首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We measured the concentrations and isotopic values (14C and 13C) of dissolved inorganic, dissolved organic, and particulate organic carbon (DIC, DOC, and POC, respectively) in the Parker River watershed and estuary in Massachusetts, USA, to determine the age of carbon (C) entering the estuary and how estuarine processing affects the quantity and apparent age of C transported to the Gulf of Maine. The watershed measurements indicated the transport of 14C-enriched modern DIC and DOC and variably aged POC from the watershed to the estuary. The transport of organic matter from the watershed was dominated by DOC transport, with POC making up less than 10% of the total. Surveys within the watershed aimed at determining which land-use type dominated the DOC export indicated that wetlands, although they made up only around 20% of the land use, could be responsible for approximately 75% of the DOC export. We therefore conclude that the wetland land uses of the Parker River watershed are exporting mainly 14C-enriched modern DOC. DIC isotopes indicate that the source of DIC in the Parker River watershed is dominated by the weathering of noncarbonate parent material by 14C-enriched carbon dioxide (CO2) originating from the respiration of young organic matter in soils. Transects in the estuary displayed net additions of all C species. For DOC and DIC, the export of this internally added DOC and DIC was approximately equal to the amount being exported from the watershed, showing the importance of focusing on estuaries when estimating the export of C to the coastal ocean. With respect to DIC, the total input is even larger when the atmospheric exchange of excess pCO2 is calculated. The 14C-DOC and 14C-DIC transects indicate that the internally added DOC and DIC is 14C-enriched modern material. The source of this material is the fringing marshes and estuarine phytoplankton, with the relative importance of these two sources changing over time. Taken together, the bulk C and 14C measurements show that the estuary is adding significant quantities of young DOC despite the presence of vast quantities of old marsh peat flanking the entire estuary. Furthermore, the DIC data indicate that 14C-enriched modern material is what is fueling the majority of heterotrophic respiration within the system.  相似文献   

2.
The classical outwelling hypothesis states that small coastal embayments (e.g. estuaries, wetlands) export their excess production to inshore marine waters. In line with this notion, the present study tested whether the Swartkops estuary acts as source or sink for carbon. To this end, concentrations of dissolved inorganic carbon (DIC), dissolved organic carbon (DOC) and particulate organic carbon (POC) were determined hourly during the first monthly spring and neap tides over one year in the tidal waters entering and leaving the estuary. Each sampling session spanned a full tidal cycle, yielding a total of 936 concentration estimates. Carbon fluxes were calculated by integrating concentrations with water flow rates derived from a hydrodynamic model calibrated for each sampling datum. Over the year, exports to marine waters markedly exceeded imports to the estuary for all carbon species: on the basis of total spring tidal drainage area, 1083 g m–2 of DIC, 103 g m–2 of DOC, and 123 g m–2 of POC left the estuary annually. Total carbon export from the estuary to the ocean amounted to 4755 tonnes, of which 83% was in the inorganic form (DIC). Thus, the bulk of carbon moving in the water column is inorganic - yet, DIC seems to be measured only rarely in most flux studies of this nature. Salt marshes cover extensive areas in this estuary and produce some carbon, particularly DOC, but productivity of the local Spartina species is low (P:B=1.1). Consequently, the bulk of carbon exported from the estuary appears to originate from the highly productive macroinvertebrate and the phytoplankton component and not from the salt marsh plants.  相似文献   

3.
To study the role of large and shallow hemiboreal lakes in carbon processing, we calculated a 3-year carbon mass balance for Lake Võrtsjärv (Estonia) based on in situ measurements. This balance took into account hydrological and biogeochemical processes affecting dissolved inorganic (DIC), dissolved organic (DOC) and particulate organic (POC) carbon species. Accumulation varied greatly on a seasonal and yearly basis. The lake exported carbon during most of the year except during spring floods and in late autumn. In-lake processes were responsible for exporting POC and storing DOC while DIC switched between storage and export. The carbon cycle was alternatively dominated in 2009 by biogeochemical processes and in 2011 by riverine fluxes, whereas in 2010 the two process types were of the same magnitude. These results suggest that the role of large shallow lakes like Võrtsjärv in the global C cycle is equally driven by hydrological factors, in particular seasonal water level changes, and by biogeochemical in-lake reactions.  相似文献   

