首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Displacements of cupulae in the supraorbital lateral line canal in ruffe (Gymnocephalus cernuus) have been measured using laser interferometry and by applying transient as well as sinusoidal fluid stimuli in the lateral line canal. The cupular displacement in response to impulses of fluid velocity shows damped oscillations at approximately 120 Hz and a relaxation time-constant of 4.4 ms, commensurate with a quality factor of approximately 1.8. These values are in close agreement with the frequency characteristics determined via sinusoidal fluid stimuli, implying that the nonlinearity of cupular dynamics imposed by the gating apparatus of the sensory hair cells is limited in the range of cupular displacements and velocities measured (100–300 nm; 100–300 m/s). The measurements also show that cupular displacement instantaneously follows the initial waveform of transient stimuli. The functional significance of the observed cupular dynamics is discussed.  相似文献   

2.
Autoradiographic evidence for incorporation of 3H-glucose and 35S-sulfate into the cupulae of Xenopus laevis (African clawed toad) lateral line organs was obtained after injection into the dorsal lymph sacs of adult animals. Time intervals of 15 minutes to 4 hours after administration of these labeled metabolic precursors were used to examine the time course of the apparent mechanism of growth of the cupulae. Our results suggest that the two layers of accessory cells (the sustentacular cells and inner layer of mantle cells), concentrically arranged around the organ's central sensory (hair) cells, elaborate distinct cupular components. Sustentacular cells, immediately adjacent to the sensory cells, appear to produce and extrude at their exposed apices a cupular "core" substance labeled by 3H-glucose, but not by 35S-sulfate. The layer of inner mantle cells, external to the sustentacular cells, was labeled by both precursors and is spatially situated to secrete a cupular sheath enclosing the cupular core. Ultrastructural differences between the secretory products within the two cell types were marked. Electron microscopic autoradiography of toads killed 4 hours after 3H-glucose injection showed that silver grains were associated with accumulations of the respective secretory products in sustentacular and inner mantle cells, and label was found over the cupular trough area, where the bases of the cupulae are attached. These results suggest that the cupular core and sheath may both contain mucopolysaccharide, and the sheath, a sulfated mucopolysaccharide.  相似文献   

3.
Extracellular recordings were made during vestibular stimulation from an in vitro turtle brain stem in which the temporal bones remained attached. Under visual control, microelectrodes were slowly advanced into the vestibular nucleus (VN) while we rotated the brain and searched for a single isolated unit whose spike activity was modulated by the lateral semicircular canals. In some experiments, responses were shown to be due to stimulation of the lateral canals, either by positioning the brains in forward or backward pitch during horizontal rotation or by plugging the vertical canals with wax. VN neurons usually had low spontaneous activity and rectified sinusoidal responses to sinusoidal stimulation. Spike response histograms were averaged from many stimulus cycles and were then fit to a sine function. The fitted phase and amplitude parameters were plotted relative to stimulus frequency and amplitude. The sample of VN cells were quite heterogeneous. Using stimuli at 1 Hz, however, each cell's response phase was weakly correlated with the slope of the plots of response amplitude versus frequency so that a cell could be categorized as sensitive to velocity or acceleration and as sensitive to ipsiversive or contraversive rotation, depending on whether its phase was near −180°, −90°, 0°, or 90°, and whether the gain exceeded 0.4 spikes/s per °/s. The properties of these VN cells suggest that there is substantial complexity in the vestibular responses at this first site of central vestibular processing. These data are compared to that of other species where such vestibular signals play an important role in oculomotor and spinal reflexes. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 99–177, 1997  相似文献   

