首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SH3 is a ubiquitous domain mediating protein-protein interactions. Recent solution NMR structural studies have shown that a proline-rich peptide is capable of binding to the human vinexin SH3 domain. Here, an orthogonal amber tRNA/tRNA synthetase pair for 15N/19F-trifluoromethyl-phenylalanine (15N/19F-tfmF) has been applied to achieve site-specific labeling of SH3 at three different sites. One-dimensional solution NMR spectra of backbone amide (15N)1H and side-chain 19F were obtained for SH3 with three different site-specific labels. Site-specific backbone amide (15N)1H and side-chain 19F chemical shift and relaxation analysis of SH3 in the absence or presence of a peptide ligand demonstrated different internal motions upon ligand binding at the three different sites. This site-specific NMR analysis might be very useful for studying large-sized proteins or protein complexes.  相似文献   

2.
19F NMR was used to study topological features of the SH3 domain of Fyn tyrosine kinase for both the free protein and a complex formed with a binding peptide. Metafluorinated tyrosine was biosynthetically incorporated into each of 5 residues of the G48M mutant of the SH3 domain (i.e. residues 8, 10, 49 and 54 in addition to a single residue in the linker region to the C-terminal polyhistidine tag). Distinct 19F NMR resonances were observed and subsequently assigned after separately introducing single phenylalanine mutations. 19F NMR chemical shifts were dependent on protein concentration above 0.6 mM, suggestive of dimerization via the binding site in the vicinity of the tyrosine side chains. 19F NMR spectra of Fyn SH3 were also obtained as a function of concentration of a small peptide (2-hydroxynicotinic-NH)–Arg–Ala–Leu–Pro–Pro–Leu–Pro-diaminopropionic acid –NH2, known to interact with the canonical polyproline II (PPII) helix binding site of the SH3 domain. Based on the 19F chemical shifts of Tyr8, Tyr49, and Tyr54, as a function of peptide concentration, an equilibrium dissociation constant of 18 ± 4 μM was obtained. Analysis of the line widths suggested an average exchange rate, kex, associated with the peptide–protein two-site exchange, of 5200 ± 600 s− 1 at a peptide concentration where 96% of the FynSH3 protein was assumed to be bound. The extent of solvent exposure of the fluorine labels was studied by a combination of solvent isotope shifts and paramagnetic effects from dissolved oxygen. Tyr54, Tyr49, Tyr10, and Tyr8, in addition to the Tyr on the C-terminal tag, appear to be fully exposed to the solvent at the metafluoro position in the absence of binding peptide. Tyr54 and, to some extent, Tyr10 become protected from the solvent in the peptide bound state, consistent with known structural data on SH3–domain peptide complexes. These results show the potential utility of 19F-metafluorotyrosine to probe protein–protein interactions in conjunction with paramagnetic contrast agents.  相似文献   

3.
Summary A simple approach for detecting internal water molecules in proteins in solution is described. This approach combines 19F-detected heteronuclear Overhauser and exchange spectroscopy (HOESY) with site-specific 19F substitution. The model system employed was intestinal fatty acid-binding protein complexed with [2-mono-19F]-palmitate. An intense cross peak was observed between the fluorine and a buried water molecule, as defined in the 1.98 Å crystal structure of the complex. From HOESY spectra, the fluorine-water distance was estimated to be 2.1 Å, in agreement with the crystal structure. This approach may be applicable to macromolecules that are too large for 1H-detected NMR methods.  相似文献   

4.
We have developed an efficient and novel filter assay method, involving radioactive labelling and imaging, to quantify the expression of soluble proteins from a cell-free translation system. Here this method is combined with the conformational sensitivity of 19F NMR to monitor the folded state of the expressed protein. This report describes the optimisation of 6-fluorotryptophan incorporation in a His-tagged human serum retinol-binding protein (RBP), a disulphide bonded -barrel protein. Appropriate reagent concentrations for producing fluorine labelled RBP in a cell-free translation system are described. It is shown that 19F NMR is a suitable method for monitoring the production of correctly folded protein from a high-throughput expression system.  相似文献   

