首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tyrosine phosphorylation of plant tubulin   总被引:2,自引:0,他引:2  
Phosphorylation of αβ-tubulins dimers by protein tyrosine kinases plays an important role in the regulation of cellular growth and differentiation in animal cells. In plants, however, the role of tubulin tyrosine phosphorylation is unknown and data on this tubulin modification are limited. In this study, we used an immunochemical approach to demonstrate that tubulin isolated by both immunoprecipitation and DEAE-chromatography is phosphorylated on tyrosine residues in cultured cells of Nicotiana tabacum. This opens up the possibility that tyrosine phosphorylation of tubulin could be involved in modulating the properties of plant microtubules.  相似文献   

2.
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by aggregation of mutant huntingtin (mHtt), and removal of mHtt is expected as a potential therapeutic option. We previously reported protein knockdown of Htt by using hybrid small molecules (Htt degraders) consisting of BE04, a ligand of ubiquitin ligase (E3), linked to probes for protein aggregates. Here, in order to examine the effect of changing the ligand, we synthesized a similar Htt degrader utilizing MV1, an antagonist of the inhibitor of apoptosis protein (IAP) family (a subgroup of ubiquitin E3 ligases), which is expected to have a higher affinity and specificity for IAP, as compared with BE04. The MV1-based hybrid successfully induced interaction between Htt aggregates and IAP, and reduced mHtt levels in living cells. Its mode of action was confirmed to be the same as that of the BE04-based hybrid. However, although the affinity of MV1 for IAP is greater than that of BE04, the efficacy of Htt degradation by the MV1-based molecule was lower, suggesting that linker length between the ligand and probe might be an important determinant of efficacy.  相似文献   

3.
  1. Download : Download high-res image (181KB)
  2. Download : Download full-size image
  相似文献   

4.
Until recently, identifying the specificities of enzymes that post-translationally modify core histones was performed in vitro using synthetic peptides, purified mononucleosomes or short nucleosome arrays. Unfortunately, the variable results obtained for identical enzymes are often dependent on the in vitro conditions employed. These results are consistent with the conclusion that the manner in which histone tails are presented to the modifying enzymes dramatically affects specificity. Because traditional in vitro biochemical approaches do not accurately recapitulate higher-order chromatin structure or consider the influences that additional chromatin binding proteins may have on determining the specificity of modifying enzymes, the development of new and innovative approaches is warranted. Here, we describe a novel in situ microscopy approach that accurately assesses enzyme substrate specificities through single cell measurements performed under physiologically relevant conditions. This approach couples the spatial resolving power of microscopy with robust statistical analyses to determine the substrate specificities of transiently expressed enzymes using histone modification- and residue-specific antibodies. This methodology can also be applied to measuring changes in the abundance of histone modifications as cells traverse the cell cycle.  相似文献   

5.
We present here the recent update of AutoMotif Server (AMS 2.0) that predicts post-translational modification sites in protein sequences. The support vector machine (SVM) algorithm was trained on data gathered in 2007 from various sets of proteins containing experimentally verified chemical modifications of proteins. Short sequence segments around a modification site were dissected from a parent protein, and represented in the training set as binary or profile vectors. The updated efficiency of the SVM classification for each type of modification and the predictive power of both representations were estimated using leave-one-out tests for model of general phosphorylation and for modifications catalyzed by several specific protein kinases. The accuracy of the method was improved in comparison to the previous version of the service (Plewczynski et al., “AutoMotif server: prediction of single residue post-translational modifications in proteins”, Bioinformatics 21: 2525–7, 2005). The precision of the updated version reached over 90% for selected types of phosphorylation and was optimized in trade of lower recall value of the classification model. The AutoMotif Server version 2007 is freely available at . Additionally, the reference dataset for optimization of prediction of phosphorylation sites, collected from the UniProtKB was also provided and can be accessed at .  相似文献   

6.
7.
Li XJ  Li S 《遗传学报》2012,39(6):239-245
Transgenic animal models have revealed much about the pathogenesis of age-dependent neurodegenerative diseases and proved to be a useful tool for uncovering therapeutic targets.Huntington's disease is ...  相似文献   

8.
The roles of post-translational modifications (PTMs) in the onset and progression of disease have been extensively studied for decades. More specifically, various PTMs have been the focus of research in Alzheimer's disease (AD). The two most discussed hallmarks of the disease, senile plaques and tau tangles, are the result of PTMs of the amyloidβ protein precursor (AβPP) and the microtubule stabilizing protein: tau. While these modifications have been characterized indirectly by biochemical-based methods, the primary shortcoming to this research can be linked to a lack of a thorough molecular-based means of qualitative and quantitative analysis of many of these modifications within transgenic animal, and human samples. In this review, we discuss the important proteins and their associated PTMs linked to AD and the ways in which mass spectrometry has and will be utilized to analyze them. We also comment on novel ways in which molecular-based mass spectrometry methods should be employed going forward to resolve the interconnections of the PTMs involvement in various stages of AD pathology (preclinical, mild cognitive impairment, advanced-stage AD).  相似文献   

