首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ApbC protein has been shown previously to bind and rapidly transfer iron-sulfur ([Fe-S]) clusters to an apoprotein (Boyd, J. M., Pierik, A. J., Netz, D. J., Lill, R., and Downs, D. M. (2008) Biochemistry 47, 8195–8202. This study utilized both in vivo and in vitro assays to examine the function of variant ApbC proteins. The in vivo assays assessed the ability of ApbC proteins to function in pathways with low and high demand for [Fe-S] cluster proteins. Variant ApbC proteins were purified and assayed for the ability to hydrolyze ATP, bind [Fe-S] cluster, and transfer [Fe-S] cluster. This study details the first kinetic analysis of ATP hydrolysis for a member of the ParA subfamily of “deviant” Walker A proteins. Moreover, this study details the first functional analysis of mutant variants of the ever expanding family of ApbC/Nbp35 [Fe-S] cluster biosynthetic proteins. The results herein show that ApbC protein needs ATPase activity and the ability to bind and rapidly transfer [Fe-S] clusters for in vivo function.Proteins containing iron-sulfur ([Fe-S]) clusters are employed in a wide array of metabolic functions (reviewed in Ref. 1). Research addressing the biosynthesis of the iron-molybdenum cofactor of nitrogenase in Azotobacter vinelandii led to the discovery of an operon (iscAnifnifUSVcysE1) involved in the biosynthesis of [Fe-S] clusters (reviewed in Ref. 2). Subsequent experiments led to the finding of two more systems involved in the de novo biosynthesis of [Fe-S] clusters, the isc and the suf systems (3, 4). Like Escherichia coli, the genome of Salmonella enterica serovar Typhimurium encodes for the isc and suf [Fe-S] cluster biosynthesis machinery.Recent studies have identified a number of additional or non-isc/-suf-encoded proteins that are involved in bacterial [Fe-S] cluster biosynthesis and repair. Examples include the following: CyaY, an iron-binding protein believed to be involved in iron trafficking and iron delivery (57); YggX, an Fe2+-binding protein that protects the cell from oxidative stress (8, 9); ErpA, an alternate A-type [Fe-S] cluster scaffolding protein (10); NfuA, a proposed intermediate [Fe-S] delivery protein (1113); YtfE, a protein proposed to be involved in [Fe-S] cluster repair (14, 15); and CsdA-CsdE, an alternative cysteine desulferase (16).Analysis of the metabolic network anchored to thiamine biosynthesis in S. enterica identified lesions in three non-isc or -suf loci that compromise Fe-S metabolism as follows: apbC, apbE, and rseC (1721). This metabolic system was subsequently used to dissect a role for cyaY and gshA in [Fe-S] cluster metabolism (6, 22, 23). Of these, the apbC (mrp in E. coli) locus was identified as the predominant site of lesions that altered thiamine synthesis by disrupting [Fe-S] cluster metabolism (17, 18).ApbC is a member of the ParA subfamily of proteins that have a wide array of functions, including electron transfer (24), initiation of cell division (25), and DNA segregation (26, 27). Importantly, ATP hydrolysis is required for function of all well characterized members of this subfamily, and all members contain a “deviant” Walker A motif, which contains two lysine residues instead of one (GKXXXGK(S/T)) (28). ApbC has been shown to hydrolyze ATP (17).Recently, five proteins with a high degree of identity to ApbC have been shown to be involved in [Fe-S] cluster metabolism in eukaryotes. The sequence alignments of the central portion of these proteins and bacterial ApbC are shown in Fig. 1. HCF101 was demonstrated to be involved in chloroplast [Fe-S] cluster metabolism (29, 30). The CFD1, Npb35, and huNbp35 (formally Nubp1) proteins were demonstrated to be involved in cytoplasmic [Fe-S] cluster metabolism (31, 32). Ind1 was demonstrated to be involved in the maturation of [Fe-S] clusters in the mitochondrial enzyme NADH:ubiquinone oxidoreductase (33). There is currently no report of any of these proteins hydrolyzing ATP.Open in a separate windowFIGURE 1.Protein sequence alignments of members of the ApbC/Nbp35 subfamily of ParA family of proteins. Protein alignments were assembled using the Clustal_W method in the Lasergene® software and show only the central portion of the proteins, which have the highest sequence conservation. The three boxed areas highlight the Walker A box, conserved Ser residue, and CXXC motif. Proteins listed are as follows: ApbC (S. enterica serovar Typhimurium LT2), CFD1 (S. cerevisiae), Nbp35 (S. cerevisiae), HCF101 (Arabidopsis thaliana), huNpb35 (formally Nubp1) (Homo sapiens), and Ind1 (Candida albicans).Biochemical analysis of ApbC indicated that it could bind and transfer [Fe-S] clusters to Saccharomyces cerevisiae apo-isopropylmalate isomerase (34). Additional genetic studies indicated that ApbC has a degree of functional redundancy with IscU, a known [Fe-S] cluster scaffolding protein (35, 36).In this study we investigate the correlation between the biochemical properties of ApbC (i.e. ATPase activity, [Fe-S] cluster binding, and [Fe-S] cluster transfer rates) and the in vivo function of this protein. This is the first detailed kinetic analysis of ATP hydrolysis for a member of the ParA subfamily of deviant Walker A proteins and the first functional analysis of a member of the ever expanding family of ApbC/Nbp35 proteins. Data presented indicate that noncomplementing variants have distinct biochemical properties that place them in three distinct classes.  相似文献   

