首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The length of the ubiquitin chain on a substrate dictates various functional outcomes, yet little is known about its regulation in vivo. The yeast arrestin-related protein Rim8/Art9 is monoubiquitinated in vivo by the Rsp5 ubiquitin ligase. This also requires Vps23, a protein that displays an ubiquitin-E2 variant (UEV) domain. Here, we report that binding of the UEV domain to Rim8 interferes with ubiquitin chain elongation and directs Rim8 monoubiquitination. We propose that Vps23 UEV competes with Rsp5 HECT N-lobe for binding to the first conjugated ubiquitin, thereby preventing polyubiquitination. These findings reveal a novel mechanism to control ubiquitin chain length on substrates in vivo.  相似文献   

2.
Intramolecular and intermolecular direct (unmediated) electron transfer was studied by electrochemical techniques in a flavohemoprotein cytochrome P450 BM3 (CYP102A1 from Bacillius megaterium) and between cytochromes b 5 and c. P450 BM3 was immobilized on a screen printed graphite electrode modified with a biocompatible nanocomposite material based on didodecyldimethylammonium bromide (DDAB) and gold nanoparticles. Analytical characteristics of SPG/DDAB/Au/P450 BM3 electrodes were studied with cyclic voltammetry and square wave voltammetry. The electron transport chain in P450 BM3 immobilized on the nanostructured electrode is: electrode → FAD → FMN → heme; i.e., electron transfer takes place inside the cytochrome, in evidence of functional interaction between its diflavin and heme domains. The effects of substrate (lauric acid) or inhibitor (metyrapone or imidazole) binding on the electro-chemical parameters of P450 BM3 were assessed. Electrochemical analysis has also demonstrated intermolecular electron transfer between electrode-immobilized and soluble cytochromes properly differing in redox potentials.  相似文献   

3.
In vivo recordings from single neurons allow an investigator to examine the firing properties of neurons, for example in response to sensory stimuli. Neurons typically receive multiple excitatory and inhibitory afferent and/or efferent inputs that integrate with each other, and the ultimate measured response properties of the neuron are driven by the neural integrations of these inputs. To study information processing in neural systems, it is necessary to understand the various inputs to a neuron or neural system, and the specific properties of these inputs. A powerful and technically relatively simple method to assess the functional role of certain inputs that a given neuron is receiving is to dynamically and reversibly suppress or eliminate these inputs, and measure the changes in the neuron''s output caused by this manipulation. This can be accomplished by pharmacologically altering the neuron''s immediate environment with piggy-back multibarrel electrodes. These electrodes consist of a single barrel recording electrode and a multibarrel drug electrode that can carry up to 4 different synaptic agonists or antagonists. The pharmacological agents can be applied iontophoretically at desired times during the experiment, allowing for time-controlled delivery and reversible reconfiguration of synaptic inputs. As such, pharmacological manipulation of the microenvironment represents a powerful and unparalleled method to test specific hypotheses about neural circuit function.Here we describe how piggy-back electrodes are manufactured, and how they are used during in vivo experiments. The piggy-back system allows an investigator to combine a single barrel recording electrode of any arbitrary property (resistance, tip size, shape etc) with a multibarrel drug electrode. This is a major advantage over standard multi-electrodes, where all barrels have more or less similar shapes and properties. Multibarrel electrodes were first introduced over 40 years ago 1-3, and have undergone a number of design improvements 2,3 until the piggy-back type was introduced in the 1980s 4,5. Here we present a set of important improvements in the laboratory production of piggy-back electrodes that allow for deep brain penetration in intact in vivo animal preparations due to a relatively thin electrode shaft that causes minimal damage. Furthermore these electrodes are characterized by low noise recordings, and have low resistance drug barrels for very effective iontophoresis of the desired pharmacological agents.  相似文献   

