共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Guohai Wu Ronald W. Wilen Albert J. Robertson Lawrence V. Gusta 《Plant physiology》1999,120(2):513-520
3.
S. Przedborski† V. Jackson-Lewis V. Kostic E. Carlson‡ C. J. Epstein‡ J. L. Cadet 《Journal of neurochemistry》1992,58(5):1760-1767
Copper/zinc-superoxide dismutase (CuZn-SOD) transgenic mice overexpress the gene for human CuZn-SOD. To assess the effects of the overexpression of CuZn-SOD on the brain scavenging systems, we have measured the activities of manganese-SOD (Mn-SOD), catalase, and glutathione peroxidase (GSH-Px) in various regions of the mouse brain. In nontransgenic mice, cytosolic CuZn-SOD activity was highest in the caudate-putamen complex; this was followed by the brainstem and the hippocampus. The lowest activity was observed in the cerebellum. In transgenic mice, there were significant increases of cytosolic CuZn-SOD activity in all of these regions, with ratios varying from a twofold increase in the brainstem to 3.42-fold in the cerebellum in comparison with nontransgenic mice. Particulate Mn-SOD was similarly distributed in all brain regions, and its levels also were significantly increased in superoxide dismutase (SOD)-transgenic mice. In the brains of nontransgenic mice, cytosolic catalase activity was similar in all brain regions except the cortex, which showed less than 50% of the activity observed in the other regions. In transgenic mice, cytosolic catalase activity was significantly increased, with the cortex showing the greatest changes (133%) in comparison with nontransgenic mice. The smallest increases were observed in the hippocampus (34%). In contrast to what was observed for SOD and catalase, there were no significant changes in cytosolic GSH-Px activity in any of the brain regions examined. The present results indicate that, in addition to displaying marked increases in the levels of brain CuZn-SOD activity, SOD-transgenic mice also exhibit increases in other enzymes that scavenge oxygen-based radicals.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
4.
铜锌超氧化物歧化酶(Cu, Zn-SOD)表面的赖氨酸经化学修饰后, 酶的稳定性显著提高. 赖氨酸被修饰后, 酶的电荷结构遂发生变化, 从而影响到酶分子电场. 使用FDPB方法(有限差分法求解Poission-Boltzman方程)计算了酶修饰前后的静电场变化, 以及对维持酶的结构稳定起重要作用的Cu, Zn配位结构的影响.结果表明, Cu, Zn配位体的两级离解常数在酶修饰后分别约下降103, 106. 相似文献
5.
Changes in Manganese Superoxide Dismutase Expression After Exposure of the Retina to Intense Light 总被引:5,自引:0,他引:5
Miho Yamamoto Kria Lidia Huaqing Gong Setsuko Onitsuka Takayo Kotani Akihiro Ohira 《The Histochemical journal》1999,31(2):81-87
Manganese superoxide dismutase (Mn-SOD) is a naturally-occurring scavenger of superoxide, one of several reactive oxygen intermediates. To determine if Mn-SOD expression is enhanced as a defensive mechanism against oxidative challenges, such as intense light exposure, rats were exposed to cyclic light (80lux) for 2 weeks, intense light (1,800lux) for 24h, and then again to cyclic light. Experimental and control (exposed to cyclic light only) eyes were enucleated 3h, 1, 3, 7, and 14 days after light challenge. Protein expression was examined immunohistochemically using rabbit antisera against rat Mn-SOD. There was no significant difference between the light-exposed and the control groups in the thickness of the outer nuclear layers. Both retinal pigment epithelial cells and photoreceptor inner segments in the normal retina were labeled for Mn-SOD. Mn-SOD labeling was lost 3h and day 1 after light challenge. It was re-expressed in the retinal pigment epithelial cells 3, 7, and 14 days after the light challenge, and in the photoreceptor inner segments after day 14. These results suggest that the retina might have a protective potential against light damage, in which Mn-SOD may play an important role. 相似文献
6.
The oxidative damage hypothesis proposed for the function gain of copper, zinc superoxide dismutase (SOD1) maintains that both mutant and wild-type (WT) SOD1 catalyze reactions with abnormal substrates that damage cellular components critical for viability of the affected cells. However, whether the oxidative damage of SOD1 is involved in the formation of aggregates rich in SOD1 or not remains elusive. Here, we sought to explore the oxidative aggregation of WT SOD1 exposed to environments containing both ascorbate (Asc) and DNA under neutral conditions. The results showed that the WT SOD1 protein was oxidized in the presence of Asc. The oxidation results in the higher affinity of the modified protein for DNA than that of the unmodified protein. The oxidized SOD1 was observed to be more prone to aggregation than the WT SOD1, and the addition of DNA can significantly accelerate the oxidative aggregation. Moreover, a reasonable relationship can be found between the oxidation, increased hydrophobicity, and aggregation of SOD1 in the presence of DNA. The crucial step in aggregation is neutralization of the positive charges on some SOD1 surfaces by DNA binding. This study might be crucial for understanding molecular forces driving the protein aggregation. 相似文献
7.