2.

Background

The family of RecQ DNA helicases plays an important role in the maintenance of genomic integrity. Mutations in three of the five known RecQ family members in humans, BLM, WRN and RecQ4, lead to disorders that are characterized by predisposition to cancer and premature aging.

Methodology/Principal Findings

To address the in vivo functions of Drosophila RecQ4 (dRecQ4), we generated mutant alleles of dRecQ4 using the targeted gene knock-out technique. Our data show that dRecQ4 mutants are homozygous lethal with defects in DNA replication, cell cycle progression and cell proliferation. Two sets of experiments suggest that dRecQ4 also plays a role in DNA double strand break repair. First, mutant animals exhibit sensitivity to gamma irradiation. Second, the efficiency of DsRed reconstitution via single strand annealing repair is significantly reduced in the dRecQ4 mutant animals. Rescue experiments further show that both the N-terminal domain and the helicase domain are essential to dRecQ4 function in vivo. The N-terminal domain is sufficient for the DNA repair function of dRecQ4.

Conclusions/Significance

Together, our results show that dRecQ4 is an essential gene that plays an important role in not only DNA replication but also DNA repair and cell cycle progression in vivo.  相似文献   

3.
Universal genetic codes are degenerated with 61 codons specifying 20 amino acids, thus creating synonymous codons for a single amino acid. Synonymous codons have been shown to affect protein properties in a given organism. To address this issue and explore how Escherichia coli selects its “codon-preferred” DNA template(s) for synthesis of proteins with required properties, we have designed synonymous codon libraries based on an antibody (scFv) sequence and carried out bacterial expression and screening for variants with altered properties. As a result, 342 codon variants have been identified, differing significantly in protein solubility and functionality while retaining the identical original amino acid sequence. The soluble expression level varied from completely insoluble aggregates to a soluble yield of ∼2.5 mg/liter, whereas the antigen-binding activity changed from no binding at all to a binding affinity of > 10−8 m. Not only does our work demonstrate the involvement of genetic codes in regulating protein synthesis and folding but it also provides a novel screening strategy for producing improved proteins without the need to substitute amino acids.  相似文献   

