首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fine root (<2 mm) decomposition provides a substantial amount of available nitrogen (N) that sustains plant growth. The N release pattern during litter decomposition is generally controlled by initial N concentrations or C/N. Because root branch order and mycorrhizal colonization (related with branch order) are both highly related with different initial chemistry, a hypothesis was proposed that N dynamics during root decomposition varied among different branch orders. Using the litterbag method, decomposition of the first six order roots for Fraxinus mandshurica (an arbuscular mycorrhizal species) and Larix gmelinii (an ectomycorrhizal species) was studied in Northeast China during a 513-day period. Results showed a similar pattern for the two species with contrasting mycorrhizal type: lower-order roots (the lateral root tips), which had an initial C/N of 17–21, continuously released N without any immobilization and maintained a consistently low C/N (<20), whereas higher-order roots, which had an initial C/N of 28–48, periodically immobilized N, leading to a declining C/N over time. In addition, the magnitude of N dynamics is different between species for lower-order roots, but no different for higher-order roots. These results suggest that fine root N dynamics are heterogeneous among branch orders and that species-specific differences depend on the behavior of lower-order roots.  相似文献   

2.
Guo D  Xia M  Wei X  Chang W  Liu Y  Wang Z 《The New phytologist》2008,180(3):673-683
* Different portions of tree root systems play distinct functional roles, yet precisely how to distinguish roots of different functions within the branching fine-root system is unclear. * Here, anatomy and mycorrhizal colonization was examined by branch order in 23 Chinese temperate tree species of both angiosperms and gymnosperms forming ectomycorrhizal and arbuscular-mycorrhizal associations. * Different branch orders showed marked differences in anatomy. First-order roots exhibited primary development with an intact cortex, a high mycorrhizal colonization rate and a low stele proportion, thus serving absorptive functions. Second and third orders had both primary and secondary development. Fourth and higher orders showed mostly secondary development with no cortex or mycorrhizal colonization, and thus have limited role in absorption. Based on anatomical traits, it was estimated that c. 75% of the fine-root length was absorptive, and 68% was mycorrhizal, averaged across species. * These results showed that: order predicted differences in root anatomy in a relatively consistent manner across species; anatomical traits associated with absorption and mycorrhizal colonization occurred mainly in the first three orders; the single diameter class approach may have overestimated absorptive root length by 25% in temperate forests.  相似文献   

3.
该研究以共存于同一暖温带森林的6个外生菌根(ECM)树种为研究对象,测定分析不同根序(1~5级)和功能根系(吸收细根和运输细根)的主要形态和构型属性及ECM侵染率,探究不同外生菌根树种的根属性变异模式及其与菌根真菌侵染程度的关系。结果表明:(1)随着根序的增加,不同树种根直径和单根长度均增加,而比根长和根分支强度均降低;根属性在同一根序下均存在显著的种间差异,尤其是2个裸子植物(落叶松和油松)的根直径较其他4个被子植物大。(2)同一树种的所有根属性在吸收细根和运输细根之间均有显著差异;吸收细根和运输细根的根直径、比根长和根组织密度在树种间均存在显著差异,而其单根长度和根分支强度在树种间无显著差异。(3)ECM侵染率以落叶松最高,千金榆和白桦最低,且与根尖直径呈显著正相关关系,与根尖比根长呈显著负相关关系。研究发现,基于根序或者功能根系,根属性在种间的变异模式不完全一致,单根长度和根分支强度在两个功能根系中均没有表现出显著的种间差异;吸收细根的比根长和根分支强度的变异系数较大,对环境变化有较敏感的响应;古老树种的根直径相对较粗,对菌根真菌的依赖性更高。  相似文献   

