首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
全反式维甲酸(all-trans retinoic acid, ATRA)诱导细胞分化与上调转录因子Krüppel样因子4 (KLF4)表达有关, 但目前对ATRA诱导KLF4表达的分子机制尚不清楚.为了研究ATRA在血管平滑肌细胞(VSMC)中诱导KLF4表达的分子机制,本 研究观察ATRA对视黄酸受体α (retinoic acid receptor α, RARα)和KLF4表达的影响及RARα介导ATRA诱导KLF4表达所依 赖的信号转导途径.实验结果显示,ATRA可显著诱导RARα和KLF4表达,用RARα拮抗剂Ro 41 5253阻断ATRA与受体相互作 用后,ATRA诱导的KLF4表达受到显著抑制.用p38 MAPK、ERK和Akt抑制剂阻断ATRA与RARα相互作用所激活的信号转导途径 后,发现阻断p38 MAPK信号途径显著抑制ATRA诱导的KLF4表达,抑制ERK信号途径使ATRA对KLF4表达的诱导作用明显增强, 抑制Akt信号途径不影响KLF4基因表达.表明RARα介导ATRA对KLF4表达的诱导作用,ATRA通过抑制ERK和激活p38 MAPK信号 途径发挥其对KLF4基因表达的诱导作用.  相似文献   

3.
The herpes simplex virus type 1 (HSV-1) protein ICP27 has been implicated in a variety of functions important for viral replication including host shutoff, viral gene expression, activation of mitogen-activated protein kinases p38 and Jun N-terminal protein kinase (JNK), and apoptosis inhibition. In the present study we sought to examine the functions of ICP27 in the absence of viral infection by creating stable HeLa cell lines that inducibly express ICP27. Here, we characterize two such cell lines and show that ICP27 expression is associated with a cellular growth defect. The observed defect is caused at least in part by the induction of apoptosis as indicated by caspase-3 activation, annexin V staining, and characteristic changes in cellular morphology. In an effort to identify the function of ICP27 responsible for inducing apoptosis, we show that ICP27 expression is sufficient to activate p38 signaling to a level that is similar to that observed during wild-type HSV-1 infection. However, ICP27 expression alone is unable to lead to a strong activation of JNK signaling. Using chemical inhibitors, we show that the ICP27-mediated activation of p38 signaling is responsible for the observed induction of apoptosis in the induced cell lines. Our findings suggest that during viral infection, ICP27 activates p38 and JNK signaling pathways via two distinct mechanisms. ICP27 directly activates p38 signaling, leading to stimulation of the host cell apoptotic pathways. In contrast, robust activation of JNK signaling by ICP27 requires one or more delayed early or late viral gene products and may be associated with the inhibition of apoptosis.  相似文献   

4.
5.
6.
Salvianolic acid B (SalB), the main water-soluble bioactive compounds isolated from the traditional Chinese medical herb Danshen, has been shown to exert anti-cancer effect in several cancer cell lines. The aim of our study was to investigate the potential anti-cancer effect of SalB in human glioma U87 cells. We found that treatment with SalB significantly decreased cell viability of U87 cells in a dose- and time-dependent manner. SalB also enhanced the intracellular ROS generation and induced apoptotic cell death in U87 cells. Western blot analysis suggested that SalB increased the phosphorylation of p38 MAPK and p53 in a dose-dependent manner. Moreover, blocking p38 activation by specific inhibitor SB203580 or p38 specific siRNA partly reversed the anti-proliferative and pro-apoptotic effects, and ROS production induced by SalB treatment. The anti-tumor activity of SalB in vivo was also demonstrated in U87 xenograft glioma model. All of these findings extended the anti-cancer effect of SalB in human glioma cell lines, and suggested that these inhibitory effects of SalB on U87 glioma cell growth might be associated with p38 activation mediated ROS generation. Thus, SalB might be concerned as an effective and safe natural anticancer agent for glioma prevention and treatment.  相似文献   