4.
Climate and environmental changes are having profound impacts on Arctic river basins, but the biogeochemical response remains poorly understood. To examine the effect of ice formation on temporal variations in composition and fluxes of carbon and nutrient species, monthly water and particulate samples collected from the lower Yukon River between July 2004 and September 2005 were measured for concentrations of organic and inorganic C, N, and P, dissolved silicate (Si(OH)4), and stable isotope composition (δD and δ18O). All organic carbon and nutrient species had the highest concentration during spring freshet and the lowest during the winter season under the ice, indicating dominant sources from snowmelt and flushing of soils in the drainage basin. In contrast, inorganic species such as dissolved inorganic carbon (DIC) and Si(OH)4 had the highest concentrations in winter and the lowest during spring freshet, suggesting dilution during snowmelt and sources from groundwater and leaching/weathering of mineral layer. The contrasting relation with discharge between organic, such as dissolved organic carbon (DOC), and inorganic, such as DIC and Si(OH)4, indicates hydrological control of solute concentration but different sources and transport mechanisms for organic and inorganic carbon and nutrient species. Concentration of DOC also shows an inter-annual variability with higher DOC in 2005 (higher stream flow) than 2004 (lower stream flow). Average inorganic N/P molar ratio was 110?±?124, with up to 442 under the ice and 38–70 during the ice-open season. While dissolved organic matter had a higher C/N ratio under the ice (45–62), the particulate C/N ratio was lower during winter (21–26) and spring freshet (19). Apparent fractionation factors of C, N, P, Si and δD and δ18O between ice and river water varied considerably, with high values for inorganic species such as DIC and Si(OH)4 (45 and 9550, respectively) but lower values for DOC (4.7). River ice formation may result in fractionation of inorganic and organic solutes and the repartitioning of seasonal flux of carbon and nutrient species. Annual export flux from the Yukon River basin was 1.6?×?1012 g-DOC, 4.4?×?1012 g-DIC, and 0.89?×?1012 g-POC during 2004–2005. Flux estimation without spring freshet sampling results in considerable underestimation for organic species but significant overestimation for inorganic species regardless of the flux estimation methods used. Without time-series sampling that includes frozen season, an over- or under-estimation in carbon and nutrient fluxes will occur depending on chemical species. Large differences in carbon export fluxes between studies and sampling years indicate that intensive sampling together with long-term observations are needed to determine the response of the Yukon River to a changing climate.  相似文献   

5.
Leaf Litter as a Source of Dissolved Organic Carbon in Streams   总被引:4,自引:1,他引:4  
Dissolved organic carbon (DOC) is an abundant form of organic matter in stream ecosystems. Most research has focused on the watershed as the source of DOC in streams, but DOC also comes from leaching of organic matter stored in the stream channel. We used a whole-ecosystem experimental approach to assess the significance of leaching of organic matter in the channel as a source of DOC in a headwater stream. Inputs of leaf litter were excluded from a forested Appalachian headwater stream for 3 years. Stream-water concentration, export, and instream generation of DOC were reduced in the litter-excluded stream as compared with a nearby untreated reference stream. The proportion of high molecular weight (HMW) DOC (more than 10,000 daltons) in stream water was not altered by litter exclusion. Mean DOC concentration in stream water was directly related to benthic leaf-litter standing stock. Instream generation of DOC from leaf litter stored in the stream channel contributes approximately 30% of daily DOC exports in this forested headwater stream. This source of DOC is greatest during autumn and winter and least during spring and summer. It is higher during increasing discharge than during base flow. We conclude that elimination of litter inputs from a forested headwater stream has altered the biogeochemistry of DOC in this ecosystem. Received 2 September 1997; accepted 27 January 1998.  相似文献   

