首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The complex life cycle of digenean trematodes with alternating stages of asexual multiplication and sexual reproduction can generate interesting within-host population genetic patterns. Metacercarial stages found in the second intermediate host are generally accumulated from the environment. Highly mobile second intermediate hosts can sample a broad range of cercarial genotypes and accumulate genetically diverse packets of metacercariae, but it is unclear whether the same would occur in systems where the second intermediate host is relatively immobile and cercarial dispersal is the sole mechanism that can maintain genetic homogeneity at the population level. Here, using polymorphic microsatellite markers, we addressed this issue by genotyping metacercariae of the trematode Gymnophallus sp. from the New Zealand cockle Austrovenus stutchburyi. Despite the relatively sessile nature of the second intermediate host of Gymnophallus, very high genotypic diversity of metacercariae was found within cockles, with only two cockles harbouring multiple copies of a single clonal lineage. There was no evidence of population structuring at the scale of our study, suggesting the existence of a well-mixed population. Our results indicate that (i) even relatively sessile second intermediate hosts can accumulate a high diversity of genotypes and (ii) the dispersal ability of cercariae, whether passive or not, is much greater than expected for such small and short-lived organisms. The results also support the role of the second intermediate host as an accumulator of genetic diversity in the trematode life cycle.  相似文献   

2.
The selective pressure exerted by parasites on their hosts will to a large extent be influenced by the abundance or biomass of parasites supported by the hosts. Predicting how much parasite biomass can be supported by host individuals or populations should be straightforward: ultimately, parasite biomass must be controlled by resource supply, which is a direct function of host metabolism. Using comparative data sets on the biomass of metazoan parasites in vertebrate hosts, we determined how parasite biomass scales with host body mass. If the rate at which host resources are converted into parasite biomass is the same as that at which host resources are channelled toward host growth, then on a log-log plot parasite biomass should increase with host mass with a slope of 0.75 when corrected for operating temperature. Average parasite biomass per host scaled with host body mass at a lower rate than expected (across 131 vertebrate species, slope=0.54); this was true independently of phylogenetic influences and also within the major vertebrate groups separately. Since most host individuals in a population harbour a parasite load well below that allowed by their metabolic rate, because of the stochastic nature of infection, it is maximum parasite biomass, and not average biomass, that is predicted to scale with metabolic rate among host species. We found that maximum parasite biomass scaled isometrically (i.e., slope=1) with host body mass. Thus, larger host species can potentially support the same parasite biomass per gram of host tissues as small host species. The relationship found between maximum parasite biomass and host body mass, with its slope greater than 0.75, suggests that parasites are not like host tissues: they are able to appropriate more host resources than expected from metabolically derived host growth rates.  相似文献   

3.
海伦撂荒地植物生物量的季节变化   总被引:3,自引:1,他引:3  
对海伦20年和7年撂荒地的地上生物量和地下生物量,以及农田地上生物量和地下生物量的田间定位调查和实验室分析对比研究结果表明,随着农田撂荒时间的延长,植被生物量(根生物量和地上生物量之和)具有明显增加趋势;地上生物量之间的差异不显著,而根生物量的差异达到显著水平,表明不同撂荒年限样地的生物量差异主要体现在根生物量,撂荒时间越长,生态系统抵抗环境胁迫的能力越强,生态系统越稳定,根生物量的周转值越小,表明生态系统具有更加稳定地供应养分和能量的能力。  相似文献   

4.
In order to determine the seasonal growth and biomass ofTrapa japonica Flerov, field observations were carried out at Ojaga-ike Pond, Chiba, Japan, during 1979 and 1980. In spring, the plant showed exponential growth (c. 0.080 g g−1 day−1) and shoot elongation was as rapid as 10 cm day−1. The plant attained its maximum biomass (380.5±35.1 g m−2) in late August, and about 50% of this was concentrated in the topmost 30-cm stratum (645.7±33.1 g m−3); maximum total stem length exceeded 6m. The plant produced large (500–800 mg per fruit), but small numbers of nut-like fruit (maximum, 5 fruits per rosette). Defoliation occurred almost linearly with time at a rate of 30.6 leaves m−2 day−1; annual net leaf production was estimated to be about twice as large as the seasonal maximum leaf biomass. While the number of leaves per rosette showed moderate seasonal change, rosette density, rosette area and leaf dry weight changed considerably during the year. From the negative log-log correlation between mean total leaf dry weight per rosette and rosette density, density-dependent rosette growth was assumed. The cause of the wide spread of this species in aquatic habitats is briefly discussed in terms of its seed size and morphology.  相似文献   

