首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Integral membrane proteins are found in all cellular membranes and fulfil many of the functions that are central to life. A critical step in the biosynthesis of membrane proteins is their insertion into the lipid bilayer. The mechanisms of membrane protein insertion and folding are becoming increasingly better understood, and efficient methods for the ab initio prediction of three-dimensional protein structure from the primary amino acid sequence may be within reach. Already, the basic tools needed for engineering and de novo design of integral membrane proteins seem to be at hand.  相似文献   

2.
The field of protein structure prediction has seen significant advances in recent years. Researchers have followed a multitude of approaches, including methods based on comparative modeling, fold recognition and threading, and first-principles techniques. It is noteworthy that the structure prediction of membrane proteins is comparatively less studied by researchers in the field. A membrane protein is characterized by a protein structure that extends into or through the lipid-lipid bilayer of a cell. The structure is influenced by the combination of the hydrophobic bilayer region, the direct interaction with the bilayer, and the aqueous external environment. Due to the difficulty in obtaining reliable experimental structures, accurate computational prediction of membrane proteins is of paramount importance. An optimization model has been developed to predict the interhelical interactions in α-helical membrane proteins. A database of α-helical membrane proteins of known structure and limited sequence identity can be constructed to develop interaction probabilities. By then maximizing the occurrence of highly probable pairwise or three-residue interactions, realistic contacts can be predicted by imposing a number of geometrical constraints. The development of these low distance contacts can provide additional distance restraints for first principles-based approaches to the tertiary structure prediction problem. The proposed approach is shown to successfully predict interhelical contacts in several membrane protein systems, including bovine rhodopsin and the recently released human β2 adrenergic receptor protein structure.  相似文献   

3.
New technologies for the purification of stable membrane proteins have emerged in recent years, in particular methods that allow the preparation of membrane proteins with their native lipid environment. Here, we look at the progress achieved with the use of styrene-maleic acid copolymers (SMA) which are able to insert into biological membranes forming nanoparticles containing membrane proteins and lipids. This technology can be applied to membrane proteins from any host source, and, uniquely, allows purification without the protein ever being removed from a lipid bilayer. Not only do these SMA lipid particles (SMALPs) stabilise membrane proteins, allowing structural and functional studies, but they also offer opportunities to understand the local lipid environment of the host membrane. With any new or different method, questions inevitably arise about the integrity of the protein purified: does it retain its activity; its native structure; and ability to perform its function? How do membrane proteins within SMALPS perform in existing assays and lend themselves to analysis by established methods? We outline here recent work on the structure and function of membrane proteins that have been encapsulated like this in a polymer-bound lipid bilayer, and the potential for the future with this approach. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.  相似文献   

4.
Most bacterial chemoreceptors are transmembrane proteins. Although less than 10% of a transmembrane chemoreceptor is embedded in lipid, separation from the natural membrane environment by detergent solubilization eliminates most receptor activities, presumably because receptor structure is perturbed. Reincorporation into a lipid bilayer can restore these activities and thus functionally native structure. However, the extent to which specific lipid features are important for effective restoration is unknown. Thus we investigated effects of membrane lipid composition on chemoreceptor Tar from Escherichia coli using Nanodiscs, small (∼10-nm) plugs of lipid bilayer rendered water-soluble by an annulus of “membrane scaffold protein.” Disc-enclosed bilayers can be made with different lipids or lipid combinations. Nanodiscs carrying an inserted receptor dimer have high protein-to-lipid ratios approximating native membranes and in this way mimic the natural chemoreceptor environment. To identify features important for functionally native receptor structure, we made Nanodiscs using natural and synthetic lipids, assaying extents and rates of adaptational modification. The proportion of functionally native Tar was highest in bilayers closest in composition to E. coli cytoplasmic membrane. Some other lipid compositions resulted in a significant proportion of functionally native receptor, but simply surrounding the chemoreceptor transmembrane segment with a lipid bilayer was not sufficient. Membranes effective in supporting functionally native Tar contained as the majority lipid phosphatidylethanolamine or a related zwitterionic lipid plus a rather specific proportion of anionic lipids, as well as unsaturated fatty acids. Thus the chemoreceptor is strongly influenced by its lipid environment and is tuned to its natural one.  相似文献   