Drought-Stress-Induced Changes in Activities of Superoxide Dismutase, Catalase, and Peroxidase in Wheat Species 总被引:64,自引:0,他引:64
Activities of superoxide dismutase (SOD), catalase (CAT), andperoxidase (POD), as well as malondialdehyde (MDA) contentsand solute potentials, were studied in seedlings of seven wheat(Triticum) species (nine genotypes representing three ploidylevels: hexaploid, tetraploid, diploid) subjected to water stressfor 4, 8, and 12 days by withholding water. Solute potentialsof all genotypes were lowered by water stress. In most species,SOD and CAT activities showed an increase or maintenance inthe early phase of drought and then a decrease with furtherincrease in magnitude of water stress. On the contrary, PODactivities and MDA contents greatly increased in response towater stress. Enzymatic activities partly recovered and MDAcontents decreased with rewatering. Under drought, hexaploidwheats had higher POD activities and MDA contents than tetraploidand diploid wheats; solute potentials and activities of SODand CAT, however, were similar among the three groups. Theseresults suggest that water stress alters the equilibrium betweenfree radical production and enzymatic defense reactions in wheatspecies and that hexaploid wheats have less efficient antioxidantsystems (e.g., the ascorbate-glutathione cycle and the nonenzymaticsystem) than tetraploid and diploid wheats. (Received February 9, 1994; Accepted April 22, 1994) 相似文献
8.
Various orders of sequential coimmobilization of superoxide dismutase (SOD), catalase, and horseradish peroxidase (HRP) were tested in order to prepare a multienzyme antioxidant complex of these enzymes. Simultaneous coimmobilization of catalase with a preliminarily cross-linked complex between SOD and HRP was found to be the optimum procedure. The catalytic enzyme activity and working stability of catalase was tested kinetically in the multienzyme complexes prepared by different methods. The effects of ascorbic acid, glutathione, and ethanol on the kinetic parameters of catalase were studied. A possible scheme of H2O2 degradation catalyzed by coimmobilized SOD, catalase, and HRP in the presence of reducing substrates is suggested. 相似文献
9.
超氧化物歧化酶(SOD)是清除生物体内超氧阴离子自由基的主要抗氧化酶家族。基于原核表达系统,成功表达了拟步甲科Tenebrionidae小胸鳖甲Micordera punctipennis胞外铜锌SOD的重组蛋白(本文定义为Trx-His-MpecCu/Zn-SOD)。经Ni 2+亲和层析法纯化重组蛋白后,研究了重组蛋白的部分酶学性质。通过足垫加皮下注射法3次免疫小鼠后,分别用ELISA和Western blot的方法检测抗体效价和抗体特异性。结果表明,重组蛋白主要以包涵体形式存在,纯化后的重组蛋白浓度为1.33 mg·mL^-1,酶活力为27.52 U·mg^-1。Trx-His-MpecCu/Zn-SOD在25~45℃具有比较稳定的酶活性,在35℃最高,同时表现出比较广泛的酸碱耐受性(pH3~12),最适pH为9.0,表明重组蛋白的酶活性相对比较稳定。蛋白免疫法制备的鼠抗MpecCu/Zn-SOD多克隆抗体滴度高于1∶819 200。Western blot结果显示,该抗体能免疫结合重组蛋白Trx-His-MpecCu/Zn-SOD和小胸鳖甲体内天然MpecCu/Zn-SOD,但不能与黄粉虫Tenebrio molitor的总蛋白结合,说明制备的抗体效价较高且特异性较好。本研究结果为小胸鳖甲ecCu/Zn-SOD功能的深入研究奠定了基础。 相似文献
10.
人锰超氧化物歧化酶cDNA的克隆、测序及表达 总被引:4,自引:0,他引:4
用逆转录-聚合酶链反应(RT-PCR)以人肝细胞总RNA为模板, 扩增了人锰超氧化物歧化酶(hMnSOD)的cDNA片段, 将此cDNA克隆到载体pGEM-T中.对重组质粒进行限制酶切分析和序列测定, 确定为含hMnSODcDNA的重组质粒将该hMnSODcDNA重组到表达载体pBV220内, 重组质粒在大肠杆菌DH5-α中表达hMnSOD, 表达产物占菌体总蛋白的14%, 具有持异性SOD酶活性. 相似文献
11.
12.