4.
A morphological and anatomical study of the root systems of the palm species Brahea armata S. Watson, Chamaerops humilis L., Phoenix canariensis Chabaud and Phoenix dactylifera L. has been carried out to determine possible mycorrhizal colonization sites. Furthermore, the arbuscular mycorrhizal (AM) anatomical types formed by the four palm species in association with Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe have been examined. The presence of a continuous sclerenchymatic ring in the outer cortex and aerenchyma in the inner cortex that are anatomical indicators of mycorrhizal nonsusceptibility in all four palm species is observed. The root systems of B. armata and C. humilis present only one group of third-order roots, while the third-order roots of P. canariensis and P. dactylifera may be divided into five different groups: short thick roots, mycorrhizal thickened roots, fine short roots, fine long roots, and pneumatorhizas. Third-order and some second-order roots of B. armata and C. humilis are susceptible to colonization by AM fungi, while only the mycorrhizal thickened roots form mycorrhizas with arbuscules in the Phoenix species. The root system of the Phoenix species also presents AM colonization in fine roots with only intraradical hyphae and spores, but without arbuscules, and pseudomantles of spores anchored in the pneumatorings of the second-order roots, which are described for the first time. The mycorrhizas formed by the four palm species are of an intermediate type, between the Arum and the Paris types, and are characterized by intercalary arbusculate coils and not only by intracellular but also by intercellular fungal growth. Our study suggests that a different degree of adaptation may exist among palm mycorrhizas toward the slow growth of palms and low spore numbers in the soil where they grow.  相似文献   

5.
Background and AimsCondensed tannin (CT) is an important compound in plant biological structural defence and for tolerance of herbivory and environmental stress. However, little is known of the role and location of CT within the fine roots of woody plants. To understand the role of CT in fine roots across diverse species of woody dicot, we evaluated the localization of CT that accumulated in root tissue, and examined its relationships with the stele and cortex tissue in cross-sections of roots in 20 tree species forming different microbial symbiotic groups (ectomycorrhiza and arbuscular mycorrhiza).MethodsIn a cool-temperate forest in Japan, cross-sections of sampled roots in different branching order classes, namely, first order, second to third order, fourth order, and higher than fourth order (higher order), were measured in terms of the length-based ratios of stele diameter and cortex thickness to root diameter. All root samples were then stained with ρ-dimethylaminocinnamaldehyde solution and we determined the ratio of localized CT accumulation area to the root cross-section area (CT ratio).Key ResultsStele ratio tended to increase with increasing root order, whereas cortex ratio either remained unchanged or decreased with increasing order in all species. The CT ratio was significantly positively correlated to the stele ratio and negatively correlated to the cortex ratio in second- to fourth-order roots across species during the shift from primary to secondary root growth. Ectomycorrhiza-associated species mostly had a higher stele ratio and lower cortex ratio than arbuscular mycorrhiza-associated species across root orders. Compared with arbuscular mycorrhiza species, there was greater accumulation of CT in response to changes in the root order of ectomycorrhiza species.ConclusionsDifferent development patterns of the stele, cortex and CT accumulation along the transition from root tip to secondary roots could be distinguished between different mycorrhizal associations. The CT in tissues in different mycorrhizal associations could help with root protection in specific branching orders during shifts in stele and cortex development before and during cork layer formation.  相似文献   

6.
Understanding root processes at the whole-plant or ecosystem scales requires an accounting of the range of functions within a root system. Studying root traits based on their branching order can be a powerful approach to understanding this complex system. The current study examined the highly branched root system of the ericoid plant, Vaccinium corymbosum L. (highbush blueberry) by classifying its root orders with a modified version of the morphometric approach similar to that used in hydrology for stream classification. Root anatomy provided valuable insight into variation in root function across orders. The more permanent portion of the root system occurred in 4th- and higher-order roots. Roots in these orders had radial growth; the lowest specific root length, N:C ratios, and mycorrhizal colonization; the highest tissue density and vessel number; and the coarsest root diameter. The ephemeral portion of the root system was mainly in the first three root orders. First- and 2nd-order roots were nearly anatomically identical, with similar mycorrhizal colonization and diameter, and also, despite being extremely fine, median lifespans were not very short (115-120 d; estimated with minirhizotrons). Our research underscores the value of examining root traits by root order and its implications to understanding belowground processes.  相似文献   

