首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 742 毫秒
1.
Renal cell carcinoma (RCC) accounts for around 3% of cancers in the UK, and both incidence and mortality are increasing with the aging population. RCC can be divided into several subtypes: conventional RCC (the most common, comprising 75% of all cases), papillary RCC (15%) and chromophobe RCC (5%). Renal oncocytoma is a benign tumor and accounts for 5% of RCC. Cancer and epigenetics are closely associated, with DNA hypermethylation being widely accepted as a feature of many cancers. In this study the DNA methylation profiles of chromophobe RCC and renal oncocytomas were investigated by utilizing the Infinium HumanMethylation450 BeadChips. Cancer-specific hypermethylation was identified in 9.4% and 5.2% of loci in chromophobe RCC and renal oncocytoma samples, respectively, while the majority of the genome was hypomethylated. Thirty (hypermethylated) and 41 (hypomethylated) genes were identified as differentially methylated between chromophobe RCC and renal oncocytomas (p < 0.05). Pathway analysis identified some of the differentially hypermethylated genes to be involved in Wnt (EN2), MAPK (CACNG7) and TGFβ (AMH) signaling, Hippo pathway (NPHP4), and cell death and apoptosis (SPG20, NKX6-2, PAX3 and BAG2). In addition, we analyzed ccRCC and papillary RCC data available from The Cancer Genome Atlas portal to identify differentially methylated loci in chromophobe RCC and renal oncocytoma in relation to the other histological subtypes, providing insight into the pathology of RCC subtypes and classification of renal tumors.  相似文献   

2.
ABSTRACT

We investigated the expression of irisin in renal cancers using immunocytochemistry. Irisin has been reported to exhibit anticancer properties. The study groups consisted of 22 cases each of control renal tissue, oncocytoma, chromophobe renal cell carcinoma (RCC), clear cell RCC (Fuhrman nuclear grades 1, 2, 3 and 4) and papillary RCC. We evaluated 10 slides for each of 176 cases. Slides were immunostained for irisin and histoscores were calculated for the prevalence and strength of immunostaining. Fuhrman nuclear grade 1, 2, 3 clear cell RCC and papillary RCC exhibited no irisin immunoreactivity. Irisin immunoreactivity was observed in some Fuhrman nuclear grade 4 RCCs. We found a significant decrease in irisin staining in chromophobe RCC compared to the control. Immunoreactivity in the oncocytoma tissue was comparable to the control group. Irisin immunoreactivity in chromophobe RCC decreased and no immunoreactivity was observed in Fuhrman nuclear grade 1, 2, 3 clear cell RCC and papillary RCC. Immunistochemical screening of irisin in renal oncocytomas and renal cancers may be useful for differential diagnosis.  相似文献   

3.
《Epigenetics》2013,8(5):447-457
Loss of the secreted Fzd-related protein 1 (SFRP1) and concurrent alteration of the SFRP1/WNT pathway are frequently observed in human cancers such as in renal cell cancer (RCC). Whether methylation of a SFRP1 CpG island locus in normal human solid tissues is associated with increased tissue specific cancer risk has not been determined to date. Here we measure the cancer risk attributable to SFRP1 DNA methylation in renal tissue. Pyrosequencing of bisulfite treated DNA was used for a case-control study including 120 normal-appearing renal tissues of autopsy specimens and 72 normal-appearing tissues obtained from tumor adjacent areas, and a cross sectional study of 96 RCCs. Association of methylation with demographic risk factor age, clinicopathological parameters and course of patients was investigated. We show significant hypermethylation of a SFRP1 CpG island locus in normal-appearing renal tissues from RCC patients compared with normal-appearing autopsy kidney tissues. Inter quartile analysis revealed a 6-, 13- and 11-fold increased cancer risk for the second, third and fourth quartiles of methylation in the age matched subgroup of tissues (p = 0.001, p = 1.3E-6, p = 6.9E-6). Methylation in autopsy tissues increased with age and methylation in tumors was an independent predictor of recurrence free survival. SFRP1 DNA methylation, accumulates with age in normal-appearing kidney tissues and is associated with increased renal cancer risk, suggesting this CGI sub region as an epigenetic susceptibility locus for RCC. Our data underline the need to further analyze the tissue specific risks conferred by methylated loci for the development of human cancers.  相似文献   