近江牡蛎铜锌超氧化物歧化酶的纯化及部分性质研究 总被引:7,自引:0,他引:7
经65℃加热,硫酸铵分级沉淀,SephadexG-100凝胶过滤和DE-52柱层析,从近江牡蛎(OstrearivularisGould)软体部分提纯了铜锌超氧化物歧化酶(Cu,Zn-SOD).对其理化性质鉴定表明,用此法纯化的酶纯度均一.该酶系由两个相同亚基组成的二聚体,分子量27.9kD.该酶的紫外吸收峰在272.5nm,红外光谱表现出其氨基酸组成特征,与猪血SOD存在差异.该酶在不同的升温速率下及经不同浓度的H2O2处理后的稳定性与猪血SOD不同.其氨基酸组成与不同来源的同类酶存在差异. 相似文献
13.
人Mn-SOD cDNA的克隆及其在巴斯德毕赤酵母中的表达 总被引:4,自引:0,他引:4
以人肝细胞株(L02)总RNA为模板,用RT-PCR扩增出人锰超氧化物歧化酶(hMn-SOD)cDNA,将其插入含有AOX1基因启动子和α分泌信号肽序列的毕赤酵母表达载体pPIC9k,构建重组质粒pPIC9k-MnSOD,转化毕赤酵母GS115,筛选出整合了多拷贝hMn-SOD基因的Mut^ 表型菌株,摇瓶培养,0.5%甲醇诱导表达。SDS-PAGE分析显示,诱导4d的培养上清中hMn-SOD的表达量约为上清总蛋白的32%,酶比活可达247、7u/mg。hMn-SOD在巴斯德毕赤酵母中实现了分泌性表达。 相似文献
14.
《Free radical research》2013,47(1):349-361
Copper/zinc superoxide dismutase is typically an enzyme of eukaryotes. The presence of the enzyme in the ponyfish symbiont Photobocterium leiognothi and some free living bacteria does not have an immediate explanation. Amino acid sequence alignment of 19 Cu/Zn superoxide disrnutases shows 21 invariant residues in key positions related to maintenance of the β-barrel fold, the active site structure including the electrostatic channel loop, and dimer contacts. Nineteen other residues are invariant in 18 of the 19 sequences. Thirteen of these nearly invariant residues show substitutions in Photobocterium Cu/Zn superoxide dismutase. Copper/zinc superoxide disrnutase from the trematode Schisiosoma mansoni shows an N-terminal sub-domain with a hydrophobic leader peptide. as in human extracellular superoxide dismutase which is a Cu/Zn enzyme. The latter also has a C-terminal sub-domain with preponderance of hydrophilic and positively charged residues. The amino acid sequence of this superoxide dismutase between the N-terminal and C-terminal regions shares many features of cytosolic Cu/Zn superoxide dismutase. including 20 of the 21 invariant residues found in 19 Cu/Zn enzymes, suggesting a similar type of β-barrel fold and active site structure for the extracellular enzyme. 相似文献
15.
《Free radical research》2013,47(1):297-303
The active site in bovine copper, zinc superoxide dismutase (Cu2. Zn2 SOD) has been studied by 111Cd time differential Perturbed Angular Correlation (PAC) on enzyme with Zn2+ replaced by excited 'Cd2+. The PAC spectra obtained for both the oxidized and the reduced form of Cu2Cd2SOD show no asymmetry between the two Zn-sites in the dimeric enzyme. The spectv further reveal that a significant change has taken place at the Zn-site in the reduced form compared to the oxidized form.Semi-empirical calculations based on the Angular Overlap Model (AOM) and coordinates from the crystal structure of the native enzyme are in agreement with the experimental PAC data of the oxidized enzyme. The results indicate that Cd2+ coordinates in the same manner as Zn2+ and that the crystal structure of SOD is valid for the enzyme in solution. The PAC spectrum of the reduced enzyme can be explained by extending the AOM calculations to the enzyme in the reduced form and assuming that the imidazol ring of His61 is no longer bridging the copper and cadmium ions in the reduced state. 相似文献
16.
Activated oxygen or oxygen free radical mediated damage to plants has been established or implicated in many plant stress situations. The extent of activated oxygen damage to potato (Solanum tuberosum L.) tubers during low temperature storage and long-term storage is not known. Quantitation of oxygen free radical mediated damage in plant tissues is difficult. However, it is comparatively easy to quantitate endogenous antioxidants, which detoxify potentially damaging forms of activated oxygen. Three tuber antioxidants, superoxide dismutase, catalase, and α-tocopherol were assayed from four potato cultivars stored at 3°C and 9°C for 40 weeks. Tubers stored at 3°C demonstrated increased superoxide dismutase activities (up to 72%) compared to tubers stored at 9°C. Time dependent increases in the levels of superoxide dismutase, catalase, and α-tocopherol occurred during the course of the 40 week storage. The possible relationship between these increases in antioxidants and the rate of activated oxygen production in the tubers is discussed. 相似文献
17.