4.
The tissue-specific expression of the Drosophila β2 tubulin gene (B2t) is accomplished by the action of a 14-bp activator element (β2UE1) in combination with certain regulatory elements of the TATA-less, Inr-containing B2t core promoter. We performed an in vivo analysis of the Inr element function in the B2t core promoter using a transgenic approach. Our experiments demonstrate that the Inr element acts as a functional cis-regulatory element in vivo and quantitatively regulates tissue-specific reporter expression in transgenic animals. However, our mutational analysis of the Inr element demonstrates no essential role of the Inr in mediating tissue specificity of the B2t promoter. In addition, a downstream element seems to affect promoter activity in combination with the Inr. In summary, our data show for the first time the functionality of the Inr element in an in vivo background situation in Drosophila.  相似文献   

5.
Laboratory evolution is a powerful approach to search for genetic adaptations to new or improved phenotypes, yet either relies on labour-intensive human-guided iterative rounds of mutagenesis and selection, or prolonged adaptation regimes based on naturally evolving cell populations. Here we present CRISPR- and RNA-assisted in vivo directed evolution (CRAIDE) of genomic loci using evolving chimeric donor gRNAs continuously delivered from an error-prone T7 RNA polymerase, and directly introduced as RNA repair donors into genomic targets under either Cas9 or dCas9 guidance. We validate CRAIDE by evolving novel functional variants of an auxotrophic marker gene, and by conferring resistance to a toxic amino acid analogue in baker''s yeast Saccharomyces cerevisiae with a mutation rate >3,000-fold higher compared to spontaneous native rate, thus enabling the first demonstrations of in vivo delivery and information transfer from long evolving RNA donor templates into genomic context without the use of in vitro supplied and pre-programmed repair donors.  相似文献   

6.
The functional role of burst firing (i.e. the firing of packets of action potentials followed by quiescence) in sensory processing is still under debate. Should bursts be considered as unitary events that signal the presence of a particular feature in the sensory environment or is information about stimulus attributes contained within their temporal structure? We compared the coding of stimulus attributes by bursts in vivo and in vitro of electrosensory pyramidal neurons in weakly electric fish by computing correlations between burst and stimulus attributes. Our results show that, while these correlations were strong in magnitude and significant in vitro, they were actually much weaker in magnitude if at all significant in vivo. We used a mathematical model of pyramidal neuron activity in vivo and showed that such a model could reproduce the correlations seen in vitro, thereby suggesting that differences in burst coding were not due to differences in bursting seen in vivo and in vitro. We next tested whether variability in the baseline (i.e. without stimulation) activity of ELL pyramidal neurons could account for these differences. To do so, we injected noise into our model whose intensity was calibrated to mimic baseline activity variability as quantified by the coefficient of variation. We found that this noise caused significant decreases in the magnitude of correlations between burst and stimulus attributes and could account for differences between in vitro and in vivo conditions. We then tested this prediction experimentally by directly injecting noise in vitro through the recording electrode. Our results show that this caused a lowering in magnitude of the correlations between burst and stimulus attributes in vitro and gave rise to values that were quantitatively similar to those seen under in vivo conditions. While it is expected that noise in the form of baseline activity variability will lower correlations between burst and stimulus attributes, our results show that such variability can account for differences seen in vivo. Thus, the high variability seen under in vivo conditions has profound consequences on the coding of information by bursts in ELL pyramidal neurons. In particular, our results support the viewpoint that bursts serve as a detector of particular stimulus features but do not carry detailed information about such features in their structure.  相似文献   

7.
Metal‐organic frameworks (MOFs) are promising porous precursors for the construction of various functional materials for high‐performance electrochemical energy storage and conversion. Herein, a facile two‐step solution method to rational design of a novel electrode of hollow NiCo2O4 nanowall arrays on flexible carbon cloth substrate is reported. Uniform 2D cobalt‐based wall‐like MOFs are first synthesized via a solution reaction, and then the 2D solid nanowall arrays are converted into hollow and porous NiCo2O4 nanostructures through an ion‐exchange and etching process with an additional annealing treatment. The as‐obtained NiCo2O4 nanostructure arrays can provide rich reaction sites and short ion diffusion path. When evaluated as a flexible electrode material for supercapacitor, the as‐fabricated NiCo2O4 nanowall electrode shows remarkable electrochemical performance with excellent rate capability and long cycle life. In addition, the hollow NiCo2O4 nanowall electrode exhibits promising electrocatalytic activity for oxygen evolution reaction. This work provides an example of rational design of hollow nanostructured metal oxide arrays with high electrochemical performance and mechanical flexibility, holding great potential for future flexible multifunctional electronic devices.  相似文献   

8.