4.
Objectives  Patients with renal cell carcinomas (RCC) have few treatment options, underscoring the importance of developing new approaches such as immunotherapy. However, few tumor associated antigens (TAA), which can be targeted by immunotherapy, have been identified for this type of cancer. von Hippel-Lindau clear cell RCC (VHL−/−RCC) are characterized by mutations in the VHL tumor suppressor gene. Loss of VHL function causes the overexpression of transforming growth factor (TGF)-α, leading us to hypothesize that TGF-α could be a potential TAA for immunotherapy of kidney cancer, which was evaluated in this study. Methods and results  We first confirmed the absent or weak expression of TGF-α in important normal tissues as well as its overexpression in 61% of renal tumors in comparison to autologous normal kidney tissues. In addition, we demonstrated the immunogenicity of TGF-α, by expanding many T cell lines specific for certain TGF-α peptides or the mature TGF-α protein, when presented by major histocompatibility complex (MHC) molecules on the surface of antigen-presenting cells. Interestingly, some of these TGF-α-specific T cells were polyfunctionals and secreted IFN-γ, TNF-α and IL-2. Conclusion  We have shown that TGF-α is a valid candidate TAA, which should allow the development of a targeted immunotherapy.  相似文献   

5.
Among 107 renal cell carcinoma (RCC) patients with histopathologic subtype diagnosis who were treated at Albert Einstein Cancer Center with cytokines over a 10-year period, seven patients had sarcomatoid histology, 63 had clear cell carcinoma, and 10 patients had mixed histology (sarcomatoid and clear cell). Regardless of their histology, patients with a disease free interval of 2 years or more had significantly better survival. None of the patients with sarcomatoid histology responded to therapy. However, several patients with mixed and clear cell histology achieved partial or complete responses following high dose interleukin-2 (IL-2) therapy. The median survival of patients with sarcomatoid histology was the shortest (13.8 months), whilst that of patients with mixed and clear cell histology was much longer (34.8 months and 39.1 months, respectively). This result was statistically significant in both univariate and multivariate survival analysis (P<0.001 andP<0.01, respectively). Patients with mixed and clear cell histology had no significant difference in survival, and their median survival combined was significantly longer than that of patients with sarcomatoid histology (P<0.0001 in univariate analysis,P<0.01 in multivariate analysis). This study suggests that survival with a diagnosis of RCC is predicted by tumor histology and disease free interval, and this impacts on the ability to respond to standard therapy. Patients with mixed and clear cell histology respond to cytokine therapy. Other therapies should be sought for patients with sarcomatoid RCC.  相似文献   

6.
Renal cell carcinoma (RCC) is associated with a high frequency of metastasis and only few therapies substantially prolong survival. Honokiol, isolated from Magnolia spp. bark, has been shown to exhibit pleiotropic anticancer effects in many cancer types. However, whether honokiol could suppress RCC metastasis has not been fully elucidated. In the present study, we found that honokiol suppressed renal cancer cells’ metastasis via dual-blocking epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) properties. In addition, honokiol inhibited tumor growth in vivo. It was found that honokiol could up-regulate miR-141, which targeted ZEB2 and modulated ZEB2 expression. Honokiol reversed EMT and suppressed CSC properties partly through the miR-141/ZEB2 axis. Our study suggested that honokiol may be a suitable therapeutic strategy for RCC treatment.  相似文献   

7.
Tissue transglutaminase (TG2) is the ubiquitously expressed member of transglutaminase family and shown to play a critical role in the development and progression of drug resistance malignancies. We have previously showed the association of TG2 upregulation with progression and metastasis of renal cell carcinoma (RCC) and low disease-free survival. In the present study we further investigate the role of TG2 in cell adhesion, migration and invasion of RCC by silencing TG2 expression in Caki-2 and A-498 primary site and Caki-1 and ACHN metastatic site RCC cell lines. Downregulation of TG2 expression led up to a 60% decrease in actin stress fiber formation and adhesion to β 1 integrin (ITGB1) substrates fibronectin, collagen type I and laminin in both primary and metastatic site RCC cell lines. In addition, treatment with siRNAs against TG2 impaired the migration capacity and cellular invasiveness of ITGB1 substrates in all 4 RCC cell lines. Lastly, the knockdown of TG2 in metastatic Caki-1 cells diminished the expression of CD44, CD73-and CD105 cancer stem cell-like markers. We conclude, for the first time, that TG2 expression is critical for cancer cell adhesion, migration, invasiveness and cancer cell-stemness during RCC progression and dissemination. Therefore, combined targeting of TG2 with drugs widely used in the treatment of RCC may be a promising therapeutic strategy for RCC.  相似文献   