6.
Despite increasing recognition of storm-induced organic carbon (C) export as a significant loss from the terrestrial C balance, little is known about the biodegradation and chemical transformation of particulate organic carbon (POC) in mountainous river systems. We combined analyses of C isotopes, solution-state 1H NMR, and lipid biomarkers with biodegradable dissolved organic C (BDOC) measurements to investigate downstream changes of POC composition and biodegradability at a mountainous, mixed land-use watershed in South Korea. Water and suspended sediment (SS) samples were collected in a forested headwater stream, a downstream agricultural stream, and two downstream rivers during peak flow periods of four storm events, using either sequential grab sampling from the headwater stream to the most downstream river within a few hours around the peak flow or sediment samplers deployed during the whole storm event. DOC concentrations exhibited relatively small changes across sites, whereas POC concentrations were highest in the agricultural stream, and tapered along downstream reaches. The δ13C and δ15N of SS in the agricultural stream were distinct from up- and downstream signatures and similar to those for erosion source soils and lake bottom sediment, although increases in radiocarbon age indicated continuous compositional changes toward the lake. 1H NMR spectra of SS and deposited sediment exhibited downstream decreases in carbohydrates and lignin but enrichment of organic structures related to microbial proteins and plant wax. The downstream sediments had more microbial n-alkanes and lipid markers indicating anthropogenic origin such as coprostanol compared to the forest soil n-alkanes dominated by plant wax. While the BDOC concentrations of filtered waters differed little between sites, the BDOC concentrations and protein- to humic-like fluorescence ratios of DOC leached from SS during a 13-day incubation were higher in downstream rivers, pointing to contribution of labile POC components to the enhanced biodegradation. Overall, inputs of microbial and anthropogenic origin, in interplay with deposition and mineralization, appear to substantially alter POC composition and biodegradability during downstream transport, raising a question on the conventional view of mountainous river systems as a passive conduit of storm pulses of POC.  相似文献   

7.
Dissolved organic carbon (DOC) and total and inorganic nitrogen and phosphorus concentrations were determined over 3 years in headwater streams draining two adjacent catchments. The catchments are currently under different land use; pasture/grazing vs plantation forestry. The objectives of the work were to quantify C and nutrient export from these landuses and elucidate the factors regulating export. In both catchments, stream water dissolved inorganic nutrient concentrations exhibited strong seasonal variations. Concentrations were highest during runoff events in late summer and autumn and rapidly declined as discharge increased during winter and spring. The annual variation of stream water N and P concentrations indicated that these nutrients accumulated in the catchments during dry summer periods and were flushed to the streams during autumn storm events. By contrast, stream water DOC concentrations did not exhibit seasonal variation. Higher DOC and NO3 concentrations were observed in the stream of the forest catchment, reflecting greater input and subsequent breakdown of leaf-litter in the forest catchment. Annual export of DOC was lower from the forested catchment due to the reduced discharge from this catchment. In contrast however, annual export of nitrate was higher from the forest catchment suggesting that there was an additional NO3 source or reduction of a NO3 sink. We hypothesize that the denitrification capacity of the forested catchment has been significantly reduced as a consequence of increased evapotranspiration and subsequent decrease in streamflow and associated reduction in the near stream saturated area.  相似文献   