4.
Ubiquitous among eukaryotes, lipid droplets are organelles that function to coordinate intracellular lipid homeostasis. Their morphology and abundance is affected by numerous genes, many of which are involved in lipid metabolism. In this report we identify a Trypanosoma brucei protein kinase, LDK, and demonstrate its localization to the periphery of lipid droplets. Association with lipid droplets was abrogated when the hydrophobic domain of LDK was deleted, supporting a model in which the hydrophobic domain is associated with or inserted into the membrane monolayer of the organelle. RNA interference knockdown of LDK modestly affected the growth of mammalian bloodstream-stage parasites but did not affect the growth of insect (procyclic)-stage parasites. However, the abundance of lipid droplets dramatically decreased in both cases. This loss was dominant over treatment with myriocin or growth in delipidated serum, both of which induce lipid body biogenesis. Growth in delipidated serum also increased LDK autophosphorylation activity. Thus, LDK is required for the biogenesis or maintenance of lipid droplets and is one of the few protein kinases specifically and predominantly associated with an intracellular organelle.Trypanosoma brucei is a single-celled eukaryotic pathogen responsible for human African trypanosomiasis (also known as African sleeping sickness) and nagana in domestic animals. More than 50,000 cases of human disease occur yearly, with over 70 million people at risk. No vaccine exists, and chemotherapy is difficult to administer and prone to pathogen resistance. As T. brucei transits between the mammalian bloodstream and the tsetse fly vector during its life cycle, the organism encounters and adapts to profoundly different environmental conditions. The parasite undergoes dramatic changes in both energy (7, 51) and lipid biosynthesis and metabolism (39, 47, 49) as it shifts between these environments.Protein kinases function in numerous regulatory aspects of the cell, including control of the cell cycle and morphology, responses to stress, and transmission of signals from the extracellular environment or between compartments of the cell. As is the case in other eukaryotes, protein kinases, particularly those associated with membranes, are expected to play pivotal roles in the cell''s ability to sense and appropriately respond to its environment. Trypanosoma brucei possesses over 170 protein kinases (16, 44). Most of these can be assigned to the standard groups of protein kinases based on sequence similarity within the kinase domain. However, sequence similarities with kinases from more well-studied organisms are rarely strong enough to allow one-to-one orthologous relationships to be determined (44), and even those which appear orthologous by sequence have sometimes shown functional divergence (46). Hence, an understanding of the roles of specific protein kinases of trypanosomatids requires an individualized assessment. The initial genome analysis of the trypanosomatids (16) showed a lack of receptor tyrosine kinases, but nine T. brucei predicted serine/threonine kinases were annotated as possessing transmembrane domains. One of these was recently shown to be strategically located at a key interface between the host and parasite: the flagellar pocket (38). This eukaryotic translation initiation factor 2α (eIF2α) family kinase was postulated to play a sensory role in monitoring protein transport.Only a very small number of protein kinases of various organisms have been observed to localize to the membranes of intracellular organelles, most of them to the endoplasmic reticulum (ER) (14, 27, 50). Lipid droplets (also known as lipid bodies, adiposomes, or oil bodies in plants) are thought to arise from the ER, although the routes of protein localization to them are not well understood. They are increasingly recognized as legitimate organelles due to their dynamic roles in energy metabolism (40), lipid trafficking (41), and protection against toxic effects of nonesterified lipids and sterols (18). Studies also suggest that they function as potential protein storage depots (12) and in antigen presentation (10). Although recent efforts to expand the lipid droplet proteome have resulted in a vastly increased and in many cases surprising catalogue of potentially associated proteins (3, 5, 11, 12, 23, 37), relatively little is known as to how these structures form and are regulated within the cell.We examine here a novel T. brucei protein kinase with a predicted transmembrane domain. Surprisingly, this protein is localized intracellularly in association with lipid droplets. RNAi-mediated knockdown of this newly identified kinase, dubbed LDK (for lipid droplet kinase), reveals a role in the formation or maintenance of lipid droplets in both mammalian bloodstream-form (BF) and insect procyclic-form (PF) stages of the parasite life cycle.  相似文献   

5.

Background

X-tox proteins are a family of immune-related proteins only found in Lepidoptera and characterized by imperfectly conserved tandem repeats of several defensin-like motifs. Previous phylogenetic analysis of X-tox genes supported the hypothesis that X-tox have evolved from defensins in a lineage-specific gene evolution restricted to Lepidoptera. In this paper, we performed a protein study in which we asked whether X-tox proteins have conserved the antimicrobial functions of their ancestral defensins and have evolved as defensin reservoirs.

Methodology/Principal Findings

We followed the outcome of Spod-11-tox, an X-tox protein characterized in Spodoptera frugiperda, in bacteria-challenged larvae using both immunochemistry and antimicrobial assays. Three hours post infection, the Spod-11-tox protein was expressed in 80% of the two main classes of circulating hemocytes (granulocytes and plasmatocytes). Located in secretory granules of hemocytes, Spod-11-tox was never observed in contact with microorganisms entrapped within phagolyzosomes showing that Spod-11-tox is not involved in intracellular pathogen killing. In fact, the Spod-11-tox protein was found to be secreted into the hemolymph of experimentally challenged larvae. In order to determine antimicrobial properties of the Spod-11-tox protein, it was consequently fractionated according to a protocol frequently used for antimicrobial peptide purification. Over the course of purification, the anti-Spod-11-tox immunoreactivity was found to be dissociated from the antimicrobial activity. This indicates that Spod-11-tox is not processed into bioactive defensins in response to a microbial challenge.

Conclusions/Significance

Altogether, our results show that X-tox proteins have not evolved as defensin reservoirs and have lost the antimicrobial properties of the ancestral insect defensins. The lepidopteran X-tox protein family will provide a valuable and tractable model to improve our knowledge on the molecular evolution of defensins, a class of innate immune effectors largely distributed over the three eukaryotic kingdoms.  相似文献   

6.
Plasmodium Calcium Dependent Protein Kinase (CDPK1) is required for the development of sexual stages in the mosquito. In addition, it is proposed to play an essential role in the parasite’s invasive stages possibly through the regulation of the actinomyosin motor and micronemal secretion. We demonstrate that Plasmodium berghei CDPK1 is dispensable in the parasite’s erythrocytic and pre-erythrocytic stages. We successfully disrupted P. berghei CDPK1 (PbCDPK1) by homologous recombination. The recovery of erythrocytic stage parasites lacking PbCDPK1 (PbCDPK1-) demonstrated that PbCDPK1 is not essential for erythrocytic invasion or intra-erythrocytic development. To study PbCDPK1’s role in sporozoites and liver stage parasites, we generated a conditional mutant (CDPK1 cKO). Phenotypic characterization of CDPK1 cKO sporozoites demonstrated that CDPK1 is redundant or dispensable for the invasion of mammalian hepatocytes, the egress of parasites from infected hepatocytes and through the subsequent erythrocytic cycle. We conclude that P. berghei CDPK1 plays an essential role only in the mosquito sexual stages.  相似文献   