8.
9.
Since the emergence of proteomics methods, many proteins specific for renal cell carcinoma (RCC) have been identified. Despite their usefulness for the specific diagnosis of RCC, such proteins do not provide spatial information on the diseased tissue. Therefore, the identification of cancer-specific proteins that include information on their specific location is needed. Recently, matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) based imaging mass spectrometry (IMS) has emerged as a new tool for the analysis of spatial distribution as well as identification of either proteins or small molecules in tissues. In this report, surgical tissue sections of papillary RCC were analyzed using MALDI-IMS. Statistical analysis revealed several discriminative cancer-specific m/z-species between normal and diseased tissues. Among these m/z-species, two particular proteins, S100A11 and ferritin light chain, which are specific for papillary RCC cancer regions, were successfully identified using LC-MS/MS following protein extraction from independent RCC samples. The expressions of S100A11 and ferritin light chain were further validated by immunohistochemistry of human tissues and tissue microarrays (TMAs) of RCC. In conclusion, MALDI-IMS followed by LC-MS/MS analysis in human tissue identified that S100A11 and ferritin light chain are differentially expressed proteins in papillary RCC cancer regions.  相似文献   

10.
Renal cell carcinoma (RCC) has been characterized by high expression of three types of disialogangliosides: two based on lacto-series type 1 structure (disialosyl Lc4, GalNAc disialosyl Lc4), the other based on globo-series structure (disialosyl globopentaosylceramide; disialosyl Gb5). The present study established a mAb, 5F3, directed to disialosyl Gb5. 5F3 was established after immunization with RCC cell line ACHN. The major disialoganglioside antigen isolated from ACHN cells, showing specific reactivity with 5F3, was characterized unequivocally as disialosyl Gb5 (V3NeuAcIV6NeuAcGb5) by identification of the core structure as globopentaosylceramide (Gb5) after enzymatic and acid hydrolysis, and by 2-dimensional 1H-NMR spectroscopy. 5F3 does not react with monosialosyl Gb5 (V3NeuAcGb5), Gb5, or any lacto-series structures. 5F3 strongly stained 19 of 41 cases of primary RCC tissue. It reacted with proximal tubules (but not distal tubules) of kidney, microglial cells of cerebrum and cerebellum, goblet cells of stomach and intestine, smooth muscle of various organs. It did not react with parenchymatous cells of various organs, except for kidney epithelia and prostate stroma. Immunostaining of RCC tissue by mAb 5F3, in combination with staining by other antibodies directed to globo-series and lacto-series structures, has prognostic significance in defining metastatic potential of RCC.  相似文献   

11.
12.
Rationale: MicroRNAs (miRNAs) are endogenous ~22nt RNAs that play critical regulatory roles in various biological and pathological processes, including various cancers. Their function in renal cancer has not been fully elucidated. It has been reported that miR-196a can act as oncogenes or as tumor suppressors depending on their target genes. However, the molecular target for miR-196a and the underlying mechanism in miR-196a promoted cell migration and invasion in renal cancer is still not clear.Methods: The expression, survival and correlation between miR-196a and BRAM1 were investigated using TCGA analysis and validated by RT-PCR and western blot. To visualize the effect of Bram1 on tumor metastasis in vivo, NOD-SCID gamma (NSG) mice were intravenously injected with RCC4 cells (106 cells/mouse) or RCC4 overexpressing Bram1. In addition, cell proliferation assays, migration and invasion assays were performed to examine the role of miR-196a in renal cells in vitro. Furthermore, immunoprecipitation was done to explore the binding targets of Bram1.Results: TCGA gene expression data from renal clear cell carcinoma patients showed a lower level of Bram1 expression in patients'' specimens compared to adjacent normal tissues. Moreover, Kaplan‑Meier survival data clearly show that high expression of Bram1correlates to poor prognosis in renal carcinoma patients. Our mouse metastasis model confirmed that Bram1 overexpression resulted in an inhibition in tumor metastasis. Target-prediction analysis and dual-luciferase reporter assay demonstrated that Bram1 is a direct target of miR-196a in renal cells. Further, our in vitro functional assays revealed that miR-196a promotes renal cell proliferation, migration, and invasion. Rescue of Bram1 expression reversed miR-196a-induced cell migration. MiR-196a promotes renal cancer cell migration by directly targeting Bram1 and inhibits Smad1/5/8 phosphorylation and MAPK pathways through BMPR1A and EGFR.Conclusions: Our findings thus provide a new mechanism on the oncogenic role of miR-196a and the tumor-suppressive role of Bram1 in renal cancer cells. Dysregulated miR-196a and Bram1 represent potential prognostic biomarkers and may have therapeutic applications in renal cancer.  相似文献   