4.
In the present review, signal-processing capabilities of the canal lateral line organ imposed by its peripheral architecture are quantified in terms of a limited set of measurable physical parameters. It is demonstrated that cupulae in the lateral line canal organ can only partly be described as canal fluid velocity detectors. Deviation from velocity detection may result from resonance, and can be characterized by the extent to which a single dimensionless resonance number, N r , exceeds 1. This number depends on four physical parameters: it is proportional to cupular size, cupular sliding stiffness and canal fluid density, and inversely proportional to the square of fluid viscosity. Situated in a canal, a cupula may benefit from its resonance by compensating for the limited frequency range of water motion that is efficiently transferred into the lateral line canal. The peripheral transfer of hydrodynamic signals, via canal and cupula, leads to a nearly constant sensitivity to outside water acceleration in a bandwidth that ranges from d.c. to a cut-off frequency of up to several hundreds of Hertz, significantly exceeding the cut-off frequency of the lateral line canal. Threshold values of hydrodynamic detection by the canal lateral line organ are derived in terms of water displacement, water velocity, water acceleration and water pressure gradients and are shown to be close to the detection limits imposed by hair cell mechano-transduction in combination with the physical constraints of peripheral lateral line signal transfer. The notion that the combination of canal- and cupular hydrodynamics effectively provides the lateral line canal organ with a constant sensitivity to water acceleration at low frequencies so that it consequently functions as a low-pass detector of pressure gradients, supports the appropriateness of describing it as a sense organ that “feels at a distance” (Dijkgraaf in Biol Rev 38:51–105, 1963)  相似文献   

5.
Ocular vestibular evoked myogenic potentials (oVEMPs) are a recently described clinical measure of the vestibulo-ocular reflex. Studies demonstrating differences in frequency tuning between air-conducted and bone-conducted (BC) oVEMPs suggest a separate vestibular (otolith) origin for each stimulus modality. In this study, 10 healthy subjects were stimulated with BC stimuli using a hand-held minishaker. Frequencies were tested in the range of 50-1,000 Hz using both a constant-force and constant-acceleration method. Subjects were stimulated at the mastoid process and the forehead. For constant-force stimulation at both sites, maximum acceleration occurred around 100 Hz, in differing axes. Both forms of stimulation had low-frequency peaks of oVEMP amplitudes (constant force: mastoid, 80-150 Hz; forehead, 50-125 Hz; constant acceleration: mastoid, 100-200 Hz; forehead, 80-150 Hz), for both sites of application, despite differences in the magnitude and direction of evoked head acceleration. For mastoid stimulation, ocular responses changed from out of phase to in phase for 400 Hz and above. Our results demonstrate that BC stimuli show tuning around 100 Hz, independent of stimulus site, that is not due to skull properties. The findings are consistent with an effect on a receptor with a resonance around 100 Hz, most likely the utricle.  相似文献   

6.
Natural auditory stimuli are characterized by slow fluctuations in amplitude and frequency. However, the degree to which the neural responses to slow amplitude modulation (AM) and frequency modulation (FM) are capable of conveying independent time-varying information, particularly with respect to speech communication, is unclear. In the current electroencephalography (EEG) study, participants listened to amplitude- and frequency-modulated narrow-band noises with a 3-Hz modulation rate, and the resulting neural responses were compared. Spectral analyses revealed similar spectral amplitude peaks for AM and FM at the stimulation frequency (3 Hz), but amplitude at the second harmonic frequency (6 Hz) was much higher for FM than for AM. Moreover, the phase delay of neural responses with respect to the full-band stimulus envelope was shorter for FM than for AM. Finally, the critical analysis involved classification of single trials as being in response to either AM or FM based on either phase or amplitude information. Time-varying phase, but not amplitude, was sufficient to accurately classify AM and FM stimuli based on single-trial neural responses. Taken together, the current results support the dissociable nature of cortical signatures of slow AM and FM. These cortical signatures potentially provide an efficient means to dissect simultaneously communicated slow temporal and spectral information in acoustic communication signals.  相似文献   

7.
Responses to electrical stimulation of the ear applied between round-window and vertex electrodes were recorded in awake guinea-pigs from the same electrodes or from separate vertex/mastoid subdermal needle electrodes. They were averaged during opposite phases of sinusoidal rotation or before and after constant velocity rotation. In both cases the responses were subtracted from each other and yielded differential per- or post-rotatory “electrovestibular” responses. For comparison, responses were also recorded in the same animals and conditions of electrical stimulation during silence and during presentation of a broad-band noise. The difference yielded “electroacoustic” responses. In round-window records, electrovestibular and electroacoustic responses presented typical compound nerve action potential patterns. Electrovestibular responses could be recorded for head angular velocities as low as 3° sec−1 at 0.1 Hz. Response amplitude showed a logarithmic relation to head velocity. Changes in amplitude, as a function of time after rotation, were comparable to those reported for vestibular nerve fibre responses. In vertex/mastoid records, electroacoustic responses presented a sequence of peaks similar to the click-evoked auditory brain-stem responses, and electrovestibular responses presented two peaks, presumably representing contributions of central vestibular structures. Such “electrovestibulography” permits the study of an individual ear and makes available to the investigator a large range of vestibular stimulation conditions.  相似文献   

