首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Leaf senescence is a developmentally programmed cell death process that constitutes the final step of leaf development, and it can be regulated by multiple environmental cues and endogenous signals. The mitogen-activated protein kinase (MAPK) cascades play diverse roles in intracellular and extracellular signaling in plants. Roles of the MAPK signaling module in leaf senescence are unknown. Here, a MAPK cascade involving MKK9-MPK6 is shown to play an important role in regulating leaf senescence in Arabidopsis (Arabidopsis thaliana). Both MKK9 and MPK6 possess kinase activities, with MPK6 an immediate target of MKK9, as revealed by in vitro, in vivo, and in planta assays. The constitutive and inducible overexpression of MKK9 causes premature senescence in leaves and in whole Arabidopsis plants. The premature senescence phenotype is suppressed when MKK9 is overexpressed in the mpk6 null background. When either MKK9 or MPK6 is knocked out, leaf senescence is delayed.  相似文献   

4.
Although the Arabidopsis thaliana genome contains genes encoding 20 mitogen-activated protein kinases (MAPKs) and 10 MAPK kinases (MAPKKs), most of them are still functionally uncharacterized. In this work, we analyzed the function of the group B MAPK kinase, MKK3. Transgenic ProMKK3:GUS lines showed basal expression in vascular tissues that was strongly induced by Pseudomonas syringae pv tomato strain DC3000 (Pst DC3000) infection but not by abiotic stresses. The growth of virulent Pst DC3000 was increased in mkk3 knockout plants and decreased in MKK3-overexpressing plants. Moreover, MKK3 overexpression lines showed increased expression of several PR genes. By yeast two-hybrid analysis, coimmunoprecipitation, and protein kinase assays, MKK3 was revealed to be an upstream activator of the group C MAPKs MPK1, MPK2, MPK7, and MPK14. Flagellin-derived flg22 peptide strongly activated MPK6 but resulted in poor activation of MPK7. By contrast, MPK6 and MPK7 were both activated by H(2)O(2), but only MPK7 activation was enhanced by MKK3. In agreement with the notion that MKK3 regulates the expression of PR genes, ProPR1:GUS expression was strongly enhanced by coexpression of MKK3-MPK7. Our results reveal that the MKK3 pathway plays a role in pathogen defense and further underscore the importance and complexity of MAPK signaling in plant stress responses.  相似文献   

5.
In plants, mitogen-activated protein kinases (MAPK) have been implicated in signalling associated with many processes, including cellular differentiation, organ development, cell death and stress/hormone signalling. While MAPK cascades are known to act in the cytosol and the nucleus, sequence analysis of the Arabidopsis MAPK cascade proteins predicts the presence of import signals that would target some of them to other organelles. In vitro uptake experiments confirm the predicted import of an oxidant-responsive MAPKK, AtMKK4, into the chloroplast. Unexpectedly, the imported MKK4 protein was not processed through stromal peptidase-dependent cleavage of the N-terminal signal peptide, thus leaving the pre-protein intact. Nevertheless, the N-terminal region was shown to be essential both for the import process and for the ability of MKK4 to activate its cognate MAPK targets in vivo. MKK4 import also occurred irrespective of the activation status of the kinase. The import of this primarily cytosolic oxidant-stimulated AtMKK4 into the chloroplasts, organelles with high redox fluxes, suggests that one of the functions of MKK4 might be to help coordinate intercompartment responses to cellular redox imbalances.Key words: cell death, chloroplast, compartmentation, MAPK, MAPK kinase, MPK6, MPK3, signal transduction, stroma, transit peptide  相似文献   

6.
Mitogen-activated protein kinase (MAPK) signaling networks regulate numerous eukaryotic biological processes. In Arabidopsis thaliana, signaling networks that contain MAPK kinases MKK4/5 and MAPKs MPK3/6 function in abiotic and biotic stress responses and regulate embryonic and stomatal development. However, how single MAPK modules direct specific output signals without cross-activating additional downstream processes is largely unknown. Studying relationships between MAPK components and downstream signaling outcomes is difficult because broad experimental manipulation of these networks is often lethal or associated with multiple phenotypes. Stomatal development in Arabidopsis follows a series of discrete, stereotyped divisions and cell state transitions. By expressing a panel of constitutively active MAPK kinase (MAPKK) variants in discrete stomatal lineage cell types, we identified a new inhibitory function of MKK4 and MKK5 in meristemoid self-renewal divisions. Furthermore, we established roles for MKK7 and MKK9 as both negative and (unexpectedly) positive regulators during the major stages of stomatal development. This has expanded the number of known MAPKKs that regulate stomatal development and allowed us to build plausible and testable subnetworks of signals. This in vivo cell type–specific assay can be adapted to study other protein families and thus may reveal insights into other complex signal transduction pathways in plants.  相似文献   

7.
8.
Mitogen-activated protein kinases (MPKs) are involved in a number of signaling pathways that control plant development and stress tolerance via the phosphorylation of target molecules. However, so far only a limited number of target molecules have been identified. Here, we provide evidence that MYB41 represents a new target of MPK6. MYB41 interacts with MPK6 not only in vitro but also in planta. MYB41 was phosphorylated by recombinant MPK6 as well as by plant MPK6. Ser(251) in MYB41 was identified as the site phosphorylated by MPK6. The phosphorylation of MYB41 by MPK6 enhanced its DNA binding to the promoter of a LTP gene. Interestingly, transgenic plants over-expressing MYB41(WT) showed enhanced salt tolerance, whereas transgenic plants over-expressing MYB41(S251A) showed decreased salt tolerance during seed germination and initial root growth. These results indicate that the phosphorylation of MYB41 by MPK6 is required for the biological function of MYB41 in salt tolerance.  相似文献   