5.
We have developed an empirical residue-based potential (E(z) potential) for protein insertion in lipid membranes. Propensities for occurrence as a function of depth in the bilayer were calculated for the individual amino acid types from their distribution in known structures of helical membrane proteins. The propensities were then fit to continuous curves and converted to a potential using a reverse-Boltzman relationship. The E(z) potential demonstrated a good correlation with experimental data such as amino acid transfer free energy scales (water to membrane center and water to interface), and it incorporates transmembrane helices of varying composition in the membrane with trends similar to those obtained with translocon-mediated insertion experiments. The potential has a variety of applications in the analysis of natural membrane proteins as well as in the design of new ones. It can help in calculating the propensity of single helices to insert in the bilayer and estimate their tilt angle with respect to the bilayer normal. It can be utilized to discriminate amphiphilic helices that assume a parallel orientation at the membrane interface, such as those of membrane-active peptides. In membrane protein design applications, the potential allows an environment-dependent selection of amino acid identities.  相似文献   

6.
Forrest LR  Woolf TB 《Proteins》2003,52(4):492-509
The recent determination of crystal structures for several important membrane proteins opens the way for comparative modeling of their membrane-spanning regions. However, the ability to predict correctly the structures of loop regions, which may be critical, for example, in ligand binding, remains a considerable challenge. To meet this challenge, accurate scoring methods have to discriminate between candidate conformations of an unknown loop structure. Some success in loop prediction has been reported for globular proteins; however, the proximity of membrane protein loops to the lipid bilayer casts doubt on the applicability of the same scoring methods to this problem. In this work, we develop "decoy libraries" of non-native folds generated, using the structures of two membrane proteins, with molecular dynamics and Monte Carlo techniques over a range of temperatures. We introduce a new approach for decoy library generation by constructing a flat distribution of conformations covering a wide range of Calpha-root-mean-square deviation (RMSD) from the native structure; this removes possible bias in subsequent scoring stages. We then score these decoy conformations with effective energy functions, using increasingly more cpu-intensive implicit solvent models, including (1) simple Coulombic electrostatics with constant or distance-dependent dielectrics; (2) atomic solvation parameters; (3) the effective energy function (EEF1) of Lazaridis and Karplus; (4) generalized Born/Analytical Continuum Solvent; and (5) finite-difference Poisson-Boltzmann energy functions. We show that distinction of native-like membrane protein loops may be achieved using effective energies with the assumption of a homogenous environment; thus, the absence of the adjacent lipid bilayer does not affect the scoring ability. In particular, the Analytical Continuum Solvent and finite-difference Poisson-Boltzmann energy functions are seen to be the most powerful scoring functions. Interestingly, the use of the uncharged states of ionizable sidechains is shown to aid prediction, particularly for the simplest energy functions.  相似文献   

7.
Viroporins   总被引:1,自引:0,他引:1  
Viroporins are a group of proteins that participate in several viral functions, including the promotion of release of viral particles from cells. These proteins also affect cellular functions, including the cell vesicle system, glycoprotein trafficking and membrane permeability. Viroporins are not essential for the replication of viruses, but their presence enhances virus growth. Comprising some 60-120 amino acids, viroporins have a hydrophobic transmembrane domain that interacts with and expands the lipid bilayer. Some viroporins also contain other motifs, such as basic amino acid residues or a domain rich in aromatic amino acids that confers on the protein the ability to interact with the interfacial lipid bilayer. Viroporin oligomerization gives rise to hydrophilic pores at the membranes of virus-infected cells. As the list of known viroporins steadily grows, recent research efforts focus on deciphering the actions of the viroporins poliovirus 2B, alphavirus 6K, HIV-1 Vpu and influenza virus M2. All these proteins can enhance the passage of ions and small molecules through membranes depending on their concentration gradient. Future work will lengthen the list of viroporins and will provide a deeper understanding of their mechanisms of action.  相似文献   