5.
6.
7.
Coevolution of parasite virulence and host life history   总被引:1,自引:0,他引:1  
Most models about the evolutionary interactions between a parasite's virulence and its host's life history neglect two potentially important aspects: epidemiological and coevolutionary feedback. We emphasize their importance by presenting models that describe the coevolution of a semelparous host's age at reproduction and a parasite's virulence in different environmental conditions. In particular, we first show that an epidemiological feedback will lead to a nonmonotonic response of the host's age at reproduction as virulence increases. We then show that the coevolutionary pressure on virulence can lead to complex associations between the host's life history and the parasite's virulence, which would not be expected with more traditional models of host or parasite evolution. Thus, for example, a high mortality rate of the host favours avirulent parasites and late reproduction of the host when the environmental conditions allow the host to grow rapidly, but early reproduction and high virulence when growth is slow.  相似文献   

8.
The frequent co-occurrence of two or more genotypes of the same parasite species in the same individual hosts has often been predicted to select for higher levels of virulence. Thus, if parasites can adjust their level of host exploitation in response to competition for resources, mixed-clone infections should have more profound impacts on the host. Trematode parasites are known to induce a wide range of modifications in the morphology (size, shell shape or ornamentation) of their snail intermediate host. Still, whether mixed-clone trematode infections have additive effects on the phenotypic alterations of the host remains to be tested. Here, we used the snail Potamopyrgus antipodarum-infected by the trematode Coitocaecum parvum to test for both the general effect of the parasite on host phenotype and possible increased host exploitation in multi-clone infections. Significant differences in size, shell shape and spinosity were found between infected and uninfected snails, and we determined that one quarter of naturally infected snails supported mixed-clone infections of C. parvum. From the parasite perspective, this meant that almost half of the clones identified in this study shared their snail host with at least one other clone. Intra-host competition may be intense, with each clone in a mixed-clone infection experiencing major reductions in volume and number of sporocysts (and consequently multiplication rate and cercarial production) compared with single-clone infections. However, there was no significant difference in the intensity of host phenotype modifications between single and multiple-clone infections. These results demonstrate that competition between parasite genotypes may be strong, and suggest that the frequency of mixed-clone infections in this system may have selected for an increased level of host exploitation in the parasite population, such that a single-clone is associated with a high degree of host phenotypic alteration.  相似文献   

9.
Zoite migration during infection: parasite adaptation to host defences   总被引:1,自引:0,他引:1  
The apicomplexan parasite Eimeria tenella has evolved a number of strategies for migration into different compartments of the intestinal tissue during its life cycle. These migration events are associated intricately with pathogenesis and are currently of great interest to coccidiologists. Using evidence from in vivo studies and recent work on the dynamics of gut cell turnover, Peter Daszak suggests that E. tenella zoite migration might be viewed as parasite evolutionary adaptation to evade the host innate immune responses (resistance) and deal with the complex, dynamic nature of gut epithelial tissue.  相似文献   

10.
For parasites that require multiple hosts to complete their development, genetic interplay with one host may impact parasite transmission and establishment in subsequent hosts. In this study, we used microsatellite loci to address whether the genetic background of snail intermediate hosts influences life-history traits and transmission patterns of dioecious trematode parasites in their definitive hosts. We performed experimental Schistosoma mansoni infections utilizing two allopatric populations of Biomphalaria glabrata snails and assessed intensities and sex ratios of adult parasites in mouse definitive hosts. Our results suggest that the genetic background of hosts at one point in a parasite’s life cycle can influence the intensities and sex ratios of worms in subsequent hosts.  相似文献   

11.
Resistance to infection is a multifactorial trait, and recent work has suggested that the gut microbiota can also contribute to resistance. Here, we performed a fecal microbiota transplant to disentangle the contribution of the gut microbiota and host genetics as drivers of resistance to the intestinal nematode Heligmosomoides polygyrus. We transplanted the microbiota of a strain of mice (SJL), resistant to H. polygyrus, into a susceptible strain (CBA) and vice-versa. We predicted that if the microbiota shapes resistance to H. polygyrus, the FMT should reverse the pattern of resistance between the two host strains. The two host strains had different microbiota diversities and compositions before the start of the experiment, and the FMT altered the microbiota of recipient mice. One mouse strain (SJL) was more resistant to colonization by the heterologous microbiota, and it maintained its resistance profile to H. polygyrus (lower parasite burden) independently of the FMT. On the contrary, CBA mice harbored parasites with lower fecundity during the early stage of the infection, and had an up-regulated expression of the cytokine IL-4 (a marker of H. polygyrus resistance) after receiving the heterologous microbiota. Therefore, while host genetics remains the main factor shaping the pattern of resistance to H. polygyrus, the composition of the gut microbiota also seems to play a strain-specific role.  相似文献   