7.
Hospitalization of the elderly for invasive pneumococcal disease is frequently accompanied by the occurrence of an adverse cardiac event; these are primarily new or worsened heart failure and cardiac arrhythmia. Herein, we describe previously unrecognized microscopic lesions (microlesions) formed within the myocardium of mice, rhesus macaques, and humans during bacteremic Streptococcus pneumoniae infection. In mice, invasive pneumococcal disease (IPD) severity correlated with levels of serum troponin, a marker for cardiac damage, the development of aberrant cardiac electrophysiology, and the number and size of cardiac microlesions. Microlesions were prominent in the ventricles, vacuolar in appearance with extracellular pneumococci, and remarkable due to the absence of infiltrating immune cells. The pore-forming toxin pneumolysin was required for microlesion formation but Interleukin-1β was not detected at the microlesion site ruling out pneumolysin-mediated pyroptosis as a cause of cell death. Antibiotic treatment resulted in maturing of the lesions over one week with robust immune cell infiltration and collagen deposition suggestive of long-term cardiac scarring. Bacterial translocation into the heart tissue required the pneumococcal adhesin CbpA and the host ligands Laminin receptor (LR) and Platelet-activating factor receptor. Immunization of mice with a fusion construct of CbpA or the LR binding domain of CbpA with the pneumolysin toxoid L460D protected against microlesion formation. We conclude that microlesion formation may contribute to the acute and long-term adverse cardiac events seen in humans with IPD.  相似文献   

8.
9.
A significant fraction of a plant''s nuclear genome encodes chloroplast-targeted proteins, many of which are devoted to the assembly and function of the photosynthetic apparatus. Using digital video imaging of chlorophyll fluorescence, we isolated proton gradient regulation 7 (pgr7) as an Arabidopsis thaliana mutant with low nonphotochemical quenching of chlorophyll fluorescence (NPQ). In pgr7, the xanthophyll cycle and the PSBS gene product, previously identified NPQ factors, were still functional, but the efficiency of photosynthetic electron transport was lower than in the wild type. The pgr7 mutant was also smaller in size and had lower chlorophyll content than the wild type in optimal growth conditions. Positional cloning located the pgr7 mutation in the At3g21200 (PGR7) gene, which was predicted to encode a chloroplast protein of unknown function. Chloroplast targeting of PGR7 was confirmed by transient expression of a GFP fusion protein and by stable expression and subcellular localization of an epitope-tagged version of PGR7. Bioinformatic analyses revealed that the PGR7 protein has two domains that are conserved in plants, algae, and bacteria, and the N-terminal domain is predicted to bind a cofactor such as FMN. Thus, we identified PGR7 as a novel, conserved nuclear gene that is necessary for efficient photosynthetic electron transport in chloroplasts of Arabidopsis.  相似文献   

10.
11.
The cellular and molecular cues involved in creating branched tubular networks that transport liquids or gases throughout an organism are not well understood. To identify factors required in branching and lumen formation of Drosophila tracheal terminal cells, a model for branched tubular networks, we performed a forward genetic-mosaic screen to isolate mutations affecting these processes. From this screen, we have identified the first Drosophila mutation in the gene Zpr1 (Zinc finger protein 1) by the inability of Zpr1-mutant terminal cells to form functional, gas-filled lumens. We show that Zpr1 defective cells initiate lumen formation, but are blocked from completing the maturation required for gas filling. Zpr1 is an evolutionarily conserved protein first identified in mammalian cells as a factor that binds the intracellular domain of the unactivated epidermal growth factor receptor (EGFR). We show that down-regulation of EGFR in terminal cells phenocopies Zpr1 mutations and that Zpr1 is epistatic to ectopic lumen formation driven by EGFR overexpression. However, while Zpr1 mutants are fully penetrant, defects observed when reducing EGFR activity are only partially penetrant. These results suggest that a distinct pathway operating in parallel to the EGFR pathway contributes to lumen formation, and this pathway is also dependent on Zpr1. We provide evidence that this alternative pathway may involve fibroblast growth factor receptor (FGFR) signaling. We suggest a model in which Zpr1 mediates both EGFR and FGFR signal transduction cascades required for lumen formation in terminal cells. To our knowledge, this is the first genetic evidence placing Zpr1 downstream of EGFR signaling, and the first time Zpr1 has been implicated in FGFR signaling. Finally, we show that down-regulation of Smn, a protein known to interact with Zpr1 in mammalian cells, shows defects similar to Zpr1 mutants.  相似文献   