8.
The mechanical frequency selectivity of the cupula located in the supraorbital lateral line canal and the frequency selectivity of the hair cells driven by the cupula were measured simultaneously in vivo. Laser interferometry was used to measure cupular mechanics and extracellular receptor potentials were recorded to determine hair cell frequency selectivity. Results were obtained from two teleost fish species, the ruffe (Acerina cernua L.), a European temperate zone freshwater fish, and the tropical African knife fish (Xenomiystus nigri). In both species cupular displacement grows with increasing frequency of canal fluid displacement, reaching a maximum at 115 Hz in the ruffe and at 460 Hz in the African knife fish. Cupular best frequencies were independent of temperature. Cut-off frequencies of hair cell frequency selectivity were found to depend on temperature with a Q10 of 1.75, ranging from 116 Hz (4 degrees C) to 290 Hz (20 degrees C), as established in the ruffe. At normal habitat temperatures of the two fish species (ruffe, 4 degrees C; African knife fish, 28 degrees C), this results in hair cell cut-off frequencies that match the two different cupular best frequencies remarkably well. This match suggests adjusted signal transfer in these two peripheral stages of canal lateral line transduction.  相似文献   

9.
 Responses of mechanosensory lateral line units to constant-amplitude hydrodynamic stimuli and to sinusoidally amplitude-modulated water movements were recorded from the goldfish (Carassius auratus) torus semicircularis. Responses were classified by the number of spikes evoked in the unit's dynamic range and by the degree of phase locking to the carrier- and amplitude-modulation frequency of the stimulus. Most midbrain units showed phasic responses to constant-amplitude hydrodynamic stimuli. For different units peri-stimulus time histograms varied widely. Based on iso-displacement curves, midbrain units prefered either low frequencies (≤33 Hz), mid frequencies (50–100 Hz), or high frequencies (≥200 Hz). The distribution of the coefficient of synchronization to constant-amplitude stimuli showed that most units were only weakly phase locked. Midbrain units of the goldfish responded to amplitude-modulated water motions in a phasic/tonic or tonic fashion. Units highly phase locked to the amplitude modulation frequency, provided that modulation depth was at least 36%. Units tuned to one particular amplitude modulation frequency were not found. Accepted: 10 July 1999  相似文献   

10.
Visual evoked potentials (VEPs) were obtained from the surface of teh cat visual cortex in response to contrast reversing sinusoidal gratings. Gratings of different spatial frequency were presented either separately, using signal averaging to increase the signal-to-noise ratio, or as a spatial frequency sweep, in which spatial frequency was sequentially increased every 5 sec during a 40 sec trial (3.99 Hz) or every 3 sec during a 24 sec trial (6.65 Hz). The second harmonic amplitude- and phase-spatial frequency functions derived from averaging or from sweep trials were similar, indicating that the swept stimulus method can be used to provide a rapid and reliable measure of the VEP-spatial frequency function. Intravenous administration of physostigmine, an acetylcholinesterase inhibitor, evoked a spatial frequency-dependent change in VEP amplitude. At 3.99 Hz, responses to low spatial frequencies were enhanced to a greater extent than were responses to high spatial frequency stimuli. At 6.65 Hz, responses to mid-range spatial frequencies were enhanced to a greater extent than were responses to low and high spatial frequency stimuli. VEP phase at both 3.99 and 6.65 Hz was advanced to a greater degree at the higher spatial frequencies. These results indicate that the swept spatial frequency method may be useful in studying spatial frequency-dependent pharmacological effects on the VEP and support the possibility that pharmacological disruption of the cholinergic visual system can produce such changes.  相似文献   