7.
CY Lai  AC Tsai  MC Chen  LH Chang  HL Sun  YL Chang  CC Chen  CM Teng  SL Pan 《PloS one》2012,7(8):e42192
Aciculatin, a natural compound extracted from the medicinal herb Chrysopogon aciculatus, shows potent anti-cancer potency. This study is the first to prove that aciculatin induces cell death in human cancer cells and HCT116 mouse xenografts due to G1 arrest and subsequent apoptosis. The primary reason for cell cycle arrest and cell death was p53 accumulation followed by increased p21 level, dephosphorylation of Rb protein, PUMA expression, and induction of apoptotic signals such as cleavage of caspase-9, caspase-3, and PARP. We demonstrated that p53 allele-null (-/-) (p53-KO) HCT116 cells were more resistant to aciculatin than cells with wild-type p53 (+/+). The same result was achieved by knocking down p53 with siRNA in p53 wild-type cells, indicating that p53 plays a crucial role in aciculatin-induced apoptosis. Although DNA damage is the most common event leading to p53 activation, we found only weak evidence of DNA damage after aciculatin treatment. Interestingly, the aciculatin-induced downregulation of MDM2, an important negative regulator of p53, contributed to p53 accumulation. The anti-cancer activity and importance of p53 after aciculatin treatment were also confirmed in the HCT116 xenograft models. Collectively, these results indicate that aciculatin treatment induces cell cycle arrest and apoptosis via inhibition of MDM2 expression, thereby inducing p53 accumulation without significant DNA damage and genome toxicity.  相似文献   

8.
7-hydroxystaurosporine (UCN-01) is a more selective protein kinase C inhibitor than staurosporine. UCN-01 exhibits antitumor activity in experimental tumor models and is presently in clinical trials. Our study reveals that human myeloblastic leukemia HL60 and K562 and colon carcinoma HT29 cells undergo internucleosomal DNA fragmentation and morphological changes characteristic of apoptosis after UCN-01 treatment. These three cell lines lack functional p53, and K562 and HT29 cells are usually resistant to apoptosis. DNA fragmentation in HT29 and K562 cells occurred after 1 day of treatment while it took less than 4 h in HL60 cells. Cycloheximide prevented UCN-01-induced DNA fragmentation in HT-29 cells, but not in HL60 and K562 cells, suggesting that macromolecular synthesis is selectively required for apoptotic DNA fragmentation in HT29 cells. UCN-01-induced DNA fragmentation was preceded by activation of cyclin B1/cdc2 kinase. Further studies in HL60 cells showed that UCN-01-induced apoptosis was associated with degradation of CPP32, PARP, and lamin B and that the inhibitor of caspases (ICE/CED-3 cysteine proteases), Z-VAD-FMK, and the serine protease inhibitor, DCI, protected HL60 cells from UCN-01-induced DNA fragmentation. However, only DCI and TPCK, but not Z-VAD-FMK, inhibited DNA fragmentation in the HL60 cell-free system, suggesting that serine protease(s) may play a role in the execution phase of apoptosis in HL60 cells treated with UCN-01. Z-VAD-FMK and DCI also inhibited apoptosis in HT29 cells. These data demonstrate that the protein kinase C inhibitor and antitumor agent, UCN-01 is a potent apoptosis inducer in cell lines that are usually resistant to apoptosis and lack p53 and that caspases and probably serine proteases are activated during UCN-01-induced apoptosis.  相似文献   

9.
Tetrandrine, a bis-benzylisoquinoline alkaloid isolated from the dried root of Hang-Fang-Chi ( Stephania tetrandra S. Moore), has been reported to possess anti-cancer effects on many tumors. In this study, we investigated tetrandrine-induced apoptosis on human gastric cancer BGC-823 cells in vitro and in vivo. The results showed that tetrandrine significantly inhibited cell viability in a dose- and time-dependent manner and induced apoptosis. It increased the apoptosis; upregulation of Bax, Bak, and Bad; and downregulation of Bcl-2 and Bcl-xl in BGC-823 cells. Moreover, tetrandrine increased the activation of caspase-3 and -9, release of cytochrome c, and upregulation of apaf-1, suggesting that tetrandrine-induced apoptosis was related to the mitochondrial pathway. Meanwhile, pretreatment with the pan-caspase inhibitor z-VAD-fmk in BGC-823 cells reduced tetrandrine-induced apoptosis by blocking activation of caspases. Furthermore, tetrandrine effectively inhibited tumor growth via apoptosis induction, which was verified by immunohistochemical analysis in a nude mouse xenograft model. Taken together, we concluded that tetrandrine significantly inhibited the proliferation of gastric cancer BGC-823 cells through mitochondria-dependent apoptosis, which may play a promising role in gastric cancer therapy.  相似文献   