13.
Cancer-associated fibroblasts (CAFs) are the most prominent cell type within the tumor stroma of many cancers, in particular breast carcinoma, and their prominent presence is often associated with poor prognosis1,2. CAFs are an activated subpopulation of stromal fibroblasts, many of which express the myofibroblast marker α-SMA3. CAFs originate from local tissue fibroblasts as well as from bone marrow-derived cells recruited into the developing tumor and adopt a CAF phenotype under the influence of the tumor microenvironment4. CAFs were shown to facilitate tumor initiation, growth and progression through signaling that promotes tumor cell proliferation, angiogenesis, and invasion5-8. We demonstrated that CAFs enhance tumor growth by mediating tumor-promoting inflammation, starting at the earliest pre-neoplastic stages9. Despite increasing evidence of the key role CAFs play in facilitating tumor growth, studying CAFs has been an on-going challenge due to the lack of CAF-specific markers and the vast heterogeneity of these cells, with many subtypes co-existing in the tumor microenvironment10. Moreover, studying fibroblasts in vitro is hindered by the fact that their gene expression profile is often altered in tissue culture11,12 . To address this problem and to allow unbiased gene expression profiling of fibroblasts from fresh mouse and human tissues, we developed a method based on previous protocols for Fluorescence-Activated Cell Sorting (FACS)13,14. Our approach relies on utilizing PDGFRα as a surface marker to isolate fibroblasts from fresh mouse and human tissue. PDGFRα is abundantly expressed by both normal fibroblasts and CAFs9,15 . This method allows isolation of pure populations of normal fibroblasts and CAFs, including, but not restricted to α-SMA+ activated myofibroblasts. Isolated fibroblasts can then be used for characterization and comparison of the evolution of gene expression that occurs in CAFs during tumorigenesis. Indeed, we and others reported expression profiling of fibroblasts isolated by cell sorting16. This protocol was successfully performed to isolate and profile highly enriched populations of fibroblasts from skin, mammary, pancreas and lung tissues. Moreover, our method also allows culturing of sorted cells, in order to perform functional experiments and to avoid contamination by tumor cells, which is often a big obstacle when trying to culture CAFs.  相似文献   

14.
The Na,K-ATPase or sodium pump carries out the coupled extrusion of Na+ and uptake of K+ across the plasma membranes of cells of most higher eukaryotes. We have shown earlier that Na,K-ATPase-β1 (NaK-β) protein levels are highly reduced in poorly differentiated kidney carcinoma cells in culture and in patients' tumor samples. The mechanism(s) regulating the expression of NaK-β in tumor tissues has yet to be explored. We hypothesized that DNA methylation plays a role in silencing the NaK-β gene (ATP1B1) expression in kidney cancers. In this study, to the best of our knowledge we provide the first evidence that ATP1B1 is epigenetically silenced by promoter methylation in both renal cell carcinoma (RCC) patients’ tissues and cell lines. We also show that knockdown of the von Hippel-Lindau (VHL) tumor suppressor gene in RCC cell lines results in enhanced ATP1B1 promoter AT hypermethylation, which is accompanied by reduced expression of NaK-β. Furthermore, treatment with 5-Aza-2′-deoxycytidine rescued the expression of ATP1B1 mRNA as well as NaK-β protein in these cells. These data demonstrate that promoter hypermethylation is associated with reduced NaK-β expression, which might contribute to RCC initiation and/or disease progression.  相似文献   