12.
The Polo-like kinase (PLK) in Trypanosoma brucei plays multiple roles in basal body segregation, flagellum attachment, and cytokinesis. However, the mechanistic role of TbPLK remains elusive, mainly because most of its substrates are not known. Here, we report a new substrate of TbPLK, SPBB1, and its essential roles in T. brucei. SPBB1 was identified through yeast two-hybrid screening with the kinase-dead TbPLK as the bait. It interacts with TbPLK in vitro and in vivo, and is phosphorylated by TbPLK in vitro. SPBB1 localizes to both the mature basal body and the probasal body throughout the cell cycle, and co-localizes with TbPLK at the basal body during early cell cycle stages. RNAi against SPBB1 in procyclic trypanosomes inhibited basal body segregation, disrupted the new flagellum attachment zone filament, detached the new flagellum, and caused defective cytokinesis. Moreover, RNAi of SPBB1 confined TbPLK at the basal body and the bilobe structure, resulting in constitutive phosphorylation of TbCentrin2 at the bilobe. Altogether, these results identified a basal body protein as a TbPLK substrate and its essential role in promoting basal body segregation and flagellum attachment zone filament assembly for flagellum adhesion and cytokinesis initiation.  相似文献   

13.
Congenital heart valve defects in humans occur in approximately 2% of live births and are a major source of compromised cardiac function. In this study we demonstrate that normal heart valve development and cardiac function are dependent upon Galnt1, the gene that encodes a member of the family of glycosyltransferases (GalNAc-Ts) responsible for the initiation of mucin-type O-glycosylation. In the adult mouse, compromised cardiac function that mimics human congenital heart disease, including aortic and pulmonary valve stenosis and regurgitation; altered ejection fraction; and cardiac dilation, was observed in Galnt1 null animals. The underlying phenotype is aberrant valve formation caused by increased cell proliferation within the outflow tract cushion of developing hearts, which is first detected at developmental stage E11.5. Developing valves from Galnt1 deficient animals displayed reduced levels of the proteases ADAMTS1 and ADAMTS5, decreased cleavage of the proteoglycan versican and increased levels of other extracellular matrix proteins. We also observed increased BMP and MAPK signaling. Taken together, the ablation of Galnt1 appears to disrupt the formation/remodeling of the extracellular matrix and alters conserved signaling pathways that regulate cell proliferation. Our study provides insight into the role of this conserved protein modification in cardiac valve development and may represent a new model for idiopathic valve disease.  相似文献   

14.
15.
The infectious and diagnostic stage of Giardia lamblia (also known as G. intestinalis or G. duodenalis) is the cyst. The Giardia cyst wall contains fibrils of a unique β-1,3-linked N-acetylgalactosamine (GalNAc) homopolymer and at least three cyst wall proteins (CWPs) composed of Leu-rich repeats (CWPLRR) and a C-terminal conserved Cys-rich region (CWPCRR). Our goals were to dissect the structure of the cyst wall and determine how it is disrupted during excystation. The intact Giardia cyst wall is thin (∼400 nm), easily fractured by sonication, and impermeable to small molecules. Curled fibrils of the GalNAc homopolymer are restricted to a narrow plane and are coated with linear arrays of oval-shaped protein complex. In contrast, cyst walls of Giardia treated with hot alkali to deproteinate fibrils of the GalNAc homopolymer are thick (∼1.2 µm), resistant to sonication, and permeable. The deproteinated GalNAc homopolymer, which forms a loose lattice of curled fibrils, is bound by native CWP1 and CWP2, as well as by maltose-binding protein (MBP)-fusions containing the full-length CWP1 or CWP1LRR. In contrast, neither MBP alone nor MBP fused to CWP1CRR bind to the GalNAc homopolymer. Recombinant CWP1 binds to the GalNAc homopolymer within secretory vesicles of Giardia encysting in vitro. Fibrils of the GalNAc homopolymer are exposed during excystation or by treatment of heat-killed cysts with chymotrypsin, while deproteinated fibrils of the GalNAc homopolymer are degraded by extracts of Giardia cysts but not trophozoites. These results show the Leu-rich repeat domain of CWP1 is a lectin that binds to curled fibrils of the GalNAc homopolymer. During excystation, host and Giardia proteases appear to degrade bound CWPs, exposing fibrils of the GalNAc homopolymer that are digested by a stage-specific glycohydrolase.  相似文献   

