首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Certain types of compost used as growth media can induce resistance to foliar pathogens in above-ground parts of a plant. The induction of resistance can sometimes be associated with growth impairment and yield reduction. The objective of this study was to establish whether plants grown in olive marc compost had enhanced resistance against Botrytis cinerea at the cost of growth or physiological performance.Tomato plants grown in mature olive marc compost had approximately 60% less disease severity than plants grown in perlite. As a reference, plants grown in perlite enriched with the known inducer of resistance Trichoderma asperellum strain T34 (T34) had 35% less disease severity than plants grown in perlite. The salicylic acid (SA) pathway/abscisic acid (ABA) is involved in compost induced systemic resistance. Instead, perlite enriched with T34 is not linked to SA pathway/ABA. Physiological measures of water status, root/shoot ratio, stable isotopes of C and chlorophyll fluorescence showed that the plants grown in compost were close to a stress situation. However, growth measured as biomass and plant height of plants grown in compost was higher than in plants grown in perlite suggesting that plants in compost were not grown in a stress situation, but in a eustress. Tomato plants grown in perlite enriched with T34 had better growth, measured as total leaf area, biomass, height and nutrient uptake, than plants grown in perlite. Physiological measures showed that plants grown either in perlite or perlite enriched with T34 did not show any abiotic stress situation.  相似文献   

2.
3.
Mitogen-activated protein kinases (MPKs) play important roles in biotic and abiotic stress responses. In the present study, we identified a tomato MPK gene, SlMPK4, a possible homolog of Arabidopsis AtMPK4, and performed functional analysis to examine its possible roles in biotic and abiotic responses. Expression of SlMPK4 was induced by infection with Botrytis cinerea and by exogenous application of jasmonic acid and ethylene precursor 1-amino cyclopropane-1-carboxylic acid. Knockdown of the endogenous SlMPK4 expression through virus-induced gene silencing in tomato plants (TRV-SlMPK4) resulted in increased susceptibility to B. cinerea. Expression of defense-related genes SlPR1a and SlPR1b were up-regulated in the SlMPK4-silenced plants. Furthermore, silencing of the SlMPK4 gene also resulted in reduced tolerance against drought stress, leading to earlier wilting symptom under drought stress condition, as compared with the control plants. These results suggest important roles for SlMPK4 in disease resistance against B. cinerea and tolerance to drought stress.  相似文献   

4.
5.
6.
7.
Relationships between the hyphae of Agaricus bisporus (Lang) Sing and bacteria from the mushroom bed casing layer were examined with a scanning electron microscope. Hyphae growing in the casing layer differed morphologically from compost-grown hyphae. Whereas the compost contained thin single hyphae surrounded by calcium oxalate crystals, the casing layer contained mainly wide hyphae or mycelial strands without crystals. The bacterial population in the hyphal environment consisted of several types, some attached to the hyphae with filamentlike structures. This attachment may be important in stimulation of pinhead initiation.  相似文献   

8.
The rhizobacterium Pseudomonas putida BTP1 stimulates induced systemic resistance (ISR) in tomato. A previous work showed that the resistance is associated in leaves with the induction of the first enzyme of the oxylipin pathway, the lipoxygenase (LOX), leading to a faster accumulation of its product, the free 13-hydroperoxy octadecatrienoic acid (13-HPOT), 2 days after Botrytis cinerea inoculation. In the present study, we further investigated the stimulation of the oxylipin pathway: metabolites and enzymes of the pathway were analyzed to understand the fate of the 13-HPOT in ISR. Actually the stimulation began upstream the LOX: free linolenic acid accumulated faster in P. putida BTP1-treated plants than in control. Downstream, the LOX products 13-fatty acid hydroperoxides esterified to galactolipids and phospholipids were more abundant in bacterized plants than in control before infection. These metabolites could constitute a pool that will be used after pathogen attack to produce free fungitoxic metabolites through the action of phospholipase A2, which is enhanced in bacterized plants upon infection. Enzymatic branches which can use as substrate the fatty acid hydroperoxides were differentially regulated in bacterized plants in comparison to control plants, so as to lead to the accumulation of the most fungitoxic compounds against B. cinerea. Our study, which is the first to demonstrate the accumulation of an esterified defense metabolite during rhizobacteria-mediated induced systemic resistance, showed that the oxylipin pathway is differentially regulated. It suggests that this allows the plant to prepare to a future infection, and to respond faster and in a more effective way to B. cinerea invasion.  相似文献   