8.
Organic and inorganic carbon (C) fluxes transported by water were evaluated for dominant hydrologic flowpaths on two adjacent headwater catchments in the Brazilian Amazon with distinct soils and hydrologic responses from September 2003 through April 2005. The Ultisol-dominated catchment produced 30% greater volume of storm-related quickflow (overland flow and shallow subsurface flow) compared to the Oxisol-dominated catchment. Quickflow fluxes were equivalent to 3.2 ± 0.2% of event precipitation for the Ultisol catchment, compared to 2.5 ± 0.3% for the Oxisol-dominated watershed (mean response ±1 SE, n = 27 storms for each watershed). Hydrologic responses were also faster on the Ultisol watershed, with time to peak flow occurring 10 min earlier on average as compared to the runoff response on the Oxisol watershed. These different hydrologic responses are attributed primarily to large differences in saturated hydraulic conductivity (K s). Overland flow was found to be an important feature on both watersheds. This was evidenced by the response rates of overland flow detectors (OFDs) during the rainy season, with overland flow intercepted by 54 ± 0.5% and 65 ± 0.5% of OFDs for the Oxisol and Ultisol watersheds respectively during biweekly periods. Small volumes of quickflow correspond to large fluxes of dissolved organic C (DOC); DOC concentrations of the hydrologic flowpaths that comprise quickflow are an order of magnitude higher than groundwater flowpaths fueling base flow (19.6 ± 1.7 mg l−1 DOC for overland flow and 8.8 ± 0.7 mg l−1 DOC for shallow subsurface flow versus 0.50 ± 0.04,mg l−1 DOC in emergent groundwater). Concentrations of dissolved inorganic C (DIC, as dissolved CO2–C plus HCO3–C) in groundwater were found to be an order of magnitude greater than quickflow DIC concentrations (21.5 mg l−1 DIC in emergent groundwater versus 1.1 mg l−1 DIC in overland flow). The importance of deeper flowpaths in the transport of inorganic C to streams is indicated by the 40:1 ratio of DIC:DOC for emergent groundwater. Dissolved CO2–C represented 92% of DIC in emergent groundwater. Results from this study illustrate a highly dynamic and tightly coupled linkage between the C cycle and the hydrologic cycle for both Ultisol and Oxisol landscapes: organic C fluxes strongly tied to flowpaths associated with quickflow, and inorganic C (particularly dissolved CO2) transported via deeper flowpaths.  相似文献   

9.
Global rivers connect three large carbon reservoirs in the world: soil, atmosphere, and ocean. The amount and spatial pattern of riverine carbon flux are essential for the global carbon budget but are still not well understood. Therefore, three linear regression models for riverine DOC (dissolved organic carbon), POC (particulate organic carbon), and DIC (dissolved inorganic carbon) fluxes were established with related generating and transfer factors based on an updated global database. The three models then were applied to simulate the spatial distribution of riverine DOC, POC, and DIC fluxes and to estimate the total global riverine carbon flux. The major conclusions of this study are as follows: the correlation analysis showed that riverine DOC flux is significantly related to discharge (r2 = 0.93, n = 109) and soil organic carbon amount (r2 = 0.60), POC flux increases with discharge (r2 = 0.55, n = 98) and amount of soil erosion (r2 = 0.48), and DIC flux is strongly linked to CO2 consumption by rock weathering (r2 = 0.66, n = 111) and discharge (r2 = 0.63). In addition, Asia exports more DOC and POC than other continents and North America exports more DIC. The Atlantic Ocean accepts the major portion of riverine DOC, POC, and DIC fluxes of all the oceans. The highest riverine DOC flux occurs in the 0–30°S zone, and the highest riverine POC and DIC fluxes appear in the 30–60°N zone. Furthermore, re-estimation revealed that global rivers export approximately 1.06 Pg C to oceans every year, including 0.24 Pg DOC, 0.24 Pg POC, 0.41 Pg DIC, and 0.17 Pg PIC.  相似文献   

10.
Stream water dissolved organic carbon (DOC) correlates positively with soil organic carbon (SOC) in many biomes. Does this relationship hold in a small geographic region when variations of temperature, precipitation and vegetation are driven by a significant altitudinal gradient? We examined the spatial connectivity between concentrations of DOC in headwater stream and contents of riparian SOC and water-soluble soil organic carbon (WSOC), riparian soil C:N ratio, and temperature in four vegetation types along an altitudinal gradient in the Wuyi Mountains, China. Our analyses showed that annual mean concentrations of headwater stream DOC were lower in alpine meadow (AM) than in subtropical evergreen broadleaf forest (EBF), coniferous forest (CF), and subalpine dwarf forest (SDF). Headwater stream DOC concentrations were negatively correlated with riparian SOC as well as WSOC contents, and were unrelated to riparian soil C:N ratio. Our findings suggest that DOC concentrations in headwater streams are affected by different factors at regional and local scales. The dilution effect of higher precipitation and adsorption of soil DOC to higher soil clay plus silt content at higher elevation may play an important role in causing lower DOC concentrations in AM stream of the Wuyi Mountains. Our results suggest that upscaling and downscaling of the drivers of DOC export from forested watersheds when exploring the response of carbon flux to climatic change or other drivers must done with caution.  相似文献   