5.
CD2 associated protein (CD2AP) is an adaptor protein that plays an important role in cell to cell union needed for the kidney function. CD2AP interacts, as an adaptor protein, with different natural targets, such as CD2, nefrin, c-Cbl and podocin. These proteins are believed to interact to one of the three SH3 domains that are positioned in the N-terminal region of CD2AP. To understand the network of interactions between the natural targets and the three SH3 domains (SH3-A, B and C), we have started to determine the structures of the individual SH3 domains. Here we present the high-resolution structure of the SH3-C domain derived from NMR data. Full backbone and side-chain assignments were obtained from triple-resonance spectra. The structure was determined from distance restraints derived from high-resolution 600 and 800 MHz NOESY spectra, together with phi and psi torsion angle restraints based on the analysis of 1HN, 15N, 1Hα, 13Cα, 13CO and 13Cβ chemical shifts. Structures were calculated using CYANA and refined in water using RECOORD. The three-dimensional structure of CD2AP SH3-C contains all the features that are typically found in other SH3 domains, including the general binding site for the recognition of polyproline sequences.  相似文献   

6.
Fluorine atoms are often incorporated into drug molecules as part of the lead optimization process in order to improve affinity or modify undesirable metabolic and pharmacokinetic profiles. From an NMR perspective, the abundance of fluorinated drug leads provides an exploitable niche for structural studies using 19F NMR in the drug discovery process. As 19F has no interfering background signal from biological sources, 19F NMR studies of fluorinated drugs bound to their protein receptors can yield easily interpretable and unambiguous structural constraints. 19F can also be selectively incorporated into proteins to obtain additional constraints for structural studies. Despite these advantages, 19F NMR has rarely been exploited for structural studies due to its broad lines in macromolecules and their ligand complexes, leading to weak signals in 1H/19F heteronuclear NOE experiments. Here we demonstrate several different experimental strategies that use 19F NMR to obtain ligand–protein structural constraints for ligands bound to the anti-apoptotic protein Bcl-xL, a drug target for anti-cancer therapy. These examples indicate the applicability of these methods to typical structural problems encountered in the drug development process.  相似文献   

7.
(19)F NMR was used to study topological features of the SH3 domain of Fyn tyrosine kinase for both the free protein and a complex formed with a binding peptide. Metafluorinated tyrosine was biosynthetically incorporated into each of 5 residues of the G48M mutant of the SH3 domain (i.e. residues 8, 10, 49 and 54 in addition to a single residue in the linker region to the C-terminal polyhistidine tag). Distinct (19)F NMR resonances were observed and subsequently assigned after separately introducing single phenylalanine mutations. (19)F NMR chemical shifts were dependent on protein concentration above 0.6 mM, suggestive of dimerization via the binding site in the vicinity of the tyrosine side chains. (19)F NMR spectra of Fyn SH3 were also obtained as a function of concentration of a small peptide (2-hydroxynicotinic-NH)-Arg-Ala-Leu-Pro-Pro-Leu-Pro-diaminopropionic acid -NH(2), known to interact with the canonical polyproline II (PPII) helix binding site of the SH3 domain. Based on the (19)F chemical shifts of Tyr8, Tyr49, and Tyr54, as a function of peptide concentration, an equilibrium dissociation constant of 18 +/- 4 microM was obtained. Analysis of the line widths suggested an average exchange rate, k(ex), associated with the peptide-protein two-site exchange, of 5200 +/- 600 s(-1) at a peptide concentration where 96% of the FynSH3 protein was assumed to be bound. The extent of solvent exposure of the fluorine labels was studied by a combination of solvent isotope shifts and paramagnetic effects from dissolved oxygen. Tyr54, Tyr49, Tyr10, and Tyr8, in addition to the Tyr on the C-terminal tag, appear to be fully exposed to the solvent at the metafluoro position in the absence of binding peptide. Tyr54 and, to some extent, Tyr10 become protected from the solvent in the peptide bound state, consistent with known structural data on SH3-domain peptide complexes. These results show the potential utility of (19)F-metafluorotyrosine to probe protein-protein interactions in conjunction with paramagnetic contrast agents.  相似文献   