9.
Compost teas are fermented watery extracts of composted materials that are used for their ability to decrease plant disease. Non-aerated compost teas (NCT) prepared from five types of compost were tested for their ability to inhibit the growth of Alternaria solani, Botrytis cinerea, and Phytophthora infestans in vitro. Weekly applications of NCT were also used in greenhouse trials to assess their suppressive effect on powdery mildew (Oidium neolycopersici) and gray mold (B. cinerea) on tomato plants. All NCT significantly inhibited the mycelial growth of A. solani (37–66%), B. cinerea (57–75%), and P. infestans (100%), whereas sterilized teas did not inhibit growth of the tested pathogens. Although NCT failed to efficiently control powdery mildew, they were able to control tomato gray mold for up to 9 weeks in greenhouse experiments. Among the tested compost teas, NCT prepared from sheep manure compost consistently provided the highest inhibition of mycelial growth and the highest disease suppression, in particular of gray mold (>95% disease reduction). The overall relative efficacy of the various NCT did not correlate well with microbial communities or physico-chemical composition of the prepared NCT. Results also suggest that the presence of the microorganisms in the NCT is a prerequisite for inhibition.  相似文献   

10.
Chocolate spot disease is the most prevalent and important disease in the major faba bean growing regions in the world. Different concentrations of the abiotic inducer (0.3 and 0.5 mM benzothiadiazole) and the biotic inducer (1 × 107 and 2 × 107 spore/ml Trichoderma harzianum) were used alone or in combination to study their efficiency against faba bean chocolate spot disease caused by Botrytis fabae and Botrytis cinerea and their effect on some chemical analyses (phenylalanine ammonia lyase activity, total flavonoids and peroxidase isozymes, pectin and lignin content and total chlorophyll content). Application of the tested inducers as foliar treatment significantly reduced the severity of chocolate spot disease as compared with untreated infected plants. The reduction in disease severity was associated with a gradual increase in phenylalanine ammonia lyase activity. Maximum increase was recorded at 72 h after inoculation with B. fabae and B. cinerea. In addition, the levels of flavonoids in induced infected leaves recorded a sharp increase at 24 h after inoculation with B. fabae or B. cinerea. Also, pectin and lignin contents in the cell wall of induced infected plants were significantly increased as compared with untreated infected plants. Beside the induction of resistance, the tested inducers markedly increased total chlorophyll content in treated infected plants as compared with untreated infected plants. Isozymes analysis revealed that new peroxidase bands were induced only in treated faba bean leaves in response to infection with B. fabae or B. cinerea.  相似文献   

11.
MicroRNAs (miRNAs) are small, non-coding RNAs that regulate the expression of target mRNAs in plant growth, development, abiotic stress responses, and pathogen responses. Cold stress is one of the most common abiotic factors affecting plants, and it adversely affects plant growth, development, and spatial distribution. To understand the roles of miRNAs under cold stress in Populus tomentosa, we constructed two small RNA libraries from plantlets treated or not with cold conditions (4 °C for 8 h). High-throughput sequencing of the two libraries identified 144 conserved miRNAs belonging to 33 miRNA families and 29 new miRNAs (as well as their corresponding miRNA1s) belonging to 23 miRNA families. Differential expression analysis showed that 21 miRNAs were down-regulated and nine miRNAs were up-regulated in response to cold stress. Among them, 19 cold-responsive miRNAs, two new miRNAs and their corresponding miRNA1s were validated by qRT-PCR. A total of 101 target genes of the new miRNAs were predicted using a bioinformatics approach. These target genes are involved in growth and resistance to various stresses. The results demonstrated that Populus miRNAs play critical roles in the cold stress response.  相似文献   