15.
B7-H1/PD-L1, a member of the B7 family of immune-regulatory cell-surface proteins, plays an important role in the negative regulation of cell-mediated immune responses through its interaction with its receptor, programmed death-1 (PD-1) 1,2. Overexpression of B7-H1 by tumor cells has been noted in a number of human cancers, including melanoma, glioblastoma, and carcinomas of the lung, breast, colon, ovary, and renal cells, and has been shown to impair anti-tumor T-cell immunity3-8.Recently, B7-H1 expression by pancreatic adenocarcinoma tissues has been identified as a potential prognostic marker9,10. Additionally, blockade of B7-H1 in a mouse model of pancreatic cancer has been shown to produce an anti-tumor response11. These data suggest the importance of B7-H1 as a potential therapeutic target. Anti-B7-H1 blockade antibodies are therefore being tested in clinical trials for multiple human solid tumors including melanoma and cancers of lung, colon, kidney, stomach and pancreas12.In order to eventually be able to identify the patients who will benefit from B7-H1 targeting therapies, it is critical to investigate the correlation between expression and localization of B7-H1 and patient response to treatment with B7-H1 blockade antibodies. Examining the expression of B7-H1 in human pancreatic adenocarcinoma tissues through immunohistochemistry will give a better understanding of how this co-inhibitory signaling molecule contributes to the suppression of antitumor immunity in the tumor''s microenvironment. The anti-B7-H1 monoclonal antibody (clone 5H1) developed by Chen and coworkers has been shown to produce reliable staining results in cryosections of multiple types of human neoplastic tissues4,8, but staining on paraffin-embedded slides had been a challenge until recently13-18. We have developed the B7-H1 staining protocol for paraffin-embedded slides of pancreatic adenocarcinoma tissues. The B7-H1 staining protocol described here produces consistent membranous and cytoplasmic staining of B7-H1 with little background.  相似文献   

16.
《Epigenetics》2013,8(4):579-586
The Na,K-ATPase or sodium pump carries out the coupled extrusion of Na+ and uptake of K+ across the plasma membranes of cells of most higher eukaryotes. We have shown earlier that Na,K-ATPase-β1 (NaK-β) protein levels are highly reduced in poorly differentiated kidney carcinoma cells in culture and in patients' tumor samples. The mechanism(s) regulating the expression of NaK-β in tumor tissues has yet to be explored. We hypothesized that DNA methylation plays a role in silencing the NaK-β gene (ATP1B1) expression in kidney cancers. In this study, to the best of our knowledge we provide the first evidence that ATP1B1 is epigenetically silenced by promoter methylation in both renal cell carcinoma (RCC) patients’ tissues and cell lines. We also show that knockdown of the von Hippel-Lindau (VHL) tumor suppressor gene in RCC cell lines results in enhanced ATP1B1 promoter AT hypermethylation, which is accompanied by reduced expression of NaK-β. Furthermore, treatment with 5-Aza-2′-deoxycytidine rescued the expression of ATP1B1 mRNA as well as NaK-β protein in these cells. These data demonstrate that promoter hypermethylation is associated with reduced NaK-β expression, which might contribute to RCC initiation and/or disease progression.  相似文献   

17.
Zinc is an indispensable trace element which is vital for the functioning of numerous cellular processes like cell replication and growth. Cellular zinc homeostasis is tightly regulated by zinc transporters involved in zinc influx and efflux processes. Notwithstanding, the association of zinc transporters with the aggressiveness of cancer, especially renal cell carcinoma (RCC), is unknown. In view of the fact, the present study was initiated to ascertain whether ZIP10 transporter expression is modulated during RCC progression. A total of 57 samples of RCC and corresponding normal renal tissue were analyzed for ZIP10 gene expression by real time PCR. We observed significantly higher expression of ZIP10 mRNA (P = 0.002) in high grade clear cell RCC tissue (Grades III & IV) as compared to low grade clear cell RCC tissue (Grades I & II). A significant difference was also observed in the ZIP10 expression in different types of RCC (P = 0.001). This is the first study which shows a significant correlation between ZIP10 mRNA expressions with aggressiveness of RCC. Therefore, ZIP10 mRNA expression could be used as a possible biomarker for the aggressive behavior of RCC and a promising target of novel treatment strategies.  相似文献   

