to acquire cushion-forming potential. Paraxial and lateral mesodermal tissues from between somitomere 3 (midbrain level) and somite 5 were grafted from quail into chick embryos at 3-10 somite stages and, after 2-5 days incubation, survivors were fixed and sectioned. Tissues were stained with the Feulgen reaction to visualize the quail nuclear marker or with antibodies (monoclonal QH1 or polyclonals) that recognize quail but not chick cells. Many quail endothelial cells lose the characteristic nuclear heterochromatin marker, but they retain the species-specific epitope recognized by these antibodies. Precursors of outflow tract but not atrioventricular endocardium are present in cephalic paraxial and lateral mesoderm, with their greatest concentration at the level of the otic placode. Furthermore, the ventral movement of individual angiogenic cells is a normal antecedent to outflow tract formation. Cardiac myocytes were never derived from grafted head mesoderm. Thus, unlike the atrioventricular regions of the heart, outflow tract endocardial and myocardial precursors do not share a congruent embryonic history. The results of heterotopic transplantation, in which trunk paraxial or lateral mesoderm was grafted into the head, were identical, including the formation of cushion mesenchyme. This means that cushion positioning and inductive influences must operate locally within the developing heart tubes.  相似文献   

17.
18.
The Down syndrome critical region 1 (DSCR1) gene is present in the region of human chromosome 21 and the syntenic region of mouse chromosome 16, trisomy of which is associated with congenital heart defects observed in Down syndrome. DSCR1 encodes a regulatory protein in the calcineurin/NFAT signal transduction pathway. During valvuloseptal development in the heart, DSCR1 is expressed in the endocardium of the developing atrioventricular and semilunar valves, the muscular interventricular septum, and the ventricular myocardium. Human DSCR1 contains an NFAT-rich calcineurin-responsive element adjacent to exon 4. Transgenic mice generated with a homologous regulatory region of the mouse DSCR1 gene linked to lacZ (DSCR1(e4)/lacZ) show gene activation in the endocardium of the developing valves and aorticopulmonary septum of the heart, recapitulating a specific subdomain of endogenous DSCR1 cardiac expression. DSCR1(e4)/lacZ expression in the developing valve endocardium colocalizes with NFATc1 and, endocardial DSCR1(e4)/lacZ, is notably reduced or absent in NFATc1(-/-) embryos. Furthermore, expression of the endogenous DSCR1(e4) isoform is decreased in the outflow tract of NFATc1(-/-) hearts, and the DSCR1(e4) intragenic element is trans-activated by NFATc1 in cell culture. In trisomy 16 (Ts16) mice, expression of endogenous DSCR1 and DSCR1(e4)/lacZ colocalizes with anomalous valvuloseptal development, and transgenic Ts16 hearts have increased beta-galactosidase activity. DSCR1 and DSCR1(e4)/lacZ also are expressed in other organ systems affected by trisomy 16 in mice or trisomy 21 in humans including the brain, eye, ear, face, and limbs. Together, these results show that DSCR1(e4) expression in the developing valve endocardium is dependent on NFATc1 and support a role for DSCR1 in normal cardiac valvuloseptal formation as well as the abnormal development of several organ systems affected in individuals with Down syndrome.  相似文献   

19.
20.
Islet1 (Isl1) is a LIM homedomain protein that plays a pivotal role in cardiac progenitors of the second heart field. Here, lineage studies with an inducible isl1-cre demonstrated that most Isl1 progenitors have migrated into the heart by E9. Although Isl1 expression is downregulated in most cardiac progenitors as they differentiate, analysis of an isl1-nlacZ mouse and coimmunostaining for Isl1 and lineage markers demonstrated that Isl1 is expressed in distinct subdomains of the heart, and in diverse cardiovascular lineages. Isl1 expression was observed in myocardial lineages of the distal outflow tract, atrial septum, and in sinoatrial and atrioventricular node. The myocardialized septum of the outflow tract was found to derive from Isl1 expressing cells. Isl1 expressing cells also contribute to endothelial and vascular smooth muscle lineages including smooth muscle of the coronary vessels. Our data indicate that Isl1 is a specific marker for a subset of pacemaker cells at developmental stages examined, and suggest genetic heterogeneity within the central conduction system and coronary smooth muscle. Our studies suggest a role for Isl1 in these distinct domains of expression within the heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号