12.
13.
Plants encounter many biotic agents, such as viruses, bacteria, nematodes, weeds, and arachnids. These entities induce biotic stress in their hosts by disrupting normal metabolism, and as a result, limit plant growth and/or are the cause of plant mortality. Some biotic agents, however, interact symbiotically or synergistically with their host plants. Some microbes can be beneficial to plants and perform the same role as chemical fertilizers and pesticides, acting as a biofertilizer and/or biopesticide. Plant growth promoting rhizobacteria (PGPR) can significantly enhance plant growth and represent a mutually helpful plant-microbe interaction. Bacillus species are a major type of rhizobacteria that can form spores that can survive in the soil for long period of time under harsh environmental conditions. Plant growth is enhanced by PGPR through the induction of systemic resistance, antibiosis, and competitive omission. Thus, the application of microbes can be used to induce systemic resistance in plants against biotic agents and enhance environmental stress tolerance. Bacillus subtilis exhibits both a direct and indirect biocontrol mechanism to suppress disease caused by pathogens. The direct mechanism includes the synthesis of many secondary metabolites, hormones, cell-wall-degrading enzymes, and antioxidants that assist the plant in its defense against pathogen attack. The indirect mechanism includes the stimulation of plant growth and the induction of acquired systemic resistance. Bacillus subtilis can also solubilize soil P, enhance nitrogen fixation, and produce siderophores that promote its growth and suppresses the growth of pathogens. Bacillus subtilis enhances stress tolerance in their plant hosts by inducing the expression of stress-response genes, phytohormones, and stress-related metabolites. The present review discusses the activity of B. subtilis in the rhizosphere, its role as a root colonizer, its biocontrol potential, the associated mechanisms of biocontrol and the ability of B. subtilis to increase crop productivity under conditions of biotic and abiotic stress.  相似文献   

14.
Botrytis cinerea causes severe disease in a wide range of plant species and is difficult to be controlled, resulting in significant economic losses. In this study, T1N6_22, a NAD(P)-binding domain-containing protein in Arabidopsis thaliana, was found to be a positive regulator of the basal defense response, and its loss-of-function mutation resulted in enhanced susceptibility to infection by B. cinerea. In the case of Alternaria brassicae, the t1n6_22 plants exhibited enhanced disease symptoms, suggesting the T1N6_22 was a common host response strategy against these pathogens. Further analyses of 35S: T1N6_22 Arabidopsis plants had shown that complemented transgenic plants were also indistinguishable from wild-type plants in their response to B. cinerea inoculation. To gain insight into the role of the T1N6_22 in the plant defense signaling pathway, we detected the expression of the T1N6_22 in different signaling pathway mutants. Strikingly, t1n6_22 plants had impaired tolerance to salt stress, but drought stress was similar in t1n6_22 and wild-type (WT) plants. These results indicate that T1N6_22 might be involved in tolerance mechanisms to both biotic and abiotic stress response.  相似文献   

15.
Chloris virgata Swartz (C. virgata) is a gramineous wild plant that can survive in saline-alkali areas in northeast China. To examine the tolerance mechanisms of C. virgata, we constructed a cDNA library from whole plants of C. virgata that had been treated with 100 mM NaHCO3 for 24 h and sequenced 3168 randomly selected clones. Most (2590) of the expressed sequence tags (ESTs) showed significant similarity to sequences in the NCBI database. Of the 2590 genes, 1893 were unique. Gene Ontology (GO) Slim annotations were obtained for 1081 ESTs by BLAST2GO and it was found that 75 genes of them were annotated with GO terms “response to stress”, “response to abiotic stimulus”, and “response to biotic stimulus”, indicating these genes were likely to function in tolerance mechanism of C. virgata.In a separate experiment, 24 genes that are known from previous studies to be associated with abiotic stress tolerance were further examined by real-time RT-PCR to see how their expressions were affected by NaHCO3 stress. NaHCO3 treatment up-regulated the expressions of pathogenesis-related gene (DC998527), Win1 precursor gene (DC998617), catalase gene (DC999385), ribosome inactivating protein 1 (DC999555), Na+/H+ antiporter gene (DC998043), and two-component regulator gene (DC998236).  相似文献   