11.
Rivers transport sediment and carbon (C) from the continents to the ocean, whereby the magnitude and timing of these fluxes depend on the hydrological regime. We studied the sediment and carbon dynamics of a tropical river system at two sites along the lower Tana River (Kenya), separated by a 385 km stretch characterized by extensive floodplains, to understand how the river regime affects within-river C processing as well as the C exchange between floodplain and river. Sampling took place during three different wet seasons (2012–2014), with extensive flooding during one of the campaigns. We measured the suspended sediment concentration, the concentration and stable isotope signature of three different carbon species (particulate and dissolved organic carbon, POC and DOC, and dissolved inorganic carbon, DIC) and other auxiliary parameters. During non-flooded conditions, the total C flux was dominated by POC (57–72%) and there was a downstream decrease of the total C flux. DIC was dominating during the flooded season (56–67%) and the flux of DIC and DOC coming from the inundated floodplains resulted in a downstream increase of the total carbon flux. Our data allowed us to construct a conceptual framework for the C dynamics in river systems, whereby nine major fluxes were identified. The application of this framework highlighted the dominance of POC during non-flooded conditions and the significant CO2 emissions during the flooded season. Furthermore, it identified the exchange of POC with the floodplain as an important factor to close the C budget of the river.  相似文献   

12.
Porewater equilibration samplers were used to obtain porewater inventories of inorganic nutrients (NH4+, NOx, PO43−), dissolved organic carbon (DOC) and nitrogen (DON), sulfate (SO42−), dissolved inorganic carbon (DIC), hydrogen sulfide (H2S), chloride (Cl), methane (CH4) and reduced iron (Fe2+) in intertidal creek-bank sediments at eight sites in three estuarine systems over a range of salinities and seasons. Sulfate reduction (SR) rates and sediment particulate organic carbon (POC) and nitrogen (PON) were also determined at several of the sites. Four sites in the Okatee River estuary in South Carolina, two sites on Sapelo Island, Georgia and one site in White Oak Creek, Georgia appeared to be relatively pristine. The eighth site in Umbrella Creek, Georgia was directly adjacent to a small residential development employing septic systems to handle household waste. The large data set (>700 porewater profiles) offers an opportunity to assess system-scale patterns of porewater biogeochemical dynamics with an emphasis on DOC and DON distributions. SO42− depletion (SO42−)Dep was used as a proxy for SR, and (SO42−)Dep patterns agreed with measured (35S) patterns of SR. There were significant system-scale correlations between the inorganic products of terminal metabolism (DIC, NH4+ and PO43−) and (SO42−)Dep, and SR appeared to be the dominant terminal carbon oxidation pathway in these sediments. Porewater inventories of DIC and (SO42−)Dep indicate a 2:1 stoichiometry across sites, and the C:N ratio of the organic matter undergoing mineralization was between 7.5 and 10. The data suggest that septic-derived dissolved organic matter with a C:N ratio below 6 fueled microbial metabolism and SR at a site with development in the upland. Seasonality was observed in the porewater inventories, but temperature alone did not adequately describe the patterns of (SO42−)Dep, terminal metabolic products (DIC, NH4+, PO43−), DOC and DON, and SR observed in this study. It appears that production and consumption of labile DOC are tightly coupled in these sediments, and that bulk DOC is likely a recalcitrant pool. Preferential hydrolysis of PON relative to POC when overall organic matter mineralization rates were high appears to drive the observed patterns in POC:PON, DOC:DON and DIC:DIN ratios. These data, along with the weak seasonal patterns of SR and organic and inorganic porewater inventories, suggest that the rate of hydrolysis limits organic matter mineralization in these intertidal creek-bank sediments.  相似文献   