8.
Summary The backbone 1H and 15N resonances of the N-terminal SH3 domain of the Drosophila signaling adapter protein, drk, have been assigned. This domain is in slow exchange on the NMR timescale between folded and predominantly unfolded states. Data were collected on both states simultaneously, on samples of the SH3 in near physiological buffer exhibiting an approximately 1:1 ratio of the two states. NMR methods which exploit the chemical shift dispersion of the 15N resonances of unfolded states and pulsed field gradient water suppression approaches for avoiding saturation and dephasing of amide protons which rapidly exchange with solvent were utilized for the assignment.Abbreviations 2D, 3D two-, three-dimensional - drkN SH3 N-terminal SH3 domain of Drosophila drk - HSQC heteronuclear single-quantum spectroscopy - NOE nuclear Overhauser enhancement - SH3 Src homology domain 3 - TOCSY total correlation spectroscopy  相似文献   

9.
To more fully understand the molecular mechanisms responsible for variations in binding affinity with antibody maturation, we explored the use of site specific fluorine labeling and (19)F nuclear magnetic resonance (NMR). Several single-chain (scFv) antibodies, derived from an affinity-matured series of anti-hen egg white lysozyme (HEL) mouse IgG1, were constructed with either complete or individual replacement of tryptophan residues with 5-fluorotryptophan ((5F)W). An array of biophysical techniques was used to gain insight into the impact of fluorine substitution on the overall protein structure and antigen binding. SPR measurements indicated that (5F)W incorporation lowered binding affinity for the HEL antigen. The degree of analogue impact was residue-dependent, and the greatest decrease in affinity was observed when (5F)W was substituted for residues near the binding interface. In contrast, corresponding crystal structures in complex with HEL were essentially indistinguishable from the unsubstituted antibody. (19)F NMR analysis showed severe overlap of signals in the free fluorinated protein that was resolved upon binding to antigen, suggesting very distinct chemical environments for each (5F)W in the complex. Preliminary relaxation analysis suggested the presence of chemical exchange in the antibody-antigen complex that could not be observed by X-ray crystallography. These data demonstrate that fluorine NMR can be an extremely useful tool for discerning structural changes in scFv antibody-antigen complexes with altered function that may not be discernible by other biophysical techniques.  相似文献   

10.
The SH2 domain from Fyn tyrosine kinase, corresponding to residues 155–270 of the human enzyme, was expressed as a GST-fusion protein in a pGEX-E. coli system. After thrombin cleavage and removal of GST, the protein was studied by heteronuclear NMR. Two different phosphotyrosyl-peptides were synthesized and added to the SH2 domain. One peptide corresponded to the regulatory C-terminal tail region of Fyn. Sequence-specific assignment of NMR spectra was achieved using a combination of1H-15N-correlated 2D HSQC,15N-edited 3D TOCSY-HMQC, and15N-edited 3D NOESY-HMQC spectra. By analysis of the -proton chemical shifts and NOE intensities, the positions of secondary structural elements were determined and found to correspond closely to that seen in the crystal structure of the, homologous, Src-SH2 domain.To investigate the internal dynamics of the protein backbone, T1 and T2 relaxation parameters were measured on the free protein, as well as on both peptide complexes. Analytical ultracentrifugation and dynamic light scattering were employed to measure the effect of concentration and peptide-binding on self-association. The results suggest that, at NMR-sample concentrations, the free protein is present in at least dimeric form. Phosphopeptide binding and lower concentration significantly, but not completely, shift the equilibrium towards monomers. The possible role of this protein association in the regulation of the Src-family tyrosine kinases is discussed.Abbreviations SH Src homology - GST glutathione-S-transferase - IPTG isopropyl--D-galactopyranoside - DTT dithiothreitol - PMSF phenyl-methyl-sulphonyl-fluoride - TBS 50 mM Tris, 150 mM NaCl, 5 mM DTT, pH 8.0 - MWCO molecular weight cut off - NMR nuclear magnetic resonance - HSQC heteronuclear single-quantum correlation - NOESY nuclear Overhauser effect spectroscopy  相似文献   

