首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundCurcumin functions as a proteasome inhibitor. However, the molecular mechanisms behind this action need more detailed explanations.PurposeThis study aimed to investigate the inhibitory effect of curcumin on 20S proteasome activity and to elucidate its exact mechanism in triple-negative breast cancer (TNBC) MDA-MB-231 cells.MethodsProteasomal peptidase activities were assayed using synthetic fluorogenic peptide substrates. Knockdown or overexpression of microRNA (miRNA or miR) or protein was used to investigate its functional effect on downstream cellular processes. BrdU (5‑bromo‑2′-deoxyuridine) assay was performed to identify cell proliferation. Western blot and quantitative real-time PCR(qRT-PCR) were carried out to determine protein abundance and miRNA expression, respectively. Correlations between protein expressions, miRNA levels, and proteasome activities were analyzed in TNBC tissues. Xenograft tumor model was performed to observe the in vivo effect of curcumin on 20S proteasome activity.ResultsCurcumin significantly reduced PSMB5 protein levels, accompanied with a reduction in the chymotrypsin-like (CT-l) activity of proteasome 20S core. Loss of PSMB5 markedly inhibited the CT-l activity of 20S proteasome. Furthermore, curcumin treatment significantly elevated miR-142–3p expression. PSMB5 was a direct target of miR-142–3p and its protein levels were negatively regulated by miR-142–3p. Moreover, histone acetyltransferase p300 suppressed miR-142–3p expression. Overexpression of p300 mitigated the promotive effect of curcumin on miR-142–3p expression. The correlations among p300 abundances, miR-142–3p levels, PSMB5 expressions, and the CT-l activities of 20S proteasome were evidenced in TNBC tissues. In addition, loss of p300 and PSMB5 reduced cell proliferation. Inhibition of miR-142–3p significantly attenuated the inhibitory impact of curcumin on cell proliferation. These curcumin-induced changes on p300, miR-142–3p, PSMB5, and 20S proteasome activity were further confirmed in in vivo solid tumor model.ConclusionThese findings demonstrated that curcumin suppressed p300/miR-142–3p/PSMB5 axis leading to the inhibition of the CT-l activity of 20S proteasome. These results provide a novel and alternative explanation for the inhibitory effect of curcumin on proteasome activity and also raised potential therapeutic targets for TNBC treatment.  相似文献   

2.
3.
FoxM1是一种原癌基因。它也是癌发生、发展密切相关的重要的转录因子。Fox M1是Forkhead Box转录因子家族重要成员,定位于染色体12p13.3,特异性表达于增殖期细胞中,在细胞终末分化时消失,是一个典型的与细胞增殖相关的转录因子,在细胞G/S及G/M期转换过程中发挥重要作用。它具有Fox M1A、B和C三种剪接异构体。Fox M1B和C在癌组织中高表达,发挥转录激活、促癌发生和发展的作用,而Fox M1A在癌组织中低表达,发挥转录抑制功能。癌组织中Fox M1B/C的优先选择对于Fox M1发挥促癌作用非常关键。因此对这一现象的成因即Fox M1癌相关选择性剪接机制的研究非常重要。  相似文献   

4.
5.
6.
7.
Kwak MK  Huang B  Chang H  Kim JA  Kensler TW 《Life sciences》2007,80(26):2411-2420
Decreases in the 26S proteasome are related to the toxicities of abnormal protein aggregates and may contribute to pathogenesis of degenerative diseases. Therefore, maintenance of proteasome function can be a novel strategy to protect cells against abnormal protein-mediated toxicity. In the present study, we have demonstrated the tissue specific increase of the catalytic subunits of the proteasome in mice following oral administration of 3H-1,2-dithiole-3-thione (D3T, 0.5 mmol/kg), which functions as a cancer preventive agent in animal and human studies. Expression of the 20S catalytic core subunits PSMB5, PSMB6, and PSMB7 were increased in liver, lung, small intestine, and colon of mice at 24 h after D3T treatment. Elevated expression of proteasome catalytic subunits led to increases in proteasomal peptidase activities in these tissues. Oral administration of D3T also exerted a pharmacodynamic action in some brain regions of these mice and proteasomal peptidase activities were significantly elevated in the cerebral cortex–hippocampus. Moreover, tissue extracts from D3T-treated mice and cell lysates obtained from D3T-incubated murine neuroblastoma cells exhibited the enhanced capacity to degrade mutant human SOD1G93A protein. These results indicate that the catalytic subunits of the 26S proteasome are inducible in multiple tissues of mouse including brain by exogenous chemical treatment. Increased proteasome expression by inducers may have a role in protection/attenuation of protein aggregate-mediated disorders.  相似文献   