9.
10.
Mitogen‐activated protein kinase (MAPK) cascades have important functions in plant stress responses and development and are key players in reactive oxygen species (ROS) signalling and in innate immunity. In Arabidopsis, the transmission of ROS and pathogen signalling by MAPKs involves the coordinated activation of MPK6 and MPK3; however, the specificity of their negative regulation by phosphatases is not fully known. Here, we present genetic analyses showing that MAPK phosphatase 2 (MKP2) regulates oxidative stress and pathogen defence responses and functionally interacts with MPK3 and MPK6. We show that plants lacking a functional MKP2 gene exhibit delayed wilting symptoms in response to Ralstonia solanacearum and, by contrast, acceleration of disease progression during Botrytis cinerea infection, suggesting that this phosphatase plays differential functions in biotrophic versus necrotrophic pathogen‐induced responses. MKP2 function appears to be linked to MPK3 and MPK6 regulation, as indicated by BiFC experiments showing that MKP2 associates with MPK3 and MPK6 in vivo and that in response to fungal elicitors MKP2 exerts differential affinity versus both kinases. We also found that MKP2 interacts with MPK6 in HR‐like responses triggered by fungal elicitors, suggesting that MPK3 and MPK6 are subject to differential regulation by MKP2 in this process. We propose that MKP2 is a key regulator of MPK3 and MPK6 networks controlling both abiotic and specific pathogen responses in plants.  相似文献   

11.
12.
Mitogen-activated protein (MAP) kinase signaling cascades play important roles in the regulation of plant defense. The Raf-like MAP kinase kinase kinase (MAPKKK) EDR1 negatively regulates plant defense responses and cell death. However, how EDR1 functions, and whether it affects the regulation of MAPK cascades, are not well understood. Here, we showed that EDR1 negatively regulates the MKK4/MKK5-MPK3/MPK6 kinase cascade in Arabidopsis. We found that edr1 mutants have highly activated MPK3/MPK6 kinase activity and higher levels of MPK3/MPK6 proteins than wild type. EDR1 physically interacts with MKK4 and MKK5, and this interaction requires the N-terminal domain of EDR1. EDR1 also negatively affects MKK4/MKK5 protein levels. In addition, the mpk3, mkk4 and mkk5 mutations suppress edr1-mediated resistance, and over-expression of MKK4 or MKK5 causes edr1-like resistance and mildew-induced cell death. Taken together, our data indicate that EDR1 physically associates with MKK4/MKK5 and negatively regulates the MAPK cascade to fine-tune plant innate immunity.  相似文献   

13.
Abscisic acid (ABA) is a major phytohormone involved in important stress‐related and developmental plant processes. Recent phosphoproteomic analyses revealed a large set of ABA‐triggered phosphoproteins as putative mitogen‐activated protein kinase (MAPK) targets, although the evidence for MAPKs involved in ABA signalling is still scarce. Here, we identified and reconstituted in vivo a complete ABA‐activated MAPK cascade, composed of the MAP3Ks MAP3K17/18, the MAP2K MKK3 and the four C group MAPKs MPK1/2/7/14. In planta, we show that ABA activation of MPK7 is blocked in mkk3‐1 and map3k17mapk3k18 plants. Coherently, both mutants exhibit hypersensitivity to ABA and altered expression of a set of ABA‐dependent genes. A genetic analysis further reveals that this MAPK cascade is activated by the PYR/PYL/RCAR‐SnRK2‐PP2C ABA core signalling module through protein synthesis of the MAP3Ks, unveiling an atypical mechanism for MAPK activation in eukaryotes. Our work provides evidence for a role of an ABA‐induced MAPK pathway in plant stress signalling.  相似文献   

14.
15.
16.
In plants and animals, induced resistance (IR) to biotic and abiotic stress is associated with priming of cells for faster and stronger activation of defense responses. It has been hypothesized that cell priming involves accumulation of latent signaling components that are not used until challenge exposure to stress. However, the identity of such signaling components has remained elusive. Here, we show that during development of chemically induced resistance in Arabidopsis thaliana, priming is associated with accumulation of mRNA and inactive proteins of mitogen-activated protein kinases (MPKs), MPK3 and MPK6. Upon challenge exposure to biotic or abiotic stress, these two enzymes were more strongly activated in primed plants than in nonprimed plants. This elevated activation was linked to enhanced defense gene expression and development of IR. Strong elicitation of stress-induced MPK3 and MPK6 activity is also seen in the constitutive priming mutant edr1, while activity was attenuated in the priming-deficient npr1 mutant. Moreover, priming of defense gene expression and IR were lost or reduced in mpk3 or mpk6 mutants. Our findings argue that prestress deposition of the signaling components MPK3 and MPK6 is a critical step in priming plants for full induction of defense responses during IR.  相似文献   

17.
18.
Plant mitogen-activated protein kinases (MAPK) are involved in important processes, including stress signaling and development. MAPK kinases (MAPKK, MKK) have been investigated in several plant species including Arabidopsis thaliana, Oryza sativa, Populus trichocarpa, and Brachypodium distachyon. In the present study, nine putative maize MKK genes have been identified. Analysis of the conserved protein motifs, exon–intron junctions and intron phase has revealed high levels of conservation within the phylogenetic groups. Next, we defined four new ZmMKK–ZmMPK interactions using yeast two-hybrid. Finally, we examined the biological functions of the ZmMKK4 gene. Overexpression of ZmMKK4 in Arabidopsis conferred tolerance to oxidative stress by increased germination rate and early seedling growth compared with WT plants. Taken together, we provide a comprehensive bioinformatics analysis of the MKK gene family in maize genome and our data provide an important foundation for further functional study of MAPK and MKK families in maize.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号