共查询到3条相似文献,搜索用时 0 毫秒
1.
Donald J. Vander Griend Ivan V. Litvinov John T. Isaacs 《International journal of biological sciences》2014,10(6):627-642
In normal prostate, androgen-dependent androgen receptor (AR) signaling within prostate stromal cells induces their secretion of paracrine factors, termed “andromedins” which stimulate growth of the epithelial cells. The present studies demonstrate that androgen-dependent andromedin-driven growth stimulation is counter-balanced by androgen-induced AR signaling within normal adult prostate epithelial cells resulting in terminal G0 growth arrest coupled with terminal differentiation into ΔNp63-negative, PSA-expressing secretory luminal cells. This cell autonomous AR-driven terminal differentiation requires DNA-binding of the AR protein, is associated with decreases in c-Myc m-RNA and protein, are coupled with increases in p21, p27, and SKP-2 protein expression, and does not require functional p53. These changes result in down-regulation of Cyclin D1 protein and RB phosphoryation. shRNA knockdown documents that neither RB, p21, p27 alone or in combination are required for such AR-induced G0 growth arrest. Transgenic expression of a constitutive vector to prevent c-Myc down-regulation overrides AR-mediated growth arrest in normal prostate epithelial cells, which documents that AR-induced c-Myc down-regulation is critical in terminal growth arrest of normal prostate epithelial cells. In contrast, in prostate cancer cells, androgen-induced AR signaling paradoxically up-regulates c-Myc expression and stimulates growth as documented by inhibition of both of these responses following exposure to the AR antagonist, bicalutamide. These data document that AR signaling is converted from a growth suppressor in normal prostate epithelial cells to an oncogene in prostate cancer cells during prostatic carcinogenesis and that this conversion involves a gain of function for regulation of c-Myc expression. 相似文献
2.
Jiayi Wang Yue Zhang Wenhao Weng Yongxia Qiao Lifang Ma Weifan Xiao Yongchun Yu Qiuhui Pan Fenyong Sun 《The Journal of biological chemistry》2013,288(47):33667-33681
Tribbles homolog 2 (TRIB2) is critical for both solid and non-solid malignancies. Recently, TRIB2 was identified as a liver cancer-specific Wnt/β-catenin signaling downstream target and is functionally important for liver cancer cell survival and transformation. TRIB2 functions as a protein that interacts with E3 ubiquitin ligases and thereby modulates protein stability of downstream effectors. However, the regulation underlying TRIB2 protein stability per se has not yet been reported. In this study, we found that TRIB2 was up-regulated and exhibited high stability in liver cancer cells compared with other cells. We performed a structure-function analysis of TRIB2 and identified a domain (amino acids 1–5) at the N terminus that interacted with the E3 ubiquitin ligase Smurf1 and was critical for protein stability. Deletion of this domain extended TRIB2 half-life time accompanied with a more significant malignant property compared with wild type TRIB2. Furthermore, Smurf1-mediated ubiquitination required phosphorylation of TRIB2 by p70 S6 kinase (p70S6K) via another domain (amino acids 69–85) that is also essential for correct TRIB2 subcellular localization. Mutation of Ser-83 diminished p70S6K-induced phosphorylation of TRIB2. Moreover, the high stability of TRIB2 may be due to the fact that both p70S6K and Smurf1 were down-regulated and negatively correlated with TRIB2 expression in both liver cancer tissues and established liver cancer cell lines. Taken together, impaired phosphorylation and ubiquitination by p70S6K and Smurf1 increase the protein stability of TRIB2 in liver cancer and thus may be helpful in the development of diagnosis and treatment strategies against this malignant disease. 相似文献