8.
Cell membranes are vitally important to the life of a cell. Although the basic structure of biological membrane is provided by the lipid bilayer, membrane proteins perform most of the specific functions. Membrane proteins are putatively classified into five different types. Identification of their types is currently an important topic in bioinformatics and proteomics. In this paper, based on the concept of representing protein samples in terms of their pseudo-amino acid composition (Chou, K.C., 2001. Prediction of protein cellular attributes using pseudo amino acid composition. Proteins: Struct. Funct. Genet. 43, 246-255), the fuzzy K-nearest neighbors (KNN) algorithm has been introduced to predict membrane protein types, and high success rates were observed. It is anticipated that, the current approach, which is based on a branch of fuzzy mathematics and represents a new strategy, may play an important complementary role to the existing methods in this area. The novel approach may also have notable impact on prediction of the other attributes, such as protein structural class, protein subcellular localization, and enzyme family class, among many others.  相似文献   

9.
Membrane protein function and stability has been shown to be dependent on the lipid environment. Recently, we developed a high-throughput computational approach for the prediction of membrane protein/lipid interactions. In the current study, we enhanced this approach with the addition of a new measure of the distortion caused by membrane proteins on a lipid bilayer. This is illustrated by considering the effect of lipid tail length and headgroup charge on the distortion caused by the integral membrane proteins MscS and FLAP, and by the voltage sensing domain from the channel KvAP. Changing the chain length of lipids alters the extent but not the pattern of distortion caused by MscS and FLAP; lipid headgroups distort in order to interact with very similar but not identical regions in these proteins for all bilayer widths investigated. Introducing anionic lipids into a DPPC bilayer containing the KvAP voltage sensor does not affect the extent of bilayer distortion.  相似文献   

10.
Complete determination of a membrane protein structure requires knowledge of the protein position within the lipid bilayer. As the number of determined structures of membrane proteins increases so does the need for computational methods which predict their position in the lipid bilayer. Here we present a coarse-grained molecular dynamics approach to lipid bilayer self-assembly around membrane proteins. We demonstrate that this method can be used to predict accurately the protein position in the bilayer for membrane proteins with a range of different sizes and architectures.  相似文献   

11.
Membrane protein function and stability has been shown to be dependent on the lipid environment. Recently, we developed a high-throughput computational approach for the prediction of membrane protein/lipid interactions. In the current study, we enhanced this approach with the addition of a new measure of the distortion caused by membrane proteins on a lipid bilayer. This is illustrated by considering the effect of lipid tail length and headgroup charge on the distortion caused by the integral membrane proteins MscS and FLAP, and by the voltage sensing domain from the channel KvAP. Changing the chain length of lipids alters the extent but not the pattern of distortion caused by MscS and FLAP; lipid headgroups distort in order to interact with very similar but not identical regions in these proteins for all bilayer widths investigated. Introducing anionic lipids into a DPPC bilayer containing the KvAP voltage sensor does not affect the extent of bilayer distortion.  相似文献   

12.
Studies of the assembly of the hexapeptide Acetyl-Trp-Leu5 (AcWL5) into β-sheets in membranes have provided insights into membrane protein folding. Yet, the exact structure of the oligomer in the lipid bilayer is unknown. Here we use neutron diffraction to study the disposition of the peptides in bilayers. We find that pairs of adjacent deuterium-labeled leucines have no well-defined peak or dip in the transmembrane distribution profiles, indicative of heterogeneity in the depth of membrane insertion. At the same time, the monomeric homolog AcWL4 exhibits a homogeneous, well-defined, interfacial location in neutron diffraction experiments. Thus, although the bilayer location of monomeric AcWL4 is determined by hydrophobicity matching or complementarity within the bilayer, the AcWL5 molecules in the oligomer are positioned at different depths within the bilayer because they assemble into a staggered transmembrane β-sheet. The AcWL5 assembly is dominated by protein-protein interactions rather than hydrophobic complementarity. These results have implications for the structure and folding of proteins in their native membrane environment and highlight the importance of the interplay between hydrophobic complementarity and protein-protein interactions in determining the structure of membrane proteins.  相似文献   