11.
The MYLK gene encodes the multifunctional enzyme, myosin light chain kinase (MLCK), involved in isoform-specific non-muscle and smooth muscle contraction and regulation of vascular permeability during inflammation. Three MYLK SNPs (P21H, S147P, V261A) alter the N-terminal amino acid sequence of the non-muscle isoform of MLCK (nmMLCK) and are highly associated with susceptibility to acute lung injury (ALI) and asthma, especially in individuals of African descent. To understand the functional effects of SNP associations, we examined the N-terminal segments of nmMLCK by 1H-15N heteronuclear single quantum correlation (HSQC) spectroscopy, a 2-D NMR technique, and by in silico molecular modeling. Both NMR analysis and molecular modeling indicated SNP localization to loops that connect the immunoglobulin-like domains of nmMLCK, consistent with minimal structural changes evoked by these SNPs. Molecular modeling analysis identified protein-protein interaction motifs adversely affected by these MYLK SNPs including binding by the scaffold protein 14-3-3, results confirmed by immunoprecipitation and western blot studies. These structure-function studies suggest novel mechanisms for nmMLCK regulation, which may confirm MYLK as a candidate gene in inflammatory lung disease and advance knowledge of the genetic underpinning of lung-related health disparities.  相似文献   

12.
 A novel C 2-symmetric ring-fluorinated hemin, 13,17-bis(2-carboxyethyl)-2,8,12,18-tetramethyl-3,7-difluoroporphyrinatoiron(III), has been synthesized and was incorporated into sperm whale apomyoglobin to investigate protein-induced rhombic perturbations on the electronic structure of the active site of myoglobin (Mb) using 19F NMR spectroscopy. NMR signals for 19F atoms introduced as substituents on the present heme in ferrous low-spin and high-spin and ferric low-spin complexes have been observed and their shifts sharply reflect not only the electronic nature of the heme iron, but also in-plane asymmetry of the heme electronic structure. The two-fold symmetric electronic structure of the ring-fluorinated hemin is clearly manifested in the 19F and 1H NMR spectra of its dicyano complex. The chemical equivalence of the two fluorine atoms of the heme is removed in the active site of myoglobin and the splitting of the two 19F NMR signals provides a quantitative probe for characterizing the rhombic perturbation of the heme electronic structure induced by the heme-protein interaction. The in-plane asymmetry of heme electronic structures in carbonmonoxy and deoxy Mbs have been analyzed for the first time on the basis of the shift difference between the two 19F NMR signals of the heme and is interpreted in terms of iron-ligand binding and/or the orbital ground state of the heme. A potential utility of 19F NMR, combined with the use of a symmetric fluorinated hemin, in characterizing the heme electronic structure of myoglobin in a variety of iron oxidation, spin, and ligation states, is presented. Received: 23 December 1999 / Accepted: 3 April 2000  相似文献   

13.
19F NMR has recently emerged as an efficient, sensitive tool for analyzing protein binding to small molecules, and surface plasmon resonance (SPR) is also a popular tool for this purpose. Herein a combination of 19F NMR and SPR was used to find novel binders to the ATP-binding pocket of MAP kinase extracellular regulated kinase 2 (ERK2) by fragment screening with an original fluorinated-fragment library. The 19F NMR screening yielded a high primary hit rate of binders to the ERK2 ATP-binding pocket compared with the rate for the SPR screening. Hit compounds were evaluated and categorized according to their ability to bind to different binding sites in the ATP-binding pocket. The binding manner was characterized by using isothermal titration calorimetry and docking simulation. Combining 19F NMR with other biophysical methods allows the identification of multiple types of hit compounds, thereby increasing opportunities for drug design using preferred fragments.  相似文献   