7.
Root anatomical phenotypes vary among maize (Zea mays) cultivars and may have adaptive value by modifying the metabolic cost of soil exploration. However, the microbial trade‐offs of these phenotypes are unknown. We hypothesized that nodal roots of maize with contrasting cortical anatomy have different patterns of mutualistic and pathogenic fungal colonization. Arbuscular mycorrhizal colonization in the field and mesocosms, root rots in the field, and Fusarium verticillioides colonization in mesocosms were evaluated in maize genotypes with contrasting root cortical anatomy. Increased aerenchyma and decreased living cortical area were associated with decreased mycorrhizal colonization in mesocosm and field experiments with inbred genotypes. In contrast, mycorrhizal colonization of hybrids increased with larger aerenchyma lacunae; this increase coincided with larger root diameters of hybrid roots. F. verticillioides colonization was inversely correlated with living cortical area in mesocosm‐grown inbreds, and no relation was found between root rots and living cortical area or aerenchyma in field‐grown hybrids. Root rots were positively correlated with cortical cell file number and inversely correlated with cortical cell size. Mycorrhizae and root rots were inversely correlated in field‐grown hybrids. We conclude that root anatomy is associated with differential effects on pathogens and mycorrhizal colonization of nodal roots in maize.  相似文献   

8.
Wetlands provide numerous ecosystem services, and ericaceous plants are important components of these habitats. However, the ecology of fungi associated with ericaceous roots in these habitats is poorly known. To investigate fungi associated with ericaceous roots in wetlands, ericoid mycorrhizal colonization was quantified, and fungal communities were characterized on the roots of Gaultheria hispidula and Kalmia angustifolia along two upland – forested wetland transects in spring and fall. Ericoid mycorrhizal colonization was significantly higher in the wetlands for both plant species. Both upland and wetland habitats supported distinct assemblages of ericaceous root associated fungi including habitat specific members of the genus Serendipita. Habitat was a stronger driver of ericoid mycorrhizal colonization and ericaceous root associated community composition than host or sampling season, with differences related to soil water content, soil nutrient content, or both. Our results indicate that ericaceous plant roots in forested wetlands are heavily colonized by habitat specific symbionts.  相似文献   

9.
Legume roots in nature are usually colonized with rhizobia and different arbuscular mycorrhizal fungi (AMF) species. Light microscopy that visualizes the presence of AMF in roots is not able to differentiate the ratio of each AMF species in the root and nodule tissues in mixed fungal inoculation. The purpose of this study was to characterize the dominant species of mycorrhiza in roots and nodules of plants co-inoculated with mycorrhizal fungi and rhizobial strains. Glomus intraradices (GI), Glomus mosseae (GM), their mix (GI + GM), and six Mesorhizobium ciceri strains were used to inoculate chickpea. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess occupancy of these fungal species in roots and nodules. Results showed that GI molecular ratio and relative density were higher than GM in both roots and nodules. These differences in molecular ratio and density between GI and GM in nodules were three folds higher than roots. The results suggested that M. ciceri strains have different effects on nodulation and mycorrhizal colonization pattern. Plants with bacterial S3 and S1 strains produced the highest root nodulation and higher fungal density in both the roots and nodules.  相似文献   

10.
We investigated the occurrence of arbuscular mycorrhizal fungi in the roots of Isoëtes lacustris and I. echinospora. These submerged lycopsids are the only macrophyte species inhabiting the bottom of two acidified glacial lakes in the Czech Republic. Arbuscular mycorrhizal (AM) fungi were detected in the roots of both species but the percentage of root colonization was both low and variable. Nevertheless, planting Littorella uniflora in the sediments from Isoëtes rhizosphere revealed high levels of viable AM propagules in both lakes. While AM colonization of Isoëtes roots did not exceed 25%, the average colonization of Littorella roots amounted to more than 80%. Although colonization of quillwort roots by AM fungi is evident, the taxonomic identity and role of these AM fungi in plant growth remain unclear. In addition to AM fungi, root-colonizing dark septate endophytic fungi were observed in both Isoëtes species.  相似文献   