13.
V I Lim 《Biofizika》1991,36(3):441-454
On the basis of the available experimental data on structure, biosynthesis and secretion of globular proteins it is concluded that an alpha-helix is a starting conformation at formation of the native structure of any globular protein (alpha-helical model for initiation of protein folding). The structural invariant (clusterization of hydrophobic side chains on the alpha-helix surface) in the amino acid sequences of globular proteins is found which is predicted by alpha-helical model for the initiation of protein folding. The model predicts the pyramidization of the atoms C and N of peptide groups during the formation of spatial structure of proteins and a number of other effects that can be put to the experimental test. In the work the mechanism for protein translocation across membrane lipid bilayer is also suggested.  相似文献   

14.
Integral membrane proteins are found in all cellular membranes and carry out many of the functions that are essential to life. The membrane-embedded domains of integral membrane proteins are structurally quite simple, allowing the use of various prediction methods and biochemical methods to obtain structural information about membrane proteins. A critical step in the biosynthetic pathway leading to the folded protein in the membrane is its insertion into the lipid bilayer. Understanding of the fundamentals of the insertion and folding processes will significantly improve the methods used to predict the three-dimensional membrane protein structure from the amino acid sequence. In the first part of this review, biochemical approaches to elucidate membrane protein topology are reviewed and evaluated, and in the second part, the use of similar techniques to study membrane protein insertion is discussed. The latter studies search for signals in the polypeptide chain that direct the insertion process. Knowledge of the topogenic signals in the nascent chain of a membrane protein is essential for the evaluation of membrane topology studies.  相似文献   

15.
Integral membrane proteins are found in all cellular membranes and carry out many of the functions that are essential to life. The membrane-embedded domains of integral membrane proteins are structurally quite simple, allowing the use of various prediction methods and biochemical methods to obtain structural information about membrane proteins. A critical step in the biosynthetic pathway leading to the folded protein in the membrane is its insertion into the lipid bilayer. Understanding of the fundamentals of the insertion and folding processes will significantly improve the methods used to predict the three-dimensional membrane protein structure from the amino acid sequence. In the first part of this review, biochemical approaches to elucidate membrane protein topology are reviewed and evaluated, and in the second part, the use of similar techniques to study membrane protein insertion is discussed. The latter studies search for signals in the polypeptide chain that direct the insertion process. Knowledge of the topogenic signals in the nascent chain of a membrane protein is essential for the evaluation of membrane topology studies.  相似文献   

16.
Most membrane proteins function through interactions with other proteins in the phospholipid bilayer, the cytosol or the extracellular milieu. Understanding the molecular basis of these interactions is key to understanding membrane protein function and dysfunction. Here we demonstrate for the first time how a nano-encapsulation method based on styrene maleic acid lipid particles (SMALPs) can be used in combination with native gel electrophoresis to separate membrane protein complexes in their native state. Using four model proteins, we show that this separation method provides an excellent measure of protein quaternary structure, and that the lipid environment surrounding the protein(s) can be probed using mass spectrometry. We also show that the method is complementary to immunoblotting. Finally we show that intact membrane protein-SMALPs extracted from a band on a gel could be visualised using electron microscopy (EM). Taken together these results provide a novel and elegant method for investigating membrane protein complexes in a native state.  相似文献   