14.
Summary The solution structure of the SH3 domain of human p56 Lck tyrosine kinase (Lck-SH3) has been determined by multidimensional heteronuclear NMR spectroscopy. The structure was calculated from a total of 935 experimental restraints comprising 785 distance restraints derived from 1017 assigned NOE cross peaks and 150 dihedral angle restraints derived from 160 vicinal coupling constants. A novel combination of the constant-time 1H–13C NMR correlation experiment recorded with various delays of the constant-time refocusing delays and a fractionally 13C-labelled sample was exploited for the stereo-specific assignment of prochiral methyl groups. Additionally, 28 restraints of 14 identified hydrogen bonds were included. A family of 25 conformers was selected to characterize the solution structure. The average root-mean-square deviations of the backbone atoms (N, C, C, O) among the 25 conformers is 0.42 Å for residues 7 to 63. The N- and C-terminal residues, 1 to 6 and 64 to 81, are disordered, while the well-converged residues 7 to 63 correspond to the conserved sequences of other SH3 domains. The topology of the SH3 structure comprises five anti-parallel -strands arranged to form two perpendicular -sheets, which are concave and twisted in the middle part. The overall secondary structure and the backbone conformation of the core -strands are almost identical to the X-ray structure of the fragment containing the SH2-SH3 domains of p56 Lck [Eck et al. (1994) Nature, 368, 764–769]. The X-ray structure of the SH3 domain in the tandem SH2-SH3 fragment is spatially included within the ensemble of the 25 NMR conformers, except for the segment of residues 14 to 18, which makes intermolecular contacts with an adjacent SH2 molecule and the phosphopeptide ligand in the crystal lattice. Local structural differences from other known SH3 domains are also observed, the most prominent of which is the absence in Lck-SH3 of the two additional short -strands in the regions Ser15 to Glu17 and Gly25 to Glu27 flanking the so-called RT-Src loop. This loop (residues Glu17 to Leu24), together with the n-Src loop (residues Gln37 to Ser46) confines the ligand interaction site which is formed by a shallow patch of hydrophobic amino acids (His14, Tyr16, Trp41, Phe54 and Phe59). Both loops are flexible and belong to the most mobile regions of the protein, which is assessed by the heteronuclear 15N,1H-NOE values characterizing the degree of internal backbone motions. The aromatic residues of the ligand binding site are arranged such that they form three pockets for interactions with the polyproline ligand.Abbreviations CT constant time - HSQC heteronuclear single-quantum coherence - NOE nuclear Overhauser enhancement - NOESY nuclear Overhauser enhancement spectroscopy - SH2 Src homology domain 2 - SH3 Src homology domain 3  相似文献   