9.
STIM1 is an endoplasmic reticulum(ER) protein with a key role in Ca~(2+)mobilization. Due to its ability to act as an ER-intraluminal Ca~(2+) sensor, it regulates store-operated Ca~(2+) entry(SOCE), which is a Ca~(2+) influx pathway involved in a wide variety of signalling pathways in eukaryotic cells. Despite its important role in Ca~(2+) transport, current knowledge about the role of STIM1 in neurons is much more limited. Growing evidence supports a role for STIM1 and SOCE in the preservation of dendritic spines required for long-term potentiation and the formation of memory. In this regard, recent studies have demonstrated that the loss of STIM1, which impairs Ca~(2+) mobilization in neurons, risks cell viability and could be the cause of neurodegenerative diseases. The role of STIM1 in neurodegeneration and the molecular basis of cell death triggered by low levels of STIM1 are discussed in this review.  相似文献   

10.
PTEN-induced putative kinase 1 (PINK1) and Parkin, encoded by their respective genes associated with Parkinson’s disease (PD), are linked in a common pathway involved in the protection of mitochondrial integrity and function. However, the mechanism of their interaction at the biochemical level has not been investigated yet. Using both mammalian and Drosophila systems, we here demonstrate that the PINK1 kinase activity is required for its function in mitochondria. PINK1 regulates the localization of Parkin to the mitochondria in its kinase activity-dependent manner. In detail, Parkin phosphorylation by PINK1 on its linker region promotes its mitochondrial translocation, and the RING1 domain of Parkin is critical for this occurrence. These results demonstrate the biochemical relationship between PINK1, Parkin, and the mitochondria and thereby suggest the possible mechanism of PINK-Parkin-associated PD pathogenesis.  相似文献   

11.
Aggregation of abnormally phosphorylated tau in the form of tangs of paired helical filaments (PHFs) is one of the hallmarks of Alzheimer's disease (AD) and other tauopathies. It is of fundamental importance to study the mechanism of PHF formation and its modulation by phosphorylation. In this work, we have focused on the first microtubule-binding repeat of tau encompassing an abnormal phosphorylation site Ser262. The assembly propensities of this repeat and its corresponding phosphorylated form were investigated by turbidity and electron microscopy. Additionally, conformation of the two peptides is also analyzed through circular dichroism (CD) and NMR spectroscopy. Our results reveal that both of them are capable of self-assembly and phosphorylation at Ser262 could speed up the process of assembly. A possible mechanism of PHF formation is proposed and enhancing effect of phosphorylation on assembly provides an explanation to its toxicity in Alzheimer's disease.  相似文献   

12.
Converging evidence points to the N-terminal domain comprising the first 17 amino acids of the Huntingtin protein (Nt17) as a key regulator of its aggregation, cellular properties and toxicity. In this study, we further investigated the interplay between Nt17 and the polyQ domain repeat length in regulating the aggregation and inclusion formation of exon 1 of the Huntingtin protein (Httex1). In addition, we investigated the effect of removing Nt17 or modulating its local structure on the membrane interactions, neuronal uptake, and toxicity of monomeric or fibrillar Httex1. Our results show that the polyQ and Nt17 domains synergistically modulate the aggregation propensity of Httex1 and that the Nt17 domain plays important roles in shaping the surface properties of mutant Httex1 fibrils and regulating their poly-Q-dependent growth, lateral association and neuronal uptake. Removal of Nt17 or disruption of its transient helical conformations slowed the aggregation of monomeric Httex1 in vitro, reduced inclusion formation in cells, enhanced the neuronal uptake and nuclear accumulation of monomeric Httex1 proteins, and was sufficient to prevent cell death induced by Httex1 72Q overexpression. Finally, we demonstrate that the uptake of Httex1 fibrils into primary neurons and the resulting toxicity are strongly influenced by mutations and phosphorylation events that influence the local helical propensity of Nt17. Altogether, our results demonstrate that the Nt17 domain serves as one of the key master regulators of Htt aggregation, internalization, and toxicity and represents an attractive target for inhibiting Htt aggregate formation, inclusion formation, and neuronal toxicity.  相似文献   

13.
Mitochondrial Complex I (NADH:ubiquinone oxidoreductase) consists of at least 46 subunits. Phosphorylation of the 42-kDa subunit NDUFA10 was recently reported using a novel phosphoprotein stain [Schulenberg et al. (2003) Analysis of steady-state protein phosphorylation in mitochondria using a novel fluorescent phosphosensor dye. J. Biol. Chem. 278, 27251]. Two smaller Complex I phosphoproteins, ESSS and MWFE, and their sites of modification, have since been determined [Chen et al. (2004) The phosphorylation of subunits of complex I from bovine heart mitochondria. J. Biol. Chem. 279, 26036]. Here we identify the site of phosphorylation in NDUFA10 from bovine heart mitochondria by tandem mass spectrometry. A single phosphopeptide spanning residues 47-60 was identified and confirmed by synthesis to be (47)LITVDGNICSGKpSK(60), establishing serine-59 as the site of phosphorylation.  相似文献   