16.
Archaeal methane formation from methylamines is initiated by distinct methyltransferases with specificity for monomethylamine, dimethylamine, or trimethylamine. Each methylamine methyltransferase methylates a cognate corrinoid protein, which is subsequently demethylated by a second methyltransferase to form methyl-coenzyme M, the direct methane precursor. Methylation of the corrinoid protein requires reduction of the central cobalt to the highly reducing and nucleophilic Co(I) state. RamA, a 60-kDa monomeric iron-sulfur protein, was isolated from Methanosarcina barkeri and is required for in vitro ATP-dependent reductive activation of methylamine:CoM methyl transfer from all three methylamines. In the absence of the methyltransferases, highly purified RamA was shown to mediate the ATP-dependent reductive activation of Co(II) corrinoid to the Co(I) state for the monomethylamine corrinoid protein, MtmC. The ramA gene is located near a cluster of genes required for monomethylamine methyltransferase activity, including MtbA, the methylamine-specific CoM methylase and the pyl operon required for co-translational insertion of pyrrolysine into the active site of methylamine methyltransferases. RamA possesses a C-terminal ferredoxin-like domain capable of binding two tetranuclear iron-sulfur proteins. Mutliple ramA homologs were identified in genomes of methanogenic Archaea, often encoded near methyltrophic methyltransferase genes. RamA homologs are also encoded in a diverse selection of bacterial genomes, often located near genes for corrinoid-dependent methyltransferases. These results suggest that RamA mediates reductive activation of corrinoid proteins and that it is the first functional archetype of COG3894, a family of redox proteins of unknown function.Most methanogenic Archaea are capable of producing methane only from carbon dioxide. The Methanosarcinaceae are a notable exception as representatives are capable of methylotrophic methanogenesis from methylated amines, methylated thiols, or methanol. Methanogenesis from these substrates requires methylation of 2-mercaptoethanesulfonic acid (coenzyme M or CoM) that is subsequently used by methylreductase to generate methane and a mixed disulfide whose reduction leads to energy conservation (14).Methylation of CoM with trimethylamine (TMA),4 dimethylamine (DMA), or monomethylamine (MMA) is initiated by three distinct methyltransferases that methylate cognate corrinoid-binding proteins (3). MtmB, the MMA methyltransferase, specifically methylates cognate corrinoid protein, MtmC, with MMA (see Fig. 1) (5, 6). The DMA methyltransferase, MtbB, and its cognate corrinoid protein, MtbC, interact specifically to demethylate DMA (7, 8). TMA is demethylated by the TMA methyltransferase (MttB) in conjunction with the TMA corrinoid protein (MttC) (8, 9). Each of the methylated corrinoid proteins is a substrate for a methylcobamide:CoM methyltransferase, MtbA, which produces methyl-CoM (1012).Open in a separate windowFIGURE 1.MMA:CoM methyl transfer. A schematic of the reactions catalyzed by MtmB, MtmC, and MtbA is shown that emphasizes the key role of MtmC in the catalytic cycle of both methyltransferases. Oxidation to Co(II)-MtmC of the supernucleophilic Co(I)-MtmC catalytic intermediate inactivates methyl transfer from MMA to the thiolate of coenzyme M (HSCoM). In vitro reduction of the Co(II)-MtmC with either methyl viologen reduced to the neutral species or with RamA in an ATP-dependent reaction can regenerate the Co(I) species. In either case in vitro Ti(III)-citrate is the ultimate source of reducing power.CoM methylation with methanol requires the methyltransferase MtaB and the corrinoid protein MtaC, which is then demethylated by another methylcobamide:CoM methyltransferase, MtaA (1315). The methylation of CoM with methylated thiols such as dimethyl sulfide in Methanosarcina barkeri is catalyzed by a corrinoid protein that is methylated by dimethyl sulfide and demethylated by CoM, but in this case an associated CoM methylase carries out both methylation reactions (16).In bacteria, analogous methyltransferase systems relying on small corrinoid proteins are used to achieve methylation of tetrahydrofolate. In Methylobacterium spp., CmuA, a single methyltransferase with a corrinoid binding domain, along with a separate pterin methylase, effect the methylation of tetrahydrofolate with chloromethane (17, 18). In Acetobacterium dehalogenans and Moorella thermoacetica various three-component systems exist for specific demethylation of different phenylmethyl ethers, such as vanillate (19) and veratrol (20), again for the methylation of tetrahydrofolate. Sequencing of