15.
Src homology 2 (SH2) domains are modular protein structures that bind phosphotyrosine (pY)-containing polypeptides and regulate cellular functions through protein-protein interactions. Proteomics analysis showed that the SH2 domains of Src family kinases are themselves tyrosine phosphorylated in blood system cancers, including acute myeloid leukemia, chronic lymphocytic leukemia, and multiple myeloma. Using the Src family kinase Lyn SH2 domain as a model, we found that phosphorylation at the conserved SH2 domain residue Y194 impacts the affinity and specificity of SH2 domain binding to pY-containing peptides and proteins. Analysis of the Lyn SH2 domain crystal structure supports a model wherein phosphorylation of Y194 on the EF loop modulates the binding pocket that engages amino acid side chains at the pY+2/+3 position. These data indicate another level of regulation wherein SH2-mediated protein-protein interactions are modulated by SH2 kinases and phosphatases.Src homology 2 (SH2) domains are modular protein structures that are important for signal transduction due to their ability to bind phosphotyrosine (pY)-containing polypeptides within defined amino acid sequence motifs (1). SH2 domains are found in various signaling enzymes and adaptor proteins. Given the reversibility of protein tyrosine phosphorylation and the affinity of SH2-pY binding, the interactions of SH2 domains are inherently dynamic and diverse. Indeed, selective, transient binding to pY motifs is a key mechanism through which intracellular signaling networks are dynamically assembled, localized, and regulated. In addition to mediating protein interactions in trans, SH2 domains bind intramolecularly (2). For example, in Src family kinases (SFKs), the SH2 domain binds in cis to the phosphorylated C-terminal tail as a mechanism to constrain and thereby auto-inhibit the intervening tyrosine kinase domain (3, 4). As well, SH2 domains of cytoplasmic tyrosine kinases have been shown to affect the kinase activity of adjacent kinase domains through allosteric interactions (5). The SFKs are therefore highly regulated as a function of their SH2 domains, which exist in dynamic equilibrium between intra- and intermolecular interactions (6). Hence, as discussed by Pawson (7), the transient and diverse interactions of an SH2 domain can regulate signaling enzymes and constitutes a major mechanism of signal transduction in response to extracellular signals.The structure of the SH2 domain has been extensively characterized. At its core is a conserved antiparallel β-sheet sandwiched between two α-helices (8). SH2 domains bind phosphotyrosine-containing peptides in an extended conformation across the central β-sheet, with the pY residue inserted in a deep recognition pocket formed by conserved residues from strands βB, βC, and βD, helix αA, and the phosphate binding loop. Peptide binding specificity is determined by more variable binding surfaces on the SH2 domain, which recognize residues C-terminal to the pY residue. For the SFK SH2 domains, the three residues C-terminal to the pY residue (pY+1,+2,+3) are dominant determinants of specificity (9, 10), with the domain binding most tightly to sequences containing the motif pYEEI (11, 12). The hydrophobic pY+3 residue inserts in a deep hydrophobic specificity pocket defined by residues of the EF and BG loops (8, 13, 14). Indeed, structural analysis of the SH2 domain revealed that the configuration of the EF and BG loops is critical in dictating SH2 domain specificity by shaping the ligand-binding surface and controlling accessibility of the pY+3 binding pocket (15). Mutation of a single residue of the EF loop can drastically impact peptide binding specificity by altering the pY+3 pocket (1517), indicating the importance of the pY+3 pocket in substrate selectivity for the SFK SH2 domains.In addition to binding pY-containing polypeptides, SH2 domains themselves may be modulated by phosphorylation. For example, phosphorylation of the Src SH2 domain at conserved Y213 resulted in activation of the cognate kinase domain, possibly by impairing SH2 binding to the phosphorylated C-terminal tail (18). Similarly, phosphorylation of Lck at the equivalent SH2 residue (Y192) generally reduced binding to pY-peptides and proteins (19). Phosphorylation at S690 in the SH2 domain of the p85α subunit of PI 3-kinase decreased its affinity for pY-containing proteins and promoted feedback inhibition of PI 3-kinase and Akt in response to cellular starvation (20). Conversely, tyrosine phosphorylation of the tensin-3 SH2 domain stimulated substrate binding and biological activity (21). Therefore, phosphorylation of SH2 domains appears to be a general mechanism for modulating their binding properties.Here, we report that Y194 in the SH2 domain of the SFK Lyn, a residue conserved in SFK SH2 domains, is frequently phosphorylated in hematopoietic and other cancers. In vitro protein and peptide interactions with the Lyn SH2 domain were affected by this phosphorylation. Our results suggest that tyrosine phosphorylation of the SFK SH2 domain modulates both its binding affinity and specificity and may constitute another layer of regulation in signaling networks.  相似文献   

16.
The fluorinated surfactant sodium perfluorooctanoate (SPFO) could bind onto ubiquitin (UBQ) and induce the unfolding of UBQ. By using 15N-edited heteronuclear single-quantum coherence (HSQC) NMR and 19F NMR to monitor 15N-labeled UBQ and SPFO, respectively, the binding sites and the aggregation process of SPFO on UBQ at various SPFO concentrations were observed. A detailed process from specific binding to cooperative binding of SPFO on UBQ, and a detailed structure change of UBQ upon the increase of SPFO concentration were obtained. The refolding of UBQ in UBQ–SPFO complex was carried out by adding cationic surfactant. It was shown that added cationic surfactants formed mixed micelles with SPFO and resulted in the dissociation of the UBQ–SPFO complex, and consequently, most ubiquitin could be refolded to its native state.  相似文献   

17.