14.
The 26S proteasome complex, which consists of a 20S proteasome and a pair of 19S regulatory particles, plays important roles in the degradation of ubiquitinated proteins in eukaryotic cells. The alpha7 subunit of the budding yeast 20S proteasome is a major phosphorylatable subunit; serine residue(s) in its C-terminal region are phosphorylated in vitro by CKII. However, the exact in vivo phosphorylation sites have not been identified. In this study, using electrospray ionization quadrupole time-of-flight mass spectrometry analysis, we detected a mixture of singly, doubly, and triply phosphorylated C-terminal peptides isolated from a His-tagged construct of the alpha7 subunit by nickel-immobilized metal affinity chromatography. In addition, we identified three phosphorylation sites in the C-terminal region using MS/MS analysis and site-directed mutagenesis: Ser258, Ser263, and Ser264 residues. The MS/MS analysis of singly phosphorylated peptides showed that phosphorylation at these sites did not occur successively.  相似文献   

15.
Amyloid precursor protein intracellular domain(AICD) is one of the potential candidates in deciphering the complexity of Alzheimer’s disease.It plays important roles in determining cell fate and neurodegeneration through its interactions with several adaptors.The presence or absence of phosphorylation at specific sites determines the choice of partners.In this study,we identified 20 novel AICDinteracting proteins by in vitro pull down experiments followed by 2D gel electrophoresis and MALDI-MS analysis.The identified proteins can be grouped into different functional classes including molecular chaperones,structural proteins,signaling and transport molecules,adaptors,motor proteins and apoptosis determinants.Interactions of nine proteins were further validated either by colocalization using confocal imaging or by co-immunoprecipitation followed by immunoblotting.The cellular functions of most of the proteins can be correlated with AD.Hence,illustration of their interactions with AICD may shed some light on the disease pathophysiology.  相似文献   

16.
The properties of creatinine deiminase (EC 3.5.4.21) were characterized with a crystalline preparation from Corynebacterium lilium ATCC 15990. The molecular weight was determined to be 195,000 by the sedimentation equilibrium method, and the isoelectric point was found to be 4.2 by isoelectric focusing. The enzyme was relatively thermostable and had a broad pH optimum of 7.5 to 10.0. It was specific for creatinine and showed a Km value of 1.27 mm. A compound from creatinine was isolated, with the release of ammonia, and identified as N-methylhydantoin. The enzyme activity was inhibited by heavy metal ions and p-chloromercuribenzoate. The enzyme may be useful in determinations of serum and urinary creatinine.  相似文献   

17.
18.
19.
Human cytosolic thymidine kinase (TK1) is tightly regulated in the cell cycle by multiple mechanisms. Our laboratory has previously shown that in mitotic-arrested cells human TK1 is phosphorylated at serine-13, accompanied by a decrease in catalytic efficiency. In this study we investigated whether serine-13 phosphorylation regulated TK1 activity and found that substitution of serine-13 with aspartic acid (S13D), which mimics phosphorylation, not only diminished the ATP-activating effect on the enzyme, but also decreased its thymidine substrate affinity. Our experimental results further showed that the S13D mutation perturbed ATP-induced tetramerization of TK1. Given that the dimeric form of TK1 is less active than the tetrameric, we propose that mitotic phosphorylation of serine-13 is of physiological importance, in that it may counteract ATP-dependent activation of TK1 by affecting its quaternary structure, thus attenuating its enzymatic function at the G2/M phase.  相似文献   

20.
Protein phosphatase 2A (PP2A) is a family of heterotrimeric enzymes with diverse functions under physiologic and pathologic conditions such as Alzheimer's disease. All PP2A holoenzymes have in common a catalytic subunit C and a structural scaffolding subunit A. These core subunits assemble with various regulatory B subunits to form heterotrimers with distinct functions in the cell. Substrate specificity of PP2A in vitro is determined by regulatory subunits with leucine 309 of the catalytic subunit C playing a crucial role in the recruitment of regulatory subunits into the complex. Here we expressed a mutant form of Calpha, L309A, in brain and Harderian (lacrimal) gland of transgenic mice. We found an altered recruitment of regulatory subunits into the complex, demonstrating a role for the carboxyterminal leucine of Calpha in regulating holoenzyme assembly in vivo. This was associated with an increased phosphorylation of tau in brain and an impaired dephosphorylation of vimentin demonstrating that both cytoskeletal proteins are in vivo substrates of distinct PP2A holoenzyme complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号