Background

Protein adsorption is the first of a complex series of events that regulates many phenomena at the nano-bio interface, e.g. cell adhesion and differentiation, in vivo inflammatory responses and protein crystallization. A quantitative understanding of how nanoscale morphology influences protein adsorption is strategic for providing insight into all of these processes, however this understanding has been lacking until now.

Methodology/Principal Findings

Here we introduce novel methods for quantitative high-throughput characterization of protein-surface interaction and we apply them in an integrated experimental strategy, to study the adsorption of a panel of proteins on nanostructured surfaces. We show that the increase of nanoscale roughness (from 15 nm to 30 nm) induces a decrease of protein binding affinity (≤90%) and a relevant increase in adsorbed proteins (≤500%) beyond the corresponding increase of specific area. We demonstrate that these effects are caused by protein nucleation on the surface, which is promoted by surface nanoscale pores.

Conclusions/Significance

These results show that the adsorption of proteins depends significantly on surface nanostructure and that the relevant morphological parameter regulating the protein adsorption process is the nanometric pore shape. These new findings improve our understanding of the role of nanostructures as a biomaterial design parameter and they have important implications for the general understanding of cell behavior on nanostructured surfaces.  相似文献   

9.
10.
Spectraplakins are large multifunctional cytoskeletal interacting molecules implicated in various processes, including gastrulation, wound healing, skin blistering and neuronal degeneration. It has been speculated that the various functional domains and regions found in Spectraplakins are used in context-specific manners, a model which would provide a crucial explanation for the multifunctional nature of Spectraplakins. Here we tested this possibility by studying domain requirements of the Drosophila Spectraplakin Short stop (Shot) in three different cellular contexts in vivo: (1) neuronal growth, which requires dynamic actin-microtubule interaction; (2) formation and maintenance of tendon cells, which depends on highly stabilised arrays of actin filaments and microtubules, and (3) compartmentalisation in neurons, which is likely to involve cortical F-actin networks. Using these cellular contexts for rescue experiments with Shot deletion constructs in shot mutant background, a number of differential domain requirements were uncovered. First, binding of Shot to F-actin through the first Calponin domain is essential in neuronal contexts but dispensable in tendon cells. This finding is supported by our analyses of shotkakP2 mutant embryos, which produce only endogenous isoforms lacking the first Calponin domain. Thus, our data demonstrate a functional relevance for these isoforms in vivo. Second, we provide the first functional role for the Plakin domain of Shot, which has a strong requirement for compartmentalisation in neurons and axonal growth, demonstrating that Plakin domains of long Spectraplakin isoforms are of functional relevance. Like the Calponin domain, also the Plakin domain is dispensable in tendon cells, and the currently assumed role of Shot as a linker of microtubules to the tendon cell surface may have to be reconsidered. Third, we demonstrate a function of Shot as an actin-microtubule linker in dendritic growth, thus shedding new light into principal growth mechanisms of this neurite type. Taken together, our data clearly support the view that Spectraplakins function in tissue-specific modes in vivo, and even domains believed to be crucial for Spectraplakin function can be dispensable in specific contexts.  相似文献   

11.
12.
Over the past decade, numerous nonviral cationic vectors have been synthesized. They share a high density of positive charges and efficiency for gene transfer in vitro. However, their positively charged surface causes instability in body fluids and cytotoxicity, thereby limiting their efficacy in vivo. Therefore, there is a need for developing alternative molecular structures. We have examined tetrabranched amphiphilic block copolymers consisting of four polyethyleneoxide/polypropyleneoxide blocks centered on an ethylenediamine moiety. Cryo-electron microscopy, ethidium bromide fluorescence and light and X-ray scattering experiments performed on vector–DNA complexes showed that the dense core of the nanosphere consisted of condensed DNA interacting with poloxamine molecules through electrostatic, hydrogen bonding and hydrophobic interactions, with DNA molecules also being exposed at the surface. The supramolecular organization of block copolymer/DNA nanospheres induced the formation of negatively charged particles. These particles were stable in a solution that had a physiological ionic composition and were resistant to decomplexation by heparin. The new nanostructured material, the structure of which clearly contrasted with that of lipoplexes and polyplexes, efficiently transferred reporter and therapeutic genes in skeletal and heart muscle in vivo. Negatively charged supramolecular assemblies hold promise as therapeutic gene carriers for skeletal and heart muscle-related diseases and expression of therapeutic proteins for local or systemic uses.  相似文献   