11.
Two fractions of agglutination activity towards fluorescent pseudomonads were detected in root washes of potato, tomato, wheat, and bean. High-molecular-mass (>106 Da) components in crude root washes agglutinated only particular saprophytic, fluorescent Pseudomonas isolates. Ion-exchange treatment of the crude root washes resulted in preparations of lower-molecular-mass (105 to 106 Da) fractions which agglutinated almost all Pseudomonas isolates examined. Also, components able to suppress agglutination reactions of pseudomonads with the lower-molecular-mass root components were detected in crude root washes of all crops studied. Pseudomonas isolates were differentially agglutinated by both types of root components. The involvement of these two types of root components in short-term adherence and in colonization was studied in potato, tomato, and grass, using Pseudomonas isolates from these crops. Short-term adherence of isolates to roots was independent of their agglutination with either type of root components. With agglutination-negative mutants, the high-molecular-mass components seemed to be involved in adherence of Pseudomonas putida Corvallis to roots of all crops studied. Short-term adherence to roots of four Pseudomonas isolates could be influenced by addition of both crude and ion-exchange-treated root washes, depending on their agglutination phenotype with these root wash preparations. Potato root colonization by 10 different isolates from this crop, over a period of 7 days, was not correlated with their agglutination phenotype. Agg- mutants of P. putida Corvallis were not impaired in root colonization. It is concluded that the root agglutinins studied can be involved in short-term adherence of pseudomonads to roots but do not play a decisive role in their root colonization.  相似文献   

12.
There are numerous studies on water transport characteristics of trees from the base to tops, but only few deal with the variation in xylem conduit diameters from shallow to deep roots. This study compares variation in root conduit properties as a function of increasing soil depths for two oak species (Quercus pubescens Willd and Quercus robur L.) growing on two different plots. We measured root vessel characteristics at three soil depths including 0, 50 and 100 cm, and calculated the associated root-specific hydraulic conductivities. Vessel diameter and specific hydraulic conductivity increased with increasing soil depth from 0 to 50 cm, but did not change in the deeper soil layer in both species. We conclude that freeze–thaw events in upper soil layer limit vessel diameters and thus hydraulic conductivity of roots.  相似文献   

13.
Mycorrhizal fungi and nonhydraulic root signals of soil drying   总被引:4,自引:1,他引:3       下载免费PDF全文
Augé RM  Duan X 《Plant physiology》1991,97(2):821-824
We propose that mycorrhizal colonization of roots alters nonhydraulic root to shoot communication of soil drying. Split-root rose (Rosa hybrida L. cv Samantha) plants—one side of the root system colonized by Glomus intraradices Schenck & Smith, the other side nonmycorrhizal—displayed different stomatal conductances upon partial drying, depending upon whether mycorrhizal or nonmycorrhizal roots were dried. No differences in leaf water status were observed among control plants and those whose mycorrhizal or nonmycorrhizal roots were dried.  相似文献   

14.
As it is well known, arbuscular mycorrhizal (AM) colonization can be initiated from the following three types of fungal propagules: spores, extraradical mycelium (ERM), and mycorrhizal root fragments harboring intraradical fungal structures. It has been shown that biomass allocation of AM fungi (AMF) among these three propagule types varies between fungal taxa, as also differs the ability of the different AMF propagule fractions to initiate new colonizations. In this study, the composition of the AMF community in the roots of rosemary (Rosmarinus officinalis L., a characteristic Mediterranean shrub), inoculated with the three different propagule types, was analyzed. Accordingly, cuttings from this species were inoculated with either AMF spores, ERM, or colonized roots extracted from a natural soil. The AMF diversity within the rosemary roots was characterized using terminal restriction fragment length polymorphism (T-RFLP) of the small subunit (SSU) rDNA region. The AMF community established in the rosemary plants was significantly different according to the type of propagule used as inoculum. AMF taxa differed in their ability to initiate new colonizations from each propagule type. Results suggest different colonization strategies for the different AMF families involved, Glomeraceae and Claroideoglomeraceae colonizing mainly from colonized roots whereas Pacisporaceae and Diversisporaceae from spores and ERM. This supports that AMF taxa show contrasting life-history strategies in terms of their ability to initiate new colonizations from the different propagule types. Further research to fully understand the colonization and dispersal abilities of AMF is essential for their rational use in ecosystem restoration programs.  相似文献   