8.
Cathepsin D (Cat D) is well known for its roles in metastasis, angiogenesis, proliferation, and carcinogenesis in cancer. Despite Cat D being a promising target in cancer cells, effects and underlying mechanism of its inhibition remain unclear. Here, we investigated the plausibility of using Cat D inhibition as an adjuvant or sensitizer for enhancing anticancer drug-induced apoptosis. Inhibition of Cat D markedly enhanced anticancer drug-induced apoptosis in human carcinoma cell lines and xenograft models. The inhibition destabilized Bcl-xL through upregulation of the expression of RNF183, an E3 ligase of Bcl-xL, via NF-κB activation. Furthermore, Cat D inhibition increased the proteasome activity, which is another important factor in the degradation of proteins. Cat D inhibition resulted in p62-dependent activation of Nrf2, which increased the expression of proteasome subunits (PSMA5 and PSMB5), and thereby, the proteasome activity. Overall, Cat D inhibition sensitized cancer cells to anticancer drugs through the destabilization of Bcl-xL. Furthermore, human renal clear carcinoma (RCC) tissues revealed a positive correlation between Cat D and Bcl-xL expression, whereas RNF183 and Bcl-xL expression indicated inverse correlation. Our results suggest that inhibition of Cat D is promising as an adjuvant or sensitizer for enhancing anticancer drug-induced apoptosis in cancer cells.Subject terms: Targeted therapies, Apoptosis  相似文献   

9.

Background

Chronic hypoxia (CH) is known to be one of the major causes of pulmonary hypertension (PH), which is characterized by sustained elevation of pulmonary vascular resistance resulting from vascular remodeling. In this study, we investigated whether the ubiquitin proteasome system (UPS) was involved in the mechanism of hypoxia-induced pulmonary vascular remodeling. We isolated the distal pulmonary artery (PA) from a previously defined chronic hypoxic pulmonary hypertension (CHPH) rat model, performed proteomic analyses in search of differentially expressed proteins belonging to the UPS, and subsequently identified their roles in arterial remodeling.

Results

Twenty-two proteins were differently expressed between the CH and normoxic group. Among them, the expression of proteasome subunit beta (PSMB) 1 and PSMB6 increased after CH exposure. Given that PSMB1 is a well-known structural subunit and PSMB6 is a functional subunit, we sought to assess whether PSMB6 could be related to the multiple functional changes during the CHPH process. We confirmed the proteomic results by real-time PCR and Western blot. With the increase in quantity of the active subunit, proteasome activity in both cultured pulmonary artery smooth muscle cells (PASMCs) and isolated PA from the hypoxic group increased. An MTT assay revealed that the proteasome inhibitor MG132 was able to attenuate the hypoxia-induced proliferation of PASMC in a dose-dependent manner. Knockdown of PSMB6 using siRNA also prevented hypoxia-induced proliferation.

Conclusion

The present study revealed the association between increased PSMB6 and CHPH. CH up-regulated proteasome activity and the proliferation of PASMCs, which may have been related to increased PSMB6 expression and the subsequently enhanced functional catalytic sites of the proteasome. These results suggested an essential role of the proteasome during CHPH development, a novel finding requiring further study.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
A key step of Wnt signaling activation is the recruitment of β‐catenin to the Wnt target‐gene promoter in the nucleus, but its mechanisms are largely unknown. Here, we identified FoxM1 as a novel target of Wnt signaling, which is essential for β‐catenin/TCF4 transactivation. GSK3 phosphorylates FoxM1 on serine 474 which induces FoxM1 ubiquitination mediated by FBXW7. Wnt signaling activation inhibits FoxM1 phosphorylation by GSK3–Axin complex and leads to interaction between FoxM1 and deubiquitinating enzyme USP5, thereby deubiquitination and stabilization of FoxM1. FoxM1 accumulation in the nucleus promotes recruitment of β‐catenin to Wnt target‐gene promoter and activates the Wnt signaling pathway by protecting the β‐catenin/TCF4 complex from ICAT inhibition. Subsequently, the USP5–FoxM1 axis abolishes the inhibitory effect of ICAT and is required for Wnt‐mediated tumor cell proliferation. Therefore, Wnt‐induced deubiquitination of FoxM1 represents a novel and critical mechanism for controlling canonical Wnt signaling and cell proliferation.  相似文献   

18.
Human bone marrow stromal cells (hBMSCs) could be used in clinics as precursors of multiple cell lineages following proper induction. Such application is impeded by their characteristically short lifespan, together with the increasing loss of proliferation capability and progressive reduction of differentiation potential after the prolonged culture expansion. In the current study, we addressed the possible role of 20S proteasomes in this process. Consistent with prior reports, long-term in vitro expansion of hBMSCs decreased cell proliferation and increased replicative senescence, accompanied by reduced activity and expression of the catalytic subunits PSMB5 and PSMB1, and the 20S proteasome overall. Application of the proteasome inhibitor MG132 produced a senescence-like phenotype in early passages, whereas treating late-passage cells with 18α-glycyrrhetinic acid (18α-GA), an agonist of 20S proteasomes, delayed the senescence progress, enhancing the proliferation and recovering the capability of differentiation. The data demonstrate that activation of 20S proteasomes assists in counteracting replicative senescence of hBMSCs expanded in vitro.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号