13.
14.
Targeted mutagenesis and complementation are important tools for studying genes of unknown function in the Lyme disease spirochete Borrelia burgdorferi. A standard method of complementation is reintroduction of a wild-type copy of the targeted gene on a shuttle vector. However, shuttle vectors are present at higher copy numbers than B. burgdorferi plasmids and are potentially unstable in the absence of selection, thereby complicating analyses in the mouse-tick infectious cycle. B. burgdorferi has over 20 plasmids, with some, such as linear plasmid 25 (lp25), carrying genes required by the spirochete in vivo but relatively unstable during in vitro cultivation. We propose that complementation on an endogenous plasmid such as lp25 would overcome the copy number and in vivo stability issues of shuttle vectors. In addition, insertion of a selectable marker on lp25 could ensure its stable maintenance by spirochetes in culture. Here, we describe the construction of a multipurpose allelic-exchange vector containing a multiple-cloning site and either of two selectable markers. This suicide vector directs insertion of the complementing gene into the bbe02 locus, a site on lp25 that was previously shown to be nonessential during both in vitro and in vivo growth. We demonstrate the functional utility of this strategy by restoring infectivity to an ospC mutant through complementation at this site on lp25 and stable maintenance of the ospC gene throughout mouse infection. We conclude that this represents a convenient and widely applicable method for stable gene complementation in B. burgdorferi.  相似文献   

15.
In vivo induction of the Escherichia coli lactose operon as a function of inducer concentration generates a sigmoidal curve, indicating a non-linear response. Suggested explanations for this dependence include a 2:1 inducer–repressor stoichiometry of induction, which is the currently accepted view. It is, however, known for decades that, in vitro, operator binding as a function of inducer concentration is not sigmoidal. This discrepancy between in vivo and in vitro data has so far not been resolved. We demonstrate that the in vivo non-linearity of induction is due to cooperative repression of the wild-type lac operon through DNA loop formation. In the absence of DNA loops, in vivo induction curves are hyperbolic. In the light of this result, we re-address the question of functional molecular inducer–repressor stoichiometry in induction of the lac operon.  相似文献   

16.
17.
Flagellins evoke strong innate and adaptive immune responses. These proteins may play a key role as radioprotectors, exert antitumoral activity in certain types of tumor and reduce graft-versus-host disease in allogeneic hematopoietic stem cell transplant recipients. Notwithstanding, flagellins are highly immunogenic, and repeated use leads to their neutralization by systemic antibodies. This neutralization is not prevented by using functional deleted flagellins. These observations led us to explore the possibility of preventing initial neutralization by means of another functional flagellin that does not belong to common pathogenic bacteria but that has the capacity to activate TLR5. Here we characterized the functional capacity of the two-phase Marinobacter algicola (MA)-derived flagellins (F and FR) as systemic and mucosal adjuvants and compared their performance with that of Salmonella typhimurium (STF) flagellins (FljB and FliC). We also report for the first time on the in vitro and in vivo capacity of various flagellins to trigger TLR5 activation in the presence of species-specific anti-flagellin antibodies, the cross-neutralization mediated by these antibodies, and the sequential use of these flagellins for TLR5 activation. Our results showed that MA flagellins behave in a similar way to STF ones, inducing pro-inflammatory cytokines (IL8, CCL20, CCL2) and evoking a strong in vivo antibody response against a model epitope. More importantly, MA flagellins were fully functional, in vitro or in vivo, in the presence of a high concentration of neutralizing anti-flagellin STF antibodies, and STF flagellin was not inhibited by neutralizing anti-flagellin MA antibodies. The use of active flagellins from distinct bacteria could be a useful approach to prevent systemic neutralization of this group of adjuvants and to facilitate the rational design of flagellin-based vaccines and/or other therapeutic treatments (against ischemia, acute renal failure, tumors, ionizing radiations and also to improve the outcome of bone marrow transplants).  相似文献   