17.
Magic-angle-spinning (MAS) solid-state NMR spectroscopy has emerged as a viable method to characterize membrane protein structure and dynamics. Nevertheless, the spectral resolution for uniformly labeled samples is often compromised by redundancy of the primary sequence and the presence of helical secondary structure that results in substantial resonance overlap. The ability to simplify the spectrum in order to obtain unambiguous site-specific assignments is a major bottleneck for structure determination. To address this problem, we used a combination of 15N reverse labeling, afterglow spectroscopic techniques, and frequency-selective dephasing experiments that dramatically improved the ability to resolve peaks in crowded spectra. This was demonstrated using the polytopic membrane protein EmrE, an efflux pump involved in multidrug resistance. Residues preceding the 15N reverse labeled amino acid were imaged using a 3D NCOCX afterglow experiment and those following were recorded using a frequency-selective dephasing experiment. Our approach reduced the spectral congestion and provided a sensitive way to obtain chemical shift assignments for a membrane protein where no high-resolution structure is available. This MAS methodology is widely applicable to the study of other polytopic membrane proteins in functional lipid bilayer environments.  相似文献   

18.
To investigate drug–membrane protein interactions, an artificial tethered lipid bilayer system was constructed for the functional integration of membrane proteins with large extra-membrane domains such as multi-drug resistance protein 1 (MDR1). In this study, a modified lipid (i.e., 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino (polyethylene glycol)-2000] (DSPE-PEG)) was utilized as a spacer molecule to elevate lipid membrane from the sensor surface and generate a reservoir underneath. Concentration of DSPE-PEG molecule significantly affected the liposome binding/spreading and lipid bilayer formation, and 0.03 mg/mL of DSPE-PEG provided optimum conditions for membrane protein integration. Further, the incorporation of MDR1 increased the local rigidity on the platform. Antibody binding studies showed the functional integration of MDR1 protein into lipid bilayer platform. The platform allowed to follow MDR!-statin-based drug interactions in vitro. Each binding event and lipid bilayer formation was monitored in real-time using Surface Plasmon Resonance and Quartz Crystal Microbalance–Dissipation systems, and Atomic Force Microscopy was used for visualization experiments.  相似文献   

19.
Despite the great progress recently made in resolving their structures, investigation of the structural biology of membrane proteins still presents major challenges. Even with new technical advances such as lipidic cubic phase crystallisation, obtaining well-ordered crystals remains a significant hurdle in membrane protein X-ray crystallographic studies. As an alternative, electron microscopy has been shown to be capable of resolving > 3.5 Å resolution detail in membrane proteins of modest (~ 300 kDa) size, without the need for crystals. However, the conventional use of detergents for either approach presents several issues, including the possible effects on structure of removing the proteins from their natural membrane environment. As an alternative, it has recently been demonstrated that membrane proteins can be effectively isolated, in the absence of detergents, using a styrene maleic acid co-polymer (SMA). This approach yields SMA lipid particles (SMALPs) in which the membrane proteins are surrounded by a small disk of lipid bilayer encircled by polymer. Here we use the Escherichia coli secondary transporter AcrB as a model membrane protein to demonstrate how a SMALP scaffold can be used to visualise membrane proteins, embedded in a near-native lipid environment, by negative stain electron microscopy, yielding structures at a modest resolution in a short (days) timeframe. Moreover, we show that AcrB within a SMALP scaffold is significantly more active than the equivalent DDM stabilised form. The advantages of SMALP scaffolds within electron microscopy are discussed and we conclude that they may prove to be an important tool in studying membrane protein structure and function.  相似文献   

20.
Integral membrane proteins constitute a major constituent of lipid bilayer both in prokaryotes and eukaryotes. The statistical analysis was carried out to determine the bias in amino acid distribution between prokaryotic and eukaryotic integral membrane proteins (pIntMPs and eIntMPs). Our results indicate that both pIntMPs and eIntMPs demonstrate the striking similarity in amino acid distribution in their transmembrane and extramembranous region. pIntMPs have relatively greater functional importance for Gly and Asn in comparison to eIntMPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号