10.
Dihydrorotenone (DHR) is a natural pesticide widely used in farming industry, such as organic produces. DHR is a potent mitochondrial inhibitor and probably induces Parkinsonian syndrome, however, it is not known whether DHR is toxic to other systems. In the present study, we evaluated the cytotoxicity of DHR on human plasma cells. As predicted, DHR impaired mitochondrial function by decreasing mitochondrial membrane potential in plasma cells. Because mito-dysfunction leads to unfolded protein response (UPR) and endoplasmic reticulum (ER) stress, we examined the signature proteins in ER stress, including GRP78, ATF4, and CHOP. After DHR treatment, these proteins were significantly upregulated. It is reported that activation of the mitogen-activated protein kinases p38 and JNK are involved in endoplasmic reticulum stress. However, in the subsequent study, DHR was found to activate p38 but not the JNK signaling. When pre-treated with p38 inhibitor SB203580, activation of p38 and cell apoptosis induced by DHR was partially blocked. Thus, we found that DHR induced human plasma cell death by activating the p38 but not the JNK signaling pathway. Because plasma cells are very important in the immune system, this study provided a new insight in the safety evaluation of DHR application.  相似文献   

11.
Angiogenesis and apoptosis are reciprocal processes in endothelial cells. Bcl-2, an anti-apoptotic protein, has been found to have angiogenic activities. The purpose of this study was to determine the role of Bcl-2 in hypoxia-induced angiogenesis in endothelial cells and to investigate the underlying mechanisms. Human aortic endothelial cells (HAECs) were exposed to hypoxia followed by reoxygenation. Myocardial ischemia and reperfusion mouse model was used and Bcl-2 expression was assessed. Bcl-2 expression increased in a time-dependent manner in response to hypoxia from 2 to 72 h. Peak expression occurred at 12 h (3- to 4-fold, p < 0.05). p38 inhibitor (SB203580) blocked hypoxia-induced Bcl-2 expression, whereas PKC, ERK1/2 and PI3K inhibitors did not. Knockdown of Bcl-2 resulted in decreased HAECs’ proliferation and migration. Over-expression of Bcl-2 increased HAECs’ tubule formation, whereas knockdown of Bcl-2 inhibited this process. In this model of myocardial ischemia and reperfusion, Bcl-2 expression was increased and was associated with increased p38 MAPK activation.Our results showed that hypoxia induces Bcl-2 expression in HAECs via p38 MAPK pathway.  相似文献   

12.
核受体PXR对人结肠癌细胞增殖和化疗敏感性的影响   总被引:1,自引:0,他引:1  
目的:探讨核受体PXR在结肠癌细胞增殖和化疗敏感性中的作用.方法:分别用RT-PCR和westernblot方法检测PXR在人结肠癌细胞株LS174T、LOVO、HT29、HCT116中的表达情况.通过质粒稳定转染方法建立PXR敲低的细胞株.用MTT方法分析利福平活化PXR或稳定转染敲低PXR后,细胞增殖和化疗敏感性的改变.结果:在结肠癌细胞株LS174T、LOVO、HT29、HCT116中,LS174T细胞的PXR表达水平最高.利福平处理后,LS174T细胞中PXR表达增强.利福平活化PXR或稳定转染敲低PXR后,相应地促进或抑制细胞增殖,降低或提高细胞对化疗药物的敏感性.结论:PXR能促进结肠癌细胞增殖,提高细胞对化疗药物的敏感性,可能在结肠癌多药耐药机制中具有重要作用.  相似文献   