Background

CASKIN2 is a neuronal signaling scaffolding protein comprised of multiple ankyrin repeats, two SAM domains, and one SH3 domain. The CASKIN2 SH3 domain for an NMR structural determination because its peptide-binding cleft appeared to deviate from the repertoire of aromatic enriched amino acids that typically bind polyproline-rich sequences.

Results

The structure demonstrated that two non-canonical basic amino acids (K290/R319) in the binding cleft were accommodated well in the SH3 fold. An K290Y/R319W double mutant restoring the typical aromatic amino acids found in the binding cleft resulted in a 20 °C relative increase in the thermal stability. Considering the reduced stability, we speculated that the CASKIN2 SH3 could be a nonfunctional remnant in this scaffolding protein.

Conclusions

While the NMR structure demonstrates that the CASKIN2 SH3 domain is folded, its cleft has suffered two substitutions that prevent it from binding typical polyproline ligands. This observation led us to additionally survey and describe other SH3 domains in the Protein Data Bank that may have similarly lost their ability to promote protein-protein interactions.
  相似文献   

18.
Fluorine (19F) NMR is a valuable tool for studying dynamic biological processes. However, increasing the sensitivity of fluorinated reporter molecules is a key to reducing acquisition times and accessing transient biological interactions. Here, we evaluate the utility a novel amino acid, l ‐O‐(perfluoro‐t‐butyl)‐homoserine (pFtBSer), that can easily be synthesized and incorporated into peptides and provides greatly enhanced sensitivity over currently used 19F biomolecular NMR probes. Incorporation of pFtBSer into the potent antimicrobial peptide MSI‐78 results in a sharp 19F NMR singlet that can be readily detected at concentrations of 5 µm and lower. We demonstrate that pFtBSer incorporation into MSI‐78 provides a sensitive tool to study binding through 19F NMR chemical shift and nuclear relaxation changes. These results establish future potential for pFtBSer to be incorporated into various proteins where NMR signal sensitivity is paramount, such as in‐cell investigations. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
A Mathematica package (ALASKA) has been developed to simplify the measurement of protein folding kinetics by analysis of 1H NMR lineshape analysis. This package reads NMR data in ASCII format and can simulate an aromatic 1 NMR spectrum with or without lineshape broadening from chemical exchange. We describe the analysis of a urea denaturation series of a fast-folding protein, the G46A/G48A variant of monomeric repressor.  相似文献   

20.
In order to further elucidate structural and dynamic principles of protein self-organization and protein-ligand interactions, a new chimeric protein was designed and a genetically engineered construct was created. SH3-F2 amino acid sequence consists of polyproline ligand mgAPPLPPYSA, GG linker, and the sequence of spectrin SH3 domain circular permutant S19-P20s. Structural and dynamic properties of the protein were studied with high-resolution NMR. According to NMR data, the tertiary structure of the chimeric protein SH3-F2 has a topology that is typical for SH3 domains in the complex with the ligand forming polyproline type II helix located in the conservative region of binding in the orientation II. The polyproline ligand closely adjoins with the protein globule and is stabilized by hydrophobic interactions. However, the interactions of the ligand and the part of globule related to SH3 domain is not too large, because the analysis of protein dynamical characteristics points to the low amplitude, high-frequency ligand tumbling relative to the slow intramolecular motions of the main globule. The constructed chimera allows carrying out further structural and thermodynamic investigations of polyproline helix properties and its interaction with regulatory domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号