11.
The bilateral pairs of cercal interneurons 10-2a and 10-3a in the cricket terminal ganglion are supposed to constitute a functional system for measuring the direction of air-borne signals, based on their phase-locked responses and selective directional sensitivity. The purpose of this study was to obtain information on the frequency and intensity characteristics and thus the potential working range of this system. By recording intracellularly from the axons of the interneurons we measured responses for stimuli of varying frequency, intensity, and direction. Typically, the stimulus frequency range examined extended from 5 to 600 Hz, at intensities of 0.03–30 mm s−1 (peak-to-peak air-particle velocity). The results show that interneurons 10-2a and 10-3a preserved their level of activity, response type, and direction tuning in the whole frequency range tested. Stimulus-response cross-correlograms revealed that spike trains were synchronized with stimulus waves at even higher frequencies, at least up to 1000 Hz. At a given air-particle velocity in the range of about 2–2.5 logarithmic units, the spike number responses of the interneurons were nearly constant over a wide frequency range. Directional diagrams appeared to be independent of stimulus frequency, both in orientation and in amplitude. Accepted: 14 October 1998  相似文献   

12.
This paper should be viewed as a part of our attempts to arrive at a quantitative understanding of some contradictory experimental phenomena in the vestibular perception. The most popular remains the Steinhausen's model of perception, in which the endolymph circulation, caused by the angular acceleration, is "measured" by the displacement of cupulae diaphragm. Though displacements of the cupulae top were experimentally observed, the thorough mathematical analysis shows that the applicated stop-stimuli were too much over the range of adequate stimulation conditions, so the cupulae was teared off from its normal position. The more natural mechanism of perception was proposed by McLaren & Hillman. It was experimentally demonstrated that the cupulae diaphragm remained margin attached during the normal stimulation conditions only with its bottom moved according to the value of the applicated angular acceleration. A question only arises, how will be the hair cells excited by low level stimulation, when elastic deformations of the cupulae are small and there is no visible shift of the cupulae bottom? The response is to find in the third mechanism formulated by Schmaltz, which connected the excitation of hair cells with the process of endolymph diffusion through the cupulae towards the subcupulae space.  相似文献   

13.
Summary Single neuron responses to sinusoidally amplitude modulated (SAM) signals were studied in the inferior colliculus of the horseshoe bat,Rhinolophus rouxi.57% of the neurons responded to SAM stimuli with periodical discharges synchronized to the modulation cycle. The proportion of cells driven by amplitude modulated signals was independent of the best frequency of the neurons. Best modulation frequencies were at or below 100 Hz in about 70% of the neurons. Synchronized activity could be elicited by modulation frequencies up to 400 Hz.Best SAM responses were observed at stimulus intensities 10 dB above threshold. Generally the BMF of a neuron did not change with intensity. The BMF decreased with decreasing modulation depth of the amplitude modulation.A trend for a topographical organization of neurons according to best modulation frequencies was detected. The results did not reveal any significant specialization of the bat's auditory system for coding of amplitude modulations as compared to other mammals.Abbreviations BF best frequency - BMF best modulation frequency - CF constant frequency - FM frequency modulation - IC inferior colliculus - SAM sinusoidal amplitude modulation - SFM sinusoidal frequency modulation  相似文献   

14.
Short latency vestibular evoked potentials (VsEPs) to angular acceleration impulses (maximal intensity 20,000°/sec2, rise time 1.5–3 msec) were recorded by skin electrodes in cats before and after various surgical procedures. Under general anesthesia, the animals underwent unilateral labyrinthectomy and the VsEPs in response to stimulation of the remaining inner ear in the plane of the lateral semicircular canal (SCC) with the head flexed 20°–25° were recorded as a baseline. The lateral SCC was then selectively obliterated near its ampulla. This induced major changes in the VsEPs recorded in response to stimulation of the remaining inner ear in this plane: the first 2 VsEP waves were absent, and only longer latency, smaller amplitude waves were present in response to both clockwise and counterclockwise stimulation. On the other hand, obliteration of the anterior and posterior SCCs and, in addition, destruction of both maculae were without major effects on the first 2 VsEP waves in response to excitatory stimulation. The results confirm that when the head is flexed 20°–25° and stimulated with angular acceleration impulses in the horizontal plane, the major site of initiation of the VsEPs in cats and probably in man is the crista ampullaris of the lateral SCC.  相似文献   