the genes encoding the corrinoid proteins central to the archaeal and bacterial methylotrophic pathways revealed they are close homologs. Furthermore, genes predicted to encode such corrinoid proteins and pterin methyltransferases are widespread in bacterial genomes, often without demonstrated metabolic function. All of these corrinoid proteins are similar to the well characterized cobalamin binding domain of methionine synthase (21, 22).In contrast, the TMA, DMA, MMA, and methanol methyltransferases are not homologous proteins. The methylamine methyltransferases do share the common distinction of having in-frame amber codons (6, 8) within their encoding genes that corresponds to the genetically encoded amino acid pyrrolysine (2325). Pyrrolysine has been proposed to act in presenting a methylammonium adduct to the central cobalt ion of the corrinoid protein for methyl transfer (3, 23, 26). However, nucleophilic attack on a methyl donor requires the central cobalt ion of a corrinoid cofactor is in the nucleophilic Co(I) state rather than the inactive Co(II) state (27). Subsequent demethylation of the methyl-Co(III) corrinoid cofactor regenerates the nucleophilic Co(I) cofactor. The Co(I)/Co(II) in the cobalamin binding domain of methionine synthase has an Em value of -525 mV at pH 7.5 (28). It is likely to be similarly low in the homologous methyltrophic corrinoid proteins. These low redox potentials make the corrinoid cofactor subject to adventitious oxidation to the inactive Co(II) state (Fig. 1).During isolation, these corrinoid proteins are usually recovered in a mixture of Co(II) or hydroxy-Co(III) states. For in vitro studies, chemical reduction can maintain the corrinoid protein in the active Co(I) form. The methanol:CoM or the phenylmethyl ether:tetrahydrofolate methyltransferase systems can be activated in vitro by the addition of Ti(III) alone as an artificial reductant (14, 19). In contrast, activation of the methylamine corrinoid proteins further requires the addition of methyl viologen as a redox mediator. Ti(III) reduces methyl viologen to the extremely low potential neutral species. In vitro activation with these agents does not require ATP (5, 7, 9).Cellular mechanisms also exist to achieve the reductive activation of corrinoid cofactors in methyltransferase systems. Activation of human methionine synthase involves reduction of the co(II)balamin by methionine synthase reductase (29), whereas the Escherichia coli enzyme requires flavodoxin (30). The endergonic reduction is coupled with the exergonic methylation of the corrinoid with S-adenosylmethionine (27). An activation system exists in cellular extracts of A. dehalogenans that can activate the veratrol:tetrahydrofolate three-component system and catalyze the direct reduction of the veratrol-specific corrinoid protein to the Co(I) state; however, the activating protein has not been purified (31).For the methanogen methylamine and methanol methyltransferase systems, an activation process is readily detectable in cell extracts that is ATP- and hydrogen-dependent (32, 33). Daas et al. (34, 35) examined the activation of the methanol methyltransferase system in M. barkeri and purified in low yield a methyltransferase activation protein (MAP) which in the presence of a preparation of hydrogenase and uncharacterized proteins was required for ATP-dependent reductive activation of methanol:CoM methyl transfer. MAP was found to be a heterodimeric protein without a UV-visible detectable prosthetic group. Unfortunately, no protein sequence has been reported for MAP, leaving the identity of the gene in question. The same MAP protein was also suggested to activate methylamine:CoM methyl transfer, but this suggestion was based on results with crude protein fractions containing many cellular proteins other than MAP (36).Here we report of the identification and purification to near-homogeneity of RamA (reductive activation of methyltransfer, amines), a protein mediating activation of methylamine:CoM methyl transfer in a highly purified system (Fig. 1). Quite unlike MAP, which was reported to lack prosthetic groups, RamA is an iron-sulfur protein that can catalyze reduction of a corrinoid protein such as MtmC to the Co(I) state in an ATP-dependent reaction (Fig. 1). Peptide mapping of RamA allowed identification of the gene encoding RamA and its homologs in the genomes of Methanosarcina spp. RamA belongs to COG3894, a group of uncharacterized metal-binding proteins found in a number of genomes. RamA, thus, provides a functional example for a family of proteins widespread among bacteria and Archaea whose physiological role had been largely unknown.  相似文献   