13.
Recent studies have shown that small mountainous rivers (SMRs) may act as sources of aged and/or refractory carbon (C) to the coastal ocean, which may increase organic C burial at sea and subsidize coastal food webs and heterotrophy. However, the characteristics and spatial and temporal variability of C and organic matter (OM) exported from tropical SMR systems remain poorly constrained. To address this, the abundance and isotopic character (δ13C and Δ14C) of the three major C pools were measured in two Puerto Rico SMRs with catchments dominated by different land uses (agricultural vs. non-agricultural recovering forest). The abundance and character of C pools in associated estuaries and adjacent coastal waters were also examined. Riverine dissolved and particulate organic C (DOC and POC, respectively) concentrations were highly variable with respect to land use and sampling month, while dissolved inorganic C (DIC) was significantly higher at all times in the agricultural catchment. In both systems, riverine DOC and POC ranged from modern to highly aged (2,340 years before present), while DIC was always modern. The agricultural river and irrigation canals contained very old DOC (1,184 and 2,340 years before present, respectively), which is consistent with findings in temperate SMRs and indicates that these tropical SMRs provide a source of aged DOC to the ocean. During months of high river discharge, OM in estuarine and coastal waters had C isotope signatures reflective of direct terrestrial input, indicating that relatively unaltered OM is transported to the coastal ocean at these times. This is also consistent with findings in temperate SMRs and indicates that C transported to the coastal ocean by SMRs may differ from that of larger rivers because it is exported from smaller catchments that have steeper terrains and fewer land-use types.  相似文献   

14.
We investigate the carbon dynamics in Guanabara Bay, an eutrophic tropical coastal embayment surrounded by the megacity of Rio de Janeiro (southeast coast of Brazil). Nine sampling campaigns were conducted for dissolved, particulate and total organic carbon (DOC, POC and TOC), dissolved inorganic carbon (DIC), partial pressure of CO2 (pCO2), chlorophyll a (Chl a), pheo-pigments and ancillary parameters. Highest DOC, POC and Chl a concentrations were found in confined-shallow regions of the bay during the summer period with strong pCO2 undersaturation, and DOC reached 82 mg L?1, POC 152 mg L?1, and Chl a 800 μg L?1. Spatially and temporally, POC and DOC concentrations varied positively with total pigments, and negatively with DIC. Strong linear correlations between these parameters indicate that the production of TOC translates to an equivalent uptake in DIC, with 85% of the POC and about 50% of the DOC being of phytoplanktonic origin. Despite the shallow depths of the bay, surface waters were enriched in POC and DOC relative to bottom waters in periods of high thermohaline stratification. The seasonal accumulation of phytoplankton-derived TOC in the surface waters reached about 105 g C m?2 year?1, representing between 8 and 40% of the net primary production. The calculated turnover time of organic carbon was 117 and 34 days during winter and summer, respectively. Our results indicate that eutrophication of coastal bays in the tropics can generate large stocks of planktonic biomass and detrital organic carbon which are permanently being produced and partially degraded and buried in sediments.  相似文献   

15.
Although riverine carbon fluxes are a minor component of the global carbon cycle, thetransfer of organic carbon from land to ocean represents a flux of potential carbon storage, irre-versible over 10~3 to 10~4 a. Future carbon transfers through river basins are expected to accelerate,with respect to both sources and sinks, because of the large-scale human driven land-use and land-cover changes. Thus, the increased amounts of carbon transported to and sequestered inmarine sediments (through fertilization by river-borne inorganic nutrients) may be an important netsink for anthropogenic CO_2. Particularly, the humid tropics of South Asia are regions very sensitiveto this lateral C transport because of high precipitation and high rates of land use and cover change. In this paper we report on the role of upland tributaries in the transport processes influ-encing the lateral carbon and nitrogen fluxes of the Godavari, a large tropical river of India. By far,dissolved inorganic carbon (DIC) is the dominant form of carbon transport in the river basin. It con-stitutes as much as 75% to the total carbon load. Particulate and dissolved organic carbon (POC and DOC) fluxes account for 21% and 4%, respectively. In the upper basin, DOC fluxes exceedthat of POC due to large-scale anthropogenic activities. In contrast, tributaries in the central basinare characterized by comparable fluxes of POC and DOC. However, downriver POC export is 35%less than the import from upriver and tributaries due to the entrainment of sediments in river channels and dam sites. We argue that for highly disturbed watersheds in tropical regions, down-stream transport of sediments and carbon requires long-term sampling programmes.  相似文献   