16.
17.
Plant immunization is the process of activating natural defense system present in plant induced by biotic or abiotic factors. Plants are pre-treated with inducing agents stimulate plant defense responses that form chemical or physical barriers that are used against the pathogen invasion. Inducers used usually give the signals to rouse the plant defense genes ultimately resulting into induced systemic resistance. In many plant-pathogen interactions, R-Avr gene interactions results in localized acquired resistance or hypersensitive response and at distal ends of plant, a broad spectrum resistance is induced known as systemic acquired resistance (SAR). Various biotic or abiotic factors induce systemic resistance in plants that is phenotypically similar to pathogen-induced systemic acquired resistance (SAR). Some of the biotic or abiotic determinants induce systemic resistance in plants through salicylic acid (SA) dependent SAR pathway, others require jasmonic acid (JA) or ethylene. Host plant remains in induced condition for a period of time, and upon challenge inoculation, resistance responses are accelerated and enhanced. Induced systemic resistance (ISR) is effective under field conditions and offers a natural mechanism for biological control of plant disease.  相似文献   

18.
Benzothiadiazole (BTH) was found to be highly effective in increasing resistance of two poinsettia cultivars — ‘Coco White’ and ‘Malibu Red’, moderately susceptible to the fungus Botrytis cinerea. BTH applied at a concentration of 0.3 mM on the discs cut out from the leaves of these poinsettia cultivars reduced disease symptoms by more than 60 % in comparison to the control discs treated with water and exposed to infection. It was also observed that the applied inducer at a concentration of 0.03 and 0.3 mM had a favourable influence on the increase of poinsettia systemic resistance of SAR type (systemic acquired resistance). The effectiveness of BTH was much less when disease development was examined on detached leaves (a 20 % reduction of lesion area) in comparison with a pronounced inhibition of grey mould development on intact leaves of previously induced plants (a 80 % protection of intact plants). Benzothiadiazole in the concentration range from 0.03 to 1.4 mM added to in vitro agar medium was not found to have an inhibitory influence on Botrytis cinerea mycelium growth and sporulation.  相似文献   

19.
Expression of the tomato gene encoding 13-lipoxygenase,TomloxD, is stimulated by wounding, pathogen infection, jasmonate, and systemin, but its role during growth and development of tomato (Lycopersicon Spp.) remains unclear. To assess the physiological role of TomloxD, we produced transgenic tomato plants with greatly increased TomloxD content using sense constructs under the control of the CaMV 35S promoter. Overexpression of TomloxD in transgenic tomatoes led to a marked increase in the levels of lipoxygenase activity and content of endogenous jasmonic acid (JA), which suggested that TomloxD can use α-linolenic acid as a substrate to produce (13S)-hydroperoxyoctadecatrienoic acid (13-HPOT); the 13-HPOT produced appears to be metabolized further to synthesize JA. Real-time RT-PCR revealed that the expression levels of defense genes LeHSP90, LePR1, LePR6 and LeZAT in the transformants were higher than those in non-transformed plants. Assay for resistance to pathogenic fungus and high temperature stresses suggested that transgenic plants harboring TomloxD were more tolerant to Cladosporium fulvum and high temperature stress than non-transformed tomato plants. The data presented here indicate clearly that TomloxD is involved in endogenous JA synthesis and tolerance to biotic and abiotic stress. The tomloxD gene has potential applications in engineering cropping plants that are resistant to biotic and/or abiotic stress factors.  相似文献   

20.
Biotic and abiotic stresses impose a major threat to agriculture. Therefore, the efforts to develop stress-tolerant plants are of immense importance to increase crop productivity. In recent years, tissue culture based in vitro selection has emerged as a feasible and cost-effective tool for developing stress-tolerant plants. Plants tolerant to both the biotic and the abiotic stresses can be acquired by applying the selecting agents such as NaCl (for salt tolerance), PEG or mannitol (for drought tolerance) and pathogen culture filtrate, phytotoxin or pathogen itself (for disease resistance) in the culture media. Only the explants capable of sustaining such environments survive in the long run and are selected. In vitro selection is based on the induction of genetic variation among cells, tissues and/or organs in cultured and regenerated plants. The selection of somaclonal variations appearing in the regenerated plants may be genetically stable and useful in crop improvement. This review focuses on the progress made towards the development of stress-tolerant lines through tissue culture based in vitro selection. Plants have evolved many biochemical and molecular mechanisms to survive under stress conditions. The mechanisms of ROS (reaction oxygen species) generation and removal in plants under biotic and abiotic stress conditions have also been reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号