15.
Summary Secondary solitary chemosensory cells (SCCs) occur scattered within the epidermis of lampreys, teleosts and ranid tadpoles. Counts in representative telost species revealed that SCC's outnumber chemosensory cells organized in taste buds. Therefore, SCCs may be considered the structural substrate of a basic and probably important vertebrate chemosense. However, detailed information on structure, innervation and function is only available from specialized fins in a few teleost species, where SCCs are sufficiently concentrated. The foremost research model has been the anterior dorsal fin (ADF) in rocklings, which contains millions of SCCs but no other specialized chemosensory elements. It has been shown that these ADF-SCCs are innervated from the recurrent facial nerve. Electrophysiological recordings revealed that there is virtually no overlap in stimulus spectrum between the ADF-SCCs and pelvic fin taste buds; SCC responses could only be triggered by dilutions of heterospecific fish body mucus. Results of behavioural experiments indicate that fish mucus is indeed a relevant stimulus. Therefore it is hypothesized that the biological role of the ADF-SCCs is predator avoidance rather than search for food. Whether these findings are valid for rockings only, or can be generalized for the scattered SCC systems in more than 20000 species of fish and in some amphibians, remains an open question. Further investigations on the function and biological roles of the SCC chemosense will be crucially important to improve our understanding of sensory perception and its evolution in aquatic vertebrates.  相似文献   

16.
We simultaneously perturbed visual, vestibular and proprioceptive modalities to understand how sensory feedback is re-weighted so that overall feedback remains suited to stabilizing upright stance. Ten healthy young subjects received an 80 Hz vibratory stimulus to their bilateral Achilles tendons (stimulus turns on-off at 0.28 Hz), a ±1 mA binaural monopolar galvanic vestibular stimulus at 0.36 Hz, and a visual stimulus at 0.2 Hz during standing. The visual stimulus was presented at different amplitudes (0.2, 0.8 deg rotation about ankle axis) to measure: the change in gain (weighting) to vision, an intramodal effect; and a change in gain to vibration and galvanic vestibular stimulation, both intermodal effects. The results showed a clear intramodal visual effect, indicating a de-emphasis on vision when the amplitude of visual stimulus increased. At the same time, an intermodal visual-proprioceptive reweighting effect was observed with the addition of vibration, which is thought to change proprioceptive inputs at the ankles, forcing the nervous system to rely more on vision and vestibular modalities. Similar intermodal effects for visual-vestibular reweighting were observed, suggesting that vestibular information is not a “fixed” reference, but is dynamically adjusted in the sensor fusion process. This is the first time, to our knowledge, that the interplay between the three primary modalities for postural control has been clearly delineated, illustrating a central process that fuses these modalities for accurate estimates of self-motion.  相似文献   

17.
Synopsis Solitary chemosensory cells (SCCs) are present in the skin of a wide spectrum of lower vertebrates, such as lampreys, elasmobranchs, teleost fishes and some amphibians (Kotrschal 1991, Whitear 1992). However, due to the difficulties studying them, virtually all our present knowledge on SCCs stems from the anterior dorsal fin of two species of rocklings (Gadidae). This fin is a peculiar chemosensory organ, carrying approximately 5 million SCCs (Kotrschal et al. 1984, Kotrschal & Whitear 1988). The evidence derived from this model on the structure of SCCs, on their innervation and brain representation, on the flow dynamics at the receptors, on their electrophysiological responses and behavioral relevance indicates that this fin is actively sampling for substances leaked from other fish, such as body mucus and bile components. Possibly, the rockling anterior dorsal fin aids in predators avoidance. To generate hypotheses on the functions and biological roles of the generalized., scattered SCC systems present in most fishes, their structural parameters are put in perspective to taste bud structure and function and to the rockling results. Ecomorphological reasoning serves to establish testable hypotheses: in essence, SCC systems spread over the body surface may be designed as general water samplers, but not for the exact localization of a stimulus source. If the function of the latter is equally dependent on water flow, as the rockling fin organ, fish would have to rely either on the ambient water flow, or speed up their own swimming to optimize SCC input. If SCCs are indeed evolved in the context of predator avoidance, a comparison between life history intervals and between species should reveal, that the system varies in accordance with predation pressure. It is concluded, that in fish, SCCs are certainly an important source of environmental information. If we do not understand functions and biological roles of SCCs, it will not be possible to explain fish behavior and ecology. Evidently, further investigations are urgently needed.  相似文献   