13.
为探究白花蛇舌草提取物对人胃癌MKN-45细胞凋亡的影响.用不同浓度的白花蛇舌草提取物处理MKN-45细胞,然后在光学显微镜和激光共聚焦显微镜下观察数量和形态.流式细胞仪检测细胞凋亡率,RT-qPCR和Western Blot检测凋亡相关基因Bax和Bcl-2的mRNA和蛋白表达水平.结果表明,不同浓度的白花蛇舌草提取物处理48 h后,在显微镜下观察到细胞体积缩小、细胞核裂解和染色质形态变化.细胞凋亡率随着药物浓度的增加而增加,用30 μg/mL白花蛇舌草提取物处理后细胞凋亡率达到23.6%,Bax基因表达水平显著增加,Bcl-2基因表达水平显著降低.综上所述,白花蛇舌草提取物可诱导人胃癌MKN-45细胞凋亡,具有潜在的医学和药用价值.  相似文献   

14.
Tendon is a dynamic tissue whose structure and function is influenced by mechanical loading, but little is known about the fundamental mechanisms that regulate tendon growth and remodeling in vivo. Data from cultured tendon fibroblasts indicated that the p38 MAPK pathway plays an important role in tendon fibroblast proliferation and collagen synthesis in vitro. To gain greater insight into the mechanisms of tendon growth, and explore the role of p38 MAPK signaling in this process, we tested the hypotheses that inducing plantaris tendon growth through the ablation of the synergist Achilles tendon would result in rapid expansion of a neotendon matrix surrounding the original tendon, and that treatment with the p38 MAPK inhibitor SB203580 would prevent this growth. Rats were treated with vehicle or SB203580, and subjected to synergist ablation by bilateral tenectomy of the Achilles tendon. Changes in histological and biochemical properties of plantaris tendons were analyzed 3, 7, or 28 days after overload, and comparisons were made to non-overloaded animals. By 28 days after overload, tendon mass had increased by 30% compared to non-overloaded samples, and cross-sectional area (CSA) increased by around 50%, with most of the change occurring in the neotendon. The expansion in CSA initially occurred through the synthesis of a hyaluronic acid rich matrix that was progressively replaced with mature collagen. Pericytes were present in areas of active tendon growth, but never in the original tendon ECM. Inhibition of p38 MAPK resulted in a profound decrease in IL6 expression, and had a modest effect on the expression of other ECM and cell proliferation genes, but had a negligible impact on overall tendon growth. The combined results from this study provided novel insights into tendon mechanobiology, and suggest that p38 MAPK signaling does not appear to be necessary for tendon growth in vivo.  相似文献   

15.
The antiapoptotic role of Bcl-2 can be regulated by its phosphorylation in serine and threonine residues located in a nonstructured loop that links BH3 and BH4 domains. p38 MAPK has been identified as one of the kinases able to mediate such phosphorylation, through direct interaction with Bcl-2 protein in the mitochondrial compartment. In this study, we identify, by using mass spectrometry techniques and specific anti-phosphopeptide antibodies, Ser(87) and Thr(56) as the Bcl-2 residues phosphorylated by p38 MAPK and show that phosphorylation of these residues is always associated with a decrease in the antiapoptotic potential of Bcl-2 protein. Furthermore, we obtained evidence that p38 MAPK-induced Bcl-2 phosphorylation plays a key role in the early events following serum deprivation in embryonic fibroblasts. Both cytochrome c release and caspase activation triggered by p38 MAPK activation and Bcl-2 phosphorylation are absent in embryonic fibroblasts from p38alpha knock-out mice (p38alpha(-/-) MEF), whereas they occur within 12 h of serum withdrawal in p38alpha(+/+) MEF; moreover, they can be prevented by p38 MAPK inhibitors and are not associated with the synthesis of the proapoptotic proteins Bax and Fas. Thus, Bcl-2 phosphorylation by activated p38 MAPK is a key event in the early induction of apoptosis under conditions of cellular stress.  相似文献   

16.
Doklady Biochemistry and Biophysics - Andrographolide is a labdane diterpenoid isolated from Andrographis paniculata. The plant extract and andrographolide has long been used in traditional...  相似文献   