《Free radical research》2013,47(1):653-662
The pathophysiology of cold injury was examined by cooling a hind leg of an anesthetized New Zealand white rabbit. A flow probe and a thermocouple were placed in the leg to be cooled to monitor the blood flow and tissue temperature. After baseline measurements, the leg was cooled with a freezing mixture up to 0°C. which was followed by rewarming. The other leg served as control. In the experimental group, liposome-bound superoxide dismutase and catalase were infused through the femoral vein 15 minutes prior to putting the freezing mixture on the leg. Salicylic acid was injected through the femoral vein at the end of some experiments to assay hydroxy radical (OH). Our results demonstrated reduction of local blood flow in cold-exposed leg, indicating development of ischemia. Creatine kinase and lactage dehydrogenase were increased during rewarming in conjunction with hydroxyl radical formation, phospholipid breakdown, and lipid peroxidation. Treatment with superoxide dismutase and catalase reduced OH formation, prevented phospholipid degradation, and decreased creatine kinase. lactate dehydrogenase. and malonaldehyde formation. These results indicate that rewarming of cooled tissue is associated with “rewarming injury” similar to “reperfusion injury”, and that oxygen-derived free radicals play a signidcant role in the pathophysiology of such injury. 相似文献
18.
Strictly anaerobic microorganisms relating to various physiological groups were screened for catalase and superoxide dismutase (SOD) activity. All of the investigated anaerobes possessed SOD activity, necessary for protection against toxic products of oxygen reduction. High specific activities of SOD were found in Acetobacterium woodii and Acetobacterium wieringae. Most of the investigated clostridia and acetogens were catalase-negative. A significant activity of catalase was found in Thermohydrogenium kirishiense, in representatives of the genus Desulfotomaculum, and in several methanogens. Methanobrevibacter arboriphilus had an exceptionally high catalase activity after growth in medium supplemented with hemin. Hemin also produced a strong positive effect on the catalase activity in many other anaerobic microorganisms. In methanogens, the activities of the enzymes of antioxidant defense varied in wide ranges depending on the stage of growth and the energy source. 相似文献
19.
对人锰超氧化物歧化酶(human manganese superoxide dismutase,hMn-SOD)基因剪接异构体进行分析,并检测异构体的表达情况。在GenBank库中检索人锰超氧化物歧化酶基因异构体及编码基因组序列,利用Vector NTI9生物软件进行核酸及蛋白序列比对;利用RT-PCR方法分析锰超氧化物歧化酶基因异构体的表达。结果显示,在GenBank库检索发现有3种人锰超氧化物歧化酶基因异构体,剪接异构的类型为可变的5′剪接位点和外显子盒,各异构体基因内含子均符合"GT-AG"规则。3种基因异构体编码两种异构体蛋白,即222个氨基酸的人锰超氧化物歧化酶蛋白以及中部缺少39个氨基酸的截短型异构蛋白。RT-PCR检测结果表明,剪接异构体hMn-SODb在HEK293T和HSC细胞中的表达比在HepG2细胞中高,未见异构体hMn-SODc的表达。 相似文献
20.
Catalase and Superoxide Dismutase of Root-Colonizing Saprophytic Fluorescent Pseudomonads 总被引:6,自引:3,他引:6 下载免费PDF全文
Root-colonizing, saprophytic fluorescent pseudomonads of the Pseudomonas putida-P. fluorescens group express similar levels of catalase and superoxide dismutase activities during growth on a sucrose- and amino acid-rich medium. Increased specific activities of catalase but not superoxide dismutase were observed during growth of these bacteria on components washed from root surfaces. The specific activities of both enzymes were also regulated during contact of these bacteria with intact bean roots. Increased superoxide dismutase and decreased catalase activities were observed rapidly, by 10 min upon inoculation of cells onto intact bean roots. Catalase specific activity increased with time to peak at 12 h before declining. By 48 h, the cells displayed this low catalase but maintained high superoxide dismutase specific activities. Catalase with a low specific activity and a high superoxide dismutase activity also were present in extracts of cells obtained from 7-day-old roots colonized from inoculum applied to seed. This specific activity of superoxide dismutase of root-contacted cells was about fourfold-higher in comparison to cells grown on rich medium, whereas the specific activity for catalase was reduced about fivefold. A single catalase isozyme, isozyme A, and one isozyme of superoxide dismutase, isozyme 1, were detected during growth of the bacteria on root surface components and during exposure of cells to intact bean roots for 1 h. An additional catalase, isozyme B, was detected from bacteria after exposure to the intact bean roots for 12 h. Catalase isozyme A and superoxide dismutase isozyme 1 were located in the cytoplasm and catalase band B was located in the membrane of P. putida. 相似文献