17.
18.
19.
20.
Spliceosomal small nuclear ribonucleoproteins (snRNPs) in trypanosomes contain either the canonical heptameric Sm ring or variant Sm cores with snRNA-specific Sm subunits. Here we show biochemically by a combination of RNase H cleavage and tandem affinity purification that the U4 snRNP contains a variant Sm heteroheptamer core in which only SmD3 is replaced by SSm4. This U4-specific, nuclear-localized Sm core protein is essential for growth and splicing. As shown by RNA interference (RNAi) knockdown, SSm4 is specifically required for the integrity of the U4 snRNA and the U4/U6 di-snRNP in trypanosomes. In addition, we demonstrate by in vitro reconstitution of Sm cores that under stringent conditions, the SSm4 protein suffices to specify the assembly of U4 Sm cores. Together, these data indicate that the assembly of the U4-specific Sm core provides an essential step in U4/U6 di-snRNP biogenesis and splicing in trypanosomes.The excision of intronic sequences from precursor mRNAs is a critical step during eukaryotic gene expression. This reaction is catalyzed by the spliceosome, a macromolecular complex composed of small nuclear ribonucleoproteins (snRNPs) and many additional proteins. Spliceosome assembly and splicing catalysis occur in an ordered multistep process, which includes multiple conformational rearrangements (35). Spliceosomal snRNPs are assembled from snRNAs and protein components, the latter of which fall into two classes: snRNP-specific and common proteins. The common or canonical core proteins are also termed Sm proteins, specifically SmB, SmD1, SmD2, SmD3, SmE, SmF, and SmG (10; reviewed in reference 9), which all share an evolutionarily conserved bipartite sequence motif (Sm1 and Sm2) required for Sm protein interactions and the formation of the heteroheptameric Sm core complex around the Sm sites of the snRNAs (3, 7, 29). Prior to this, the Sm proteins form three heteromeric subcomplexes: SmD3/SmB, SmD1/SmD2, and SmE/SmF/SmG (23; reviewed in reference 34). Individual Sm proteins or Sm subcomplexes cannot stably interact with the snRNA. Instead, a stable subcore forms by an association of the subcomplexes SmD1/SmD2 and SmE/SmF/SmG with the Sm site on the snRNA; the subsequent integration of the SmD3/SmB heterodimer completes Sm core assembly.In addition to the canonical Sm proteins, other proteins carrying the Sm motif have been identified for many eukaryotes. Those proteins, termed LSm (like Sm) proteins, exist in distinct heptameric complexes that differ in function and localization. For example, a complex composed of LSm1 to LSm7 (LSm1-7) accumulates in cytoplasmic foci and participates in mRNA turnover (4, 8, 31). Another complex, LSm2-8, binds to the 3′ oligo(U) tract of the U6 snRNA in the nucleus (1, 15, 24). Finally, in the U7 snRNP, which is involved in histone mRNA 3′-end processing, the Sm proteins SmD1 and SmD2 are replaced by U7-specific LSm10 and LSm11 proteins, respectively (20, 21; reviewed in reference 28).This knowledge is based primarily on the mammalian system, where spliceosomal snRNPs are biochemically well characterized (34). In contrast, for trypanosomes, comparatively little is known about the components of the splicing machinery and their assembly and biogenesis. In trypanosomes, the expression of all protein-encoding genes, which are arranged in long polycistronic units, requires trans splicing. Only a small number of genes are additionally processed by cis splicing (reviewed in reference 11). During trans splicing, a short noncoding miniexon, derived from the spliced leader (SL) RNA, is added to each protein-encoding exon. Regarding the trypanosomal splicing machinery, the U2, U4/U6, and U5 snRNPs are considered to be general splicing factors, whereas the U1 and SL snRNPs represent cis- and trans-splicing-specific components, respectively. In addition to the snRNAs, many protein splicing factors in trypanosomes have been identified based on sequence homology (for example, see references 14 and 19).Recent studies revealed variations in the Sm core compositions of spliceosomal snRNPs from Trypanosoma brucei. Specifically, in the U2 snRNP, two of the canonical Sm proteins, SmD3 and SmB, are replaced by two novel, U2 snRNP-specific proteins, Sm16.5K and Sm15K (33). In this case, an unusual purine nucleotide, interrupting the central uridine stretch of the U2 snRNA Sm site, discriminates between the U2-specific and the canonical Sm cores. A second case of Sm core variation was reported for the U4 snRNP, in which a single protein, SmD3, was suggested to be replaced by the U4-specific LSm protein initially called LSm2, and later called SSm4, based on a U4-specific destabilization after SSm4 knockdown (30). A U4-specific Sm core variation was also previously suggested and discussed by Wang et al. (33), based on the inefficient pulldown of U4 snRNA through tagged SmD3 protein. However, neither of these two studies conclusively demonstrated by biochemical criteria that the specific Sm protein resides in the U4 Sm core; a copurification of other snRNPs could not be unequivocally ruled out.By using a combination of RNase H cleavage, tandem affinity purification, and mass spectrometry, we provide here direct biochemical evidence that in the variant Sm core of the U4 snRNP, only SmD3 is replaced by the U4-specific SSm4. SSm4 is nuclear localized, and the silencing of SSm4 leads to a characteristic phenotype: dramatic growth inhibition, general trans- and cis-splicing defects, a loss of the integrity of the U4 snRNA, as well as a destabilization of the U4/U6 di-snRNP. Furthermore, in vitro reconstitution assays revealed that under stringent conditions, SSm4 is sufficient to specify U4-specific Sm core assembly. In sum, our data establish SSm4 as a specific component of the U4 Sm core and demonstrate its importance in U4/U6 di-snRNP biogenesis, splicing function, and cell viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号