17.
Hedgehog(Hh)信号通路在机体发育和肿瘤发生中发挥着重要作用。在该研究中,Western blot检测三株结肠癌细胞Hedgehog信号通路组分的表达,结果表明三株结肠癌细胞中HT-29细胞Hedgehog信号通路组分较完整。采用MTT和BrdU法检测Hedgehog信号通路膜受体Smo特异性抑制剂环杷明和末端转录因子Gli1/2的特异性抑制剂GANT61对HT-29细胞的影响,提示这两种抑制剂均显著抑制HT-29细胞生存率和细胞增殖率,且GANT61比环杷明更敏感。表达谱芯片检测阻断Hedgehog信号通路后HT-29细胞基因谱的变化,结合生物信息学分析,揭示HT-29细胞经环杷明和GANT61处理后基因表达呈现抑制特征,其差异基因表达主要以下调为主,其中环杷明主要影响细胞内源刺激等,而GANT61主要影响代谢和类固醇合成,并与MAPK信号通路有关联,两者均能影响细胞免疫及凋亡相关通路。这些结果提示,Hh信号通路有可能作为结肠癌的治疗靶点。  相似文献   

18.
Hypoxia occurs in a wide variety of physiological and pathological conditions, including tumorigenesis. Tumor cells have to adapt to hypoxia by altering their gene expression and protein synthesis. Here, we showed that hypoxia inhibits translation through activation of PERK and inactivation of mTOR in human colon cancer HCT116 cells. Prolonged hypoxia (1% O2, 16 h) dramatically inhibits general translation in HCT116 cells, yet selected mRNAs remain efficiently translated under such a condition. Using microarray analysis of polysome- associated mRNAs, we identified a large number of hypoxia-regulated genes at the translational level. Efficiently translated mRNAs during hypoxia were validated by polysome profiling and quantitative real-time RT-PCR. Pathway enrichment analysis showed that many of the up-regulated genes are involved in lysosome, glycan and lipid metabolism, antigen presentation, cell adhesion, and remodeling of the extracellular matrix and cytoskeleton. The majority of down-regulated genes are involved in apoptosis, ubiquitin-mediated proteolysis, and oxidative phosphorylation. Further investigation showed that hypoxia induces lysosomal autophagy and mitochondrial dysfunction through translational regulation in HCT116 cells. The abundance of several translation factors and the mTOR kinase activity are involved in hypoxia-induced mitochondrial autophagy in HCT116 cells. Our studies highlight the importance of translational regulation for tumor cell adaptation to hypoxia.  相似文献   

19.
The apoptotic effects of plant sphingoid bases prepared from wheat-flour cerebroside on human colorectal cancer DLD-1 cells were examined. The viability of DLD-1 cells treated with such plant sphingoid bases was reduced in a dose-dependent manner and was similar to that of cells treated with sphingosine. Morphological changes such as condensed chromatin fragments were found, so those sphingoid bases reduced cell viability through causing apoptosis in these cells.  相似文献   

20.
Previous research demonstrated that glutamate induces neuronal injury partially by increasing intracellular Ca2+ concentrations ([Ca2+]i), and inducing oxidative stress, leading to a neurodegenerative disorder. However, the mechanism of glutamate-induced injury remains elusive. Gastrodin, a major active component of the traditional herbal agent Gastrodia elata (GE) Blume, has been recognized as a potential neuroprotective drug. In the current study, a classical injury model based on glutamate-induced cell death of rat pheochromocytoma (PC12) cells was used to investigate the neuroprotective effect of gastrodin, and its potential mechanisms involved. In this paper, the presence of gastrodin inhibits glutamate-induced oxidative stress as measured by the formation of reactive oxygen species (ROS), the level of malondialdehyde (MDA), mitochondrial membrane potential (MMP), and superoxide dismutase (SOD); gastrodin also prevents glutamate-induced [Ca2+]i influx, blocks the activation of the calmodulin-dependent kinase II (CaMKII) and the apoptosis signaling-regulating kinase-1 (ASK-1), inhibits phosphorylation of p38 mitogen-activated kinase (MAPK). Additionally, gastrodin blocked the expression of p53 phosphorylation, caspase-3 and cytochrome C, reduced bax/bcl-2 ratio induced by glutamate in PC12 cells. All these findings indicate that gastrodin protects PC12 cells from the apoptosis induced by glutamate through a new mechanism of the CaMKII/ASK-1/p38 MAPK/p53-signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号