16.
Natural soil pipes, which have been widely reported in peatlands, have been shown to contribute significantly to total stream flow. Here, using measurements from eight pipe outlets, we consider the role of natural pipes in the transport of fluvial carbon within a 17.4‐ha blanket‐peat‐covered catchment. Concentrations of dissolved and particulate organic carbon (DOC and POC) from pipe waters varied greatly between pipes and over time, ranging between 5.3 and 180.6 mg L?1 for DOC and 0.08 and 220 mg L?1 for POC. Pipes were important pathways for peatland fluvial carbon export, with fluxes varying between 0.6 and 67.8 kg yr?1 (DOC) and 0.1 and 14.4 kg yr?1 (POC) for individual pipes. Pipe DOC flux was equivalent to 20% of the annual DOC flux from the stream outlet while the POC flux from pipes was equivalent to 56% of the annual stream POC flux. The proportion of different forms of aquatic carbon to total aquatic carbon flux varied between pipes, with DOC ranging between 80.0% and 91.2%, POC from 3.6% to 17.1%, dissolved CO2‐C from 2.4% to 11.1% and dissolved CH4‐C from 0.004% to 1.3%. The total flux of dissolved CO2‐C and CH4‐C scaled up to all pipe outlets in the study catchment was estimated to be 89.4 and 3.6 kg yr?1 respectively. Overall, pipe outlets produced discharge equivalent to 14% of the discharge in the stream but delivered an amount of aquatic carbon equivalent to 22% of the aquatic carbon flux at the catchment outlet. Pipe densities in blanket peatlands are known to increase when peat is affected by drainage or drying. Hence, environmental change in many peatlands may lead to an increase in aquatic carbon fluxes from natural pipes, thereby influencing the peatland carbon balance and downstream ecological processes.  相似文献   

17.
SUMMARY. 1. The Junius Ponds, a unique series of proximate glacial kettle basins located between the cities of Rochester and Syracuse. New York, U.S.A., contain basins of dimictic and meromictic nature. This study focused upon differences in partitioning of total inorganic carbon (TIC), paniculate organic carbon (POC), and dissolved organic carbon (DOC) within the dimictic Junius Pond 7 (JP7, ∼8m) and the meromictic Junius Pond 5 (JP5, ∼17m).
2. For TIC, variations with depth were much greater in JP5 than in JP7. However, seasonal variations were greater in JP7 than in JP5. We attribute these variations to differences in the mictic nature of the basins.
3. Concentrations of POC were substantially less in the relatively clear mixolimnion of JP5 than in the epilimnion of JP7. Distinct POC layers formed at the oxic-anoxic boundary in both basins during late summer.
4. The lower monimolimnion of JP5 is believed to have the warmest water occurring under ice (8.2–8.6°C) of any natural body of water in the continental United States east of the Mississippi River. The monimolimnetic region of JP5 has unusually low DOC:POC ratios of ≤1:l.  相似文献   

18.
1. Temperature, organic carbon and oxygen consumption were measured over a year at 13 sites in four lowlands streams within the same region in North Zealand, Denmark with the objectives of determining: (i) spatial and seasonal differences between open streams, forest streams and streams with or without lakes, (ii) factors influencing the temperature dependence of oxygen consumption rate, (iii) consequences of higher temperature and organic content in lake outlets on oxygen consumption rate, and (iv) possible consequences of forecasted global warming on degradation of organic matter. 2. High concentrations of easily degradable dissolved (DOC) and particulate organic carbon (POC) were found in open streams downstream of plankton‐rich lakes, while high concentrations of recalcitrant DOC were found in a forest brook draining a forest swamp. Concentrations of predominantly recalcitrant POC and DOC were low in a groundwater‐fed forest spring. Overall, DOC concentration was two to 18 times higher than POC concentrations. 3. Oxygen consumption rate at 20 °C was higher during summer than winter, higher in open than shaded streams and higher in lake outlets than inlets. Rate was closely related to concentrations of chlorophyll and POC but not to DOC. The ratio of oxygen consumption rate to total organic concentrations (DOC + POC), serving as a measure of organic degradability, was highest downstream of lakes, intermediate in open streams and lowest in forest streams. 4. Temperature coefficients describing the exponential increase of oxygen consumption rate between 4 and 20 °C averaged 0.121 °C?1 (Q10 of 3.35) in 70 measurements and showed no significant variations between seasons and stream sites or correlations with ambient temperature and organic content. 5. Oxygen consumption rate was enhanced downstream of lakes during summer because of higher temperature and, more significantly, greater concentrations of degradable organic carbon. Oxygen consumption rates were up to seven times higher in the stream with three impoundments than in a neighbouring unshaded stream and 21 times higher than in the groundwater‐fed forest spring. 6. A regional climate model has calculated a dramatic 4–5 °C rise in air temperature over Denmark by 2070–2100. If this is realised, unshaded streams are estimated to become 2–3 °C warmer in summer and winter and 5–7 °C warmer in spring and, thereby, increase oxygen consumption rates at ambient temperature by 30–40% and 80–130%, respectively. Faster consumption of organic matter and dissolved oxygen downstream of point sources should increase the likelihood of oxygen stress of the stream biota and lead to the export of less organic matter but more mineralised nutrients to the coastal waters.  相似文献   