18.
Anopheles gambiae, the major vector of human malaria parasite, is an important insect model to study vector–parasite interactions. Here, we developed a simple in vivo double-stranded RNA (dsRNA) knockout approach to determine the function of the mosquito antimicrobial peptide gene Defensin. We injected dsRNA into adults and observed efficient and reproducible silencing of Defensin. Analysis of the knockdown phenotype revealed that this peptide is required for the mosquito antimicrobial defense against Gram-positive bacteria. In contrast, in mosquitoes infected by Plasmodium berghei, no loss of mosquito viability and no significant effect on the development and morphology of the parasite midgut stages were observed in the absence of Defensin. We conclude that this peptide is not a major antiparasitic factor in A. gambiae in vivo. Our results open new perspectives for the study of mosquito gene function in vivo and provide a basis for genome-scale systematic functional screens by targeted gene silencing.  相似文献   

19.
An efficient way to combat the energy crisis and the greenhouse gas effect of fossil fuels is the production of hydrogen fuel from solar‐driven water splitting reaction. Here, this study presents a p‐type ZrO2 nanoplate‐decorated ZrO2 nanowire photocathode with a high photoconversion efficiency that makes it potentially viable for commercial solar H2 production. The composition of oxygen vacancy defects, low charge carrier transport property, and high specific surface area of these as‐grown hierarchical nanowires are further improved by an hydrofluoric acid (HF) treatment, which causes partial delamination and produces a thin amorphous ZrO2 layer on the surface of the as‐grown nanostructured film. The presence of different types of oxygen vacancies (neutral, singly charged, and doubly charged defects) and their compositional correlation to the Zrx+ oxidation states (4 > x > 2) are found to affect the charge transfer process, the p‐type conductivity, and the photocatalytic activity of the ZrO2 nanostructured film. The resulting photocathode provides the highest overall photocurrent (?42.3 mA cm?2 at 0 V vs reversible hydrogen electrode (RHE)) among all the photocathodes reported to date, and an outstanding 3.1% half‐cell solar‐to‐hydrogen conversion efficiency with a Faradaic efficiency of 97.8%. Even more remarkable is that the majority of the photocurrent (69%) is produced in the visible light region.  相似文献   

20.

Background

The Arthropods are a diverse group of organisms including Chelicerata (ticks, mites, spiders), Crustacea (crabs, shrimps), and Insecta (flies, mosquitoes, beetles, silkworm). The cattle tick, Rhipicephalus (Boophilus) microplus, is an economically significant ectoparasite of cattle affecting cattle industries world wide. With the availability of sequence reads from the first Chelicerate genome project (the Ixodes scapularis tick) and extensive R. microplus ESTs, we investigated evidence for putative RNAi proteins and studied RNA interference in tick cell cultures and adult female ticks targeting Drosophila homologues with known cell viability phenotype.

Results

We screened 13,643 R. microplus ESTs and I. scapularis genome reads to identify RNAi related proteins in ticks. Our analysis identified 31 RNAi proteins including a putative tick Dicer, RISC associated (Ago-2 and FMRp), RNA dependent RNA polymerase (EGO-1) and 23 homologues implicated in dsRNA uptake and processing. We selected 10 R. microplus ESTs with >80% similarity to D. melanogaster proteins associated with cell viability for RNAi functional screens in both BME26 R. microplus embryonic cells and female ticks in vivo. Only genes associated with proteasomes had an effect on cell viability in vitro. In vivo RNAi showed that 9 genes had significant effects either causing lethality or impairing egg laying.

Conclusion

We have identified key RNAi-related proteins in ticks and along with our loss-of-function studies support a functional RNAi pathway in R. microplus. Our preliminary studies indicate that tick RNAi pathways may differ from that of other Arthropods such as insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号