15.
根系具有高度的形态和生理功能异质性, 在森林生态系统碳和养分循环中起重要作用。根系分枝的顺序构成根序,是根系最基本的构型特征, 根序代表根系不同的发育阶段。然而, 目前直接测定不同根序细根生理功能的研究很少。以落叶松(Larix gmelinii)和水曲柳(Fraxinus mandshurica)的细根为研究对象, 使用气相氧电极测定不同根序细根的呼吸速率, 探讨根系呼吸速率与其形态、结构和组织氮浓度的关系。结果表明: 落叶松和水曲柳细根的直径、根长和维管束直径均随着根序的增加(1–5级)而增加, 而比根长、组织氮浓度和呼吸速率随着根序的增加而降低, 各根序之间差异显著(P < 0.05); 1级根比根长最大、皮层组织发达、组织氮浓度最高且呼吸速率也最高, 其呼吸速率分别为17.57 nmolO2·g–1·s–1(落叶松)和18.80 nmolO2·g–1·s–1(水曲柳), 比5级根分别高148%(落叶松)和124%(水曲柳); 并且, 落叶松根的呼吸速率几乎有96%与根系组织氮浓度相关, 而水曲柳根的呼吸速率则有89%与根系组织氮浓度相关。上述结果说明, 细根的形态和生理功能异质性是紧密相连的, 低级根的形态、结构决定其功能是吸收养分和水, 而高级根的形态、结构决定其功能是运输和贮存养分。  相似文献   

16.
中国特有濒危植物伯乐树根的生态解剖学研究   总被引:1,自引:0,他引:1  
伯乐树(Bretschneidera sinensis Hemsl.)是中国特有濒危的第三纪孑遗植物。本研究采用石蜡切片、整体封片、扫描电镜和激光共聚焦扫描等技术研究其根的表面特征和形态结构,从生态解剖学角度揭示其对生境的适应和特殊要求。结果显示伯乐树作为特殊的菌根型木本植物,根尖表面无根毛分化;初生结构包括表皮、皮层和中柱三部分,系原始的发育类型,其皮层明显排列为两轮且存在自然的间隙,皮层内有含黑芥子酶的分泌细胞,中柱内有髓。菌根菌以单菌丝或菌丝网侵入根表皮,并刺激表皮分泌沉积了较厚的无定形物质,入侵后可在皮层间隙内大量分枝,还能进一步形成泡囊结构;菌根菌在寄主细胞内常包围在淀粉粒的周围吸收营养,同时部分菌丝在细胞内被分解形成小泡和碎屑,为寄主细胞提供营养以形成共生关系。根据以上特征,应在就地保护和迁地保育中深入研究适宜伯乐树的土壤条件,以促进菌根的发生和发育。  相似文献   