18.
We present a computational study of the fluid dynamics in healthy semicircular canals (SCCs) and the utricle. The SCCs are the primary sensors for angular velocity and are located in the vestibular part of the inner ear. The SCCs are connected to the utricle that hosts the utricular macula, a sensor for linear acceleration. The transduction of angular motion is triggered by the motion of a fluid called endolymph and by the interaction of this fluid with the sensory structures of the SCC. In our computations, we observe a vortical flow in the utricle and in the ampulla (the enlarged terminal part of the SCCs) which can lead to flow velocities in the utricle that are even higher than those in the SCCs. This is a fundamentally new result which is in contrast to the common belief that the fluid velocities in the utricle are negligible from a physiological point of view. Moreover, we show that the wall shear stresses in the utricle and the ampulla are maximized at the positions of the sensory epithelia. Possible physiological and clinical implications are discussed.  相似文献   

19.
Two sinusoidal signals, one with a constant frequency of 13 Hz and the other with a frequency continuously changing from 1 to 6 Hz and back, were presented simultaneously to subjects through spectacles with light-emitting diodes either to both eyes as a product (amplitude modulation of a constant frequency by a variable one) or to each eye separately. Both kinds of variable frequency exposure revealed a rhomboid pattern of the resonance activation of the EEG spectrum, similar to the spectral dynamics of a signal subject to amplitude modulation. This testifies to the key role of EEG amplitude modulation in the responses of the nervous system to variable frequency rhythmic stimuli. Both types of photic stimulation led to a substantial increase in EEG spectral density and improved the subjects' self-rating of the overall state of well-being, activity, and mood. In addition, separate stimulation of each eye led to an improvement in the anxiety and exercise performance indices (the Luscher color test) and a significant correlation between the intensity of EEG responses and changes in the general state. These differences are explained in terms of the involvement of the interhemispheric interaction mechanisms in the processing of complex rhythmic signals by the brain.  相似文献   

20.
It is still an enigma how human subjects combine visual and vestibular inputs for their self-motion perception. Visual cues have the benefit of high spatial resolution but entail the danger of self motion illusions. We performed psychophysical experiments (verbal estimates as well as pointer indications of perceived self-motion in space) in normal subjects (Ns) and patients with loss of vestibular function (Ps). Subjects were presented with horizontal sinusoidal rotations of an optokinetic pattern (OKP) alone (visual stimulus; 0.025-3.2 Hz; displacement amplitude, 8 degrees) or in combinations with rotations of a Bárány chair (vestibular stimulus; 0.025-0.4 Hz; +/- 8 degrees). We found that specific instructions to the subjects created different perceptual states in which their self-motion perception essentially reflected three processing steps during pure visual stimulation: i) When Ns were primed by a procedure based on induced motion and then they estimated perceived self-rotation upon pure optokinetic stimulation (circular vection, CV), the CV has a gain close to unity up to frequencies of almost 0.8 Hz, followed by a sharp decrease at higher frequencies (i.e., characteristics resembling those of the optokinetic reflex, OKR, and of smooth pursuit, SP). ii) When Ns were instructed to "stare through" the optokinetic pattern, CV was absent at high frequency, but increasingly developed as frequency was decreased below 0.1 Hz. iii) When Ns "looked at" the optokinetic pattern (accurately tracked it with their eyes) CV was usually absent, even at low frequency. CV in Ps showed similar dynamics as in Ns in condition i), independently of the instruction. During vestibular stimulation, self-motion perception in Ns fell from a maximum at 0.4 Hz to zero at 0.025 Hz. When vestibular stimulation was combined with visual stimulation while Ns "stared through" OKP, perception at low frequencies became modulated in magnitude. When Ns "looked" at OKP, this modulation was reduced, apart from the synergistic stimulus combination (OKP stationary) where magnitude was similar as during "staring". The obtained gain and phase curves of the perception were incompatible with linear systems prediction. We therefore describe the present findings by a non-linear dynamic model in which the visual input is processed in three steps: i) It shows dynamics similar to those of OKR and SP; ii) it is shaped to complement the vestibular dynamics and is fused with a vestibular signal by linear summation; and iii) it can be suppressed by a visual-vestibular conflict mechanism when the visual scene is moving in space. Finally, an important element of the model is a velocity threshold of about 1.2 degrees/s which is instrumental in maintaining perceptual stability and in explaining the observed dynamics of perception. We conclude from the experimental and theoretical evidence that self-motion perception normally is related to the visual scene as a reference, while the vestibular input is used to check the kinematic state of the scene; if the scene appears to move, the visual signal becomes suppressed and perception is based on the vestibular cue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号