18.
The tissue microarray (TMA) technology provides the means for high-throughput analysis of multiple tissues and cells. The technique is used within the Human Protein Atlas project for global analysis of protein expression patterns in normal human tissues, cancer and cell lines. Here we present the assembly of 1 mm cores, retrieved from microscopically selected representative tissues, into a single recipient TMA block. The number and size of cores in a TMA block can be varied from approximately forty 2 mm cores to hundreds of 0.6 mm cores. The advantage of using TMA technology is that large amount of data can rapidly be obtained using a single immunostaining protocol to avoid experimental variability. Importantly, only limited amount of scarce tissue is needed, which allows for the analysis of large patient cohorts 1 2. Approximately 250 consecutive sections (4 μm thick) can be cut from a TMA block and used for immunohistochemical staining to determine specific protein expression patterns for 250 different antibodies. In the Human Protein Atlas project, antibodies are generated towards all human proteins and used to acquire corresponding protein profiles in both normal human tissues from 144 individuals and cancer tissues from 216 different patients, representing the 20 most common forms of human cancer. Immunohistochemically stained TMA sections on glass slides are scanned to create high-resolution images from which pathologists can interpret and annotate the outcome of immunohistochemistry. Images together with corresponding pathology-based annotation data are made publically available for the research community through the Human Protein Atlas portal (www.proteinatlas.org) (Figure 1) 3 4. The Human Protein Atlas provides a map showing the distribution and relative abundance of proteins in the human body. The current version contains over 11 million images with protein expression data for 12.238 unique proteins, corresponding to more than 61% of all proteins encoded by the human genome.  相似文献   

19.
Renal cell carcinoma (RCC) is one of the most lethal urogenital cancers and effective treatment of metastatic RCC remains an elusive target. Cell lines enable the in vitro investigation of molecular and genetic changes leading to renal carcinogenesis and are important for evaluating cellular drug response or toxicity. This study details a fast and easy protocol of establishing epithelial and fibroblast cell cultures or cell lines concurrently from renal cancer nephrectomy tissue. The protocol involves mechanical disaggregation, collagenase digestion and cell sieving for establishing epithelial cells while fibroblast cells were grown from explants. This protocol has been modified from previous published reports with additional antibiotics and washing steps added to eliminate microbial contamination from the surgical source. Cell characterisation was carried out using immunofluorescence and quantitative polymerase chain reaction. Eleven stable epithelial renal tumour cell lines of various subtypes, including rare subtypes, were established with a spontaneous immortalisation rate of 21.6% using this protocol. Eight fibroblast cell cultures grew successfully but did not achieve spontaneous immortalisation. Cells of epithelial origin expressed higher expressions of epithelial markers such as pan‐cytokeratin, cytokeratin 8 and E‐cadherin whereas fibroblast cells expressed high α‐smooth muscle actin. Further mutational analysis is needed to evaluate the genetic or molecular characteristics of the cell lines.  相似文献   

20.
The growth and progression of most solid tumors depend on the initial transformation of the cancer cells and their response to stroma-associated signaling in the tumor microenvironment 1. Previously, research on the tumor microenvironment has focused primarily on tumor-stromal interactions 1-2. However, the tumor microenvironment also includes a variety of biophysical forces, whose effects remain poorly understood. These forces are biomechanical consequences of tumor growth that lead to changes in gene expression, cell division, differentiation and invasion3. Matrix density 4, stiffness 5-6, and structure 6-7, interstitial fluid pressure 8, and interstitial fluid flow 8 are all altered during cancer progression.Interstitial fluid flow in particular is higher in tumors compared to normal tissues 8-10. The estimated interstitial fluid flow velocities were measured and found to be in the range of 0.1-3 μm s-1, depending on tumor size and differentiation 9, 11. This is due to elevated interstitial fluid pressure caused by tumor-induced angiogenesis and increased vascular permeability 12. Interstitial fluid flow has been shown to increase invasion of cancer cells 13-14, vascular fibroblasts and smooth muscle cells 15. This invasion may be due to autologous chemotactic gradients created around cells in 3-D 16 or increased matrix metalloproteinase (MMP) expression 15, chemokine secretion and cell adhesion molecule expression 17. However, the mechanism by which cells sense fluid flow is not well understood. In addition to altering tumor cell behavior, interstitial fluid flow modulates the activity of other cells in the tumor microenvironment. It is associated with (a) driving differentiation of fibroblasts into tumor-promoting myofibroblasts 18, (b) transporting of antigens and other soluble factors to lymph nodes 19, and (c) modulating lymphatic endothelial cell morphogenesis 20.The technique presented here imposes interstitial fluid flow on cells in vitro and quantifies its effects on invasion (Figure 1). This method has been published in multiple studies to measure the effects of fluid flow on stromal and cancer cell invasion 13-15, 17. By changing the matrix composition, cell type, and cell concentration, this method can be applied to other diseases and physiological systems to study the effects of interstitial flow on cellular processes such as invasion, differentiation, proliferation, and gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号