17.
《Acta Oecologica》2002,23(5):337-347
Vesicular-arbuscular mycorrhizal (VAM) colonization and spore numbers in the rhizosphere of Cyperus iria L. and Crotundus L., growing in a semi-arid tropical grassland, was studied during the 1993 and 1994 monsoons. In addition, climatic and chemical properties of the soils were determined in order to investigate their influence on mycorrhizal variables. VAM fungal association in the sedges was confirmed by plant- and root-trap culture techniques. The soil nutrients exhibited seasonal variations, but were highly variable between years. Intercellular hyphae and vesicles with occasional intraradical spores characterized mycorrhizal association in sedges. Dark septate fungi also colonized roots of sedges. Temporal variations in mycorrhizal colonization and spore numbers occurred, indicating seasonality. However, the patterns of mycorrhizal colonization and spore numbers were different during both the years. The VAM fungal structures observed were intercellular hyphae and vesicles. Changes in the proportion of root length with VAM structures, total colonization levels and spore numbers were related to climatic and edaphic factors. However, the intensity of influence of climatic and soil factors on VAM tended to vary with sedge species.  相似文献   

18.
Early events of mycorrhizal and nonmycorrhizal fungal colonization in newly-emerging roots of mature apple (Malus domestica Borkh) trees were characterized to determine the relationship of these events to fine root growth rate and development. New roots were traced on root windows to measure growth and then collected and stained to quantify microscopically the presence of mycorrhizal and nonmycorrhizal fungal structures. Most new roots were colonized by either mycorrhizal or nonmycorrhizal fungi but none less 25 days old were ever internally colonized by both. Compared to nonmycorrhizal colonization, mycorrhizal colonization was associated with faster growing roots and roots that grew for a longer duration, leading to longer roots. While either type of fungi was observed in roots as soon as 3 days after root emergence, intraradical colonization by mycorrhizal fungi was generally faster (peaking at 7 to 15 days) than that by nonmycorrhizal fungi and often occurred more frequently in younger roots. Only 15 to 35% of the roots had no fungal colonization by 30 days after emergence. This study provides the first detailed examination of the early daily events of mycorrhizal and nonmycorrhizal fungal colonization in newly emerging roots under field conditions. We observed marked discrimination of roots between mycorrhizal and nonmycorrhizal fungi and provide evidence that mycorrhizal fungi may select for faster growing roots and possibly influence the duration of root growth by non-nutritional means.  相似文献   

19.
Protozoan communities around roots with different types of ectomycorrhizae were distinct. These protozoan communities differed both qualitatively and quantitatively with the host (Pinus ponderosa, Pseudotsuga menziesii, Picea sitchensis, Tsuga heterophylla and Abies grandis) and the ectomycorrhizal fungal species. Based on the species identified and the numbers of individuals of each species, six communities of protozoa were found associated with specific ectomycorrhizae. Previous researchers have shown that mycorrhizal colonization of roots alters the amounts and types of exudates produced by roots, which in turn alters the bacterial community present. Most likely, mycorrhizal colonization of roots influences the protozoan community around roots by controlling the bacterial community. However, the protozoan community may in turn influence the successional dynamics of ectomycorrhizal fungi on different host root systems by a variety of mechanisms. These mechanisms could include: (1) preying upon individuals and perhaps removing particular species of bacteria from the mycorrhizosphere; and (2) controlling nitrogen mineralization in the rhizosphere. Further work needs to be performed to determine the interaction between these quadrate (plant-bacteria-fungi-protozoa) associations.  相似文献   

20.
Citrus plants are often exposed to heavy rain and subsequent periods of soil waterlogging which severely restrict tree growth. We assessed the effect of one arbuscular mycorrhizal fungus species (Diversispora spurca) on growth, root system architecture (RSA), and antioxidant enzyme activities of young citrus (Citrus junos) seedlings. Waterlogging for 37 d significantly restricted mycorrhizal colonization but increased the number of entry points and vesicles. Compared with non-mycorrhizal controls, mycorrhizal seedlings had significantly greater plant height, fresh mass, total root and taproot lengths, projected and surface root areas, root volume, and numbers of lst, 2nd and 3rd order lateral roots regardless of waterlogging treatment. D. spurca significantly increased root catalase (CAT) activity in non-stressed seedlings and increased root soluble protein concentration and leaf CAT activity in waterlogged seedlings, thereby inducing lower oxidative damage. These results suggest that D. spurca ameliorates effects of waterlogging on growth, RSA and antioxidant enzyme activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号