19.
This study gives an insight into the source of organic carbon and nitrogen in the Godavari river and its tributaries, the yield of organic carbon from the catchment, seasonal variability in their concentration and the ultimate flux of organic and inorganic carbon into the Bay of Bengal. Particulate organic carbon/particulate organic nitrogen (POC/PON or C/N) ratios revealed that the dominant source of organic matter in the high season is from the soil (C/N = 8–14), while in the rest of the seasons, the river-derived (in situ) phytoplankton is the major source (C/N = l–8). Amount of organic materials carried from the lower catchment and flood plains to the oceans during the high season are 3 to 91 times higher than in the moderate and low seasons. Large-scale erosion and deforestation in the catchment has led to higher net yield of organic carbon in the Godavari catchment when compared to other major world rivers. The total flux of POC, and dissolved inorganic carbon (DIC) from the Godavari river to the Bay of Bengal is estimated as 756 × 109 and 2520 × 109 g yr–1, respectively. About 22% of POC is lost in the main channel because of oxidation of labile organic matter, entrapment of organic material behind dams/sedimentation along flood plains and river channel; the DIC fluxes as a function of alkalinity are conservative throughout the river channel. Finally, the C/N ratios (12) of the ultimate fluxes of particulate organic carbon suggest the dominance of refractory/stable soil organic matter that could eventually get buried in the coastal sediments on a geological time scale.  相似文献   

20.
Although water in mangrove sediments influences nutrient cycling in both, mangrove forest and estuary, little information exists on seasonal and vertical distribution of dissolved organic and inorganic compounds in the sediment column. We studied the influence of sediment texture and chemistry, permeability (K), tides, and rainfall on dissolved organic carbon (DOC) and nitrogen (DON), dissolved inorganic phosphate (DIP) and salinity in creek and sediment waters of a mangrove in Pará, Brazil. Water samples were taken from boreholes and piezometers in the mangrove forest and from an adjacent tidal creek at neap and spring tides, during the dry and rainy season. Forest sediment was analysed for carbon (C), nitrogen (N), salinity and permeability. Clay, C and N decreased with depth. Sediment permeability (K) was lowest (<0.1 m day−1) in the upper, clay-rich and crab-burrow-free mud layer. In the deeper, fine sand strata, K ranged from 0.7 to 1.8 m day−1. Tidal range in the creek was 3.5 and 5.5 m for neap and spring tides, respectively. Salinity, DOC, DON and DIP in creek water were inversely related to tidal height. Piezometer data revealed significant water level changes in deeper, sandy sediment layer, which followed, time-lagged, the tidal fluctuations. In contrast, tide did not affect the water level in the upper sediment due to low permeability. Compared with creek water, sediment water was enriched in DOC, DON and DIP because of organic matter input and mineralization. In deeper layers, solute concentration was most likely affected by sorption processes (DOC and DIP) and reduction reactions (DIP). During the rainy season, DOC and DON in creek and sediment water were higher than in the dry season. DIP appeared invariant to seasonal changes. In the rainy season, salt flushing from surface sediments resulted in higher salinities at intermediate sediment depths, while in the deeper layers salinity was lower due to exchange with water from the tidal creek.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号