12.
Interspecific variation in parasite species richness among host species has generated much empirical research. As in comparisons among geographical areas, controlling for variation in host body size is crucial because host size determines resource availability. Recent developments in the use of species–area relationships (SARs) to detect hotspots of biodiversity provide a powerful way to control for host body size, and to identify ‘hot’ and ‘cold hosts’ of parasite diversity, i.e. hosts with more or fewer parasites than expected from their size. Applying SAR modelling to six large datasets on parasite species richness in vertebrates, we search for hot and cold hosts and assess the effect of other ecological variables on the probability that a host species is hot/cold taking body size (and sampling effort) into account. Five non‐sigmoid SAR models were fitted to the data by optimisation; their relative likelihood was evaluated using the Bayesian information criterion, before deriving an averaged SAR function. Overall, the fit between the five SAR models and the actual data was poor; there was substantial uncertainty surrounding the fitted models, and the best model differed among the six datasets. These results show that host body size is not a strong or consistent determinant of parasite species richness across taxa. Hotspots were defined as host species lying above the upper limit of the 80% confidence interval of the averaged SAR, and coldspots as species lying below its lower limit. Our analyses revealed (1) no apparent effect of specific ecological factors (i.e. water temperature, mean depth range, latitude or population density) on the likelihood of a host species being a hot or coldspot; (2) evidence of phylogenetic clustering, i.e. hosts from certain families are more likely to be hotspots (or coldspots) than other species, independently of body size. These findings suggest that host phylogeny may sometimes outweigh specific host ecological traits as a predictor of whether or not a host species harbours more (or fewer) parasite species than expected for its size.  相似文献   

13.
Britton JR  Pegg J  Williams CF 《PloS one》2011,6(10):e26365
The infection consequences of the introduced cestode fish parasite Bothriocephalus acheilognathi were studied in a cohort of wild, young-of-the-year common carp Cyprinus carpio that lacked co-evolution with the parasite. Within the cohort, parasite prevalence was 42% and parasite burdens were up to 12% body weight. Pathological changes within the intestinal tract of parasitized carp included distension of the gut wall, epithelial compression and degeneration, pressure necrosis and varied inflammatory changes. These were most pronounced in regions containing the largest proportion of mature proglottids. Although the body lengths of parasitized and non-parasitized fish were not significantly different, parasitized fish were of lower body condition and reduced weight compared to non-parasitized conspecifics. Stable isotope analysis (δ(15)N and δ(13)C) revealed trophic impacts associated with infection, particularly for δ(15)N where values for parasitized fish were significantly reduced as their parasite burden increased. In a controlled aquarium environment where the fish were fed ad libitum on an identical food source, there was no significant difference in values of δ(15)N and δ(13)C between parasitized and non-parasitized fish. The growth consequences remained, however, with parasitized fish growing significantly slower than non-parasitized fish, with their feeding rate (items s(-1)) also significantly lower. Thus, infection by an introduced parasite had multiple pathological, ecological and trophic impacts on a host with no experience of the parasite.  相似文献   

14.
Animal migration impacts organismal health and parasite transmission: migrants are simultaneously exposed to parasites and able to reduce infection for both individuals and populations. However, these dynamics are difficult to study; empirical studies reveal disparate results while existing theory makes assumptions that simplify natural complexity. Here, we systematically review empirical studies of migration and infection across taxa, highlighting key gaps in our understanding. Next, we develop a unified evolutionary framework incorporating different selective pressures of parasite–migration interactions while accounting for ecological complexity that goes beyond previous theory. Our framework generates diverse migration–infection patterns paralleling those seen in empirical systems, including partial and differential migration. Finally, we generate predictions about which mechanisms dominate which empirical systems to guide future studies. Our framework provides an overarching understanding of selective pressures shaping migration patterns in the context of animal health and disease, which is critical for predicting how environmental change may threaten migration.  相似文献   

15.
16.
寄生虫与宿主的关系   总被引:1,自引:0,他引:1  
对寄生虫与宿主的关系进行论述,探求寄生关系的实质,明确这二者之间的关系是认识寄生虫病发生发展规律,更好地防治寄生虫病的基础.  相似文献   

17.
18.
As a means of biologically controlling Mikania micrantha H.B.K. in South China, the influence of the obligate parasite Cuscuta campestris Yuncker on its growth and biomass allocation was studied using pot trials. The effect of C. campestris on M. micrantha became greater with time, such that the host biomass was only 1.8% of the control after 60 d of parasitism and by day 72 almost all the aerial parts of the host plants had died. Afterwards, the hosts and the remnant parasite shoots re-grew but the total biomass of the hosts was still significantly lower than that of the controls. The infection by C. campestris greatly increased the shoot:root dry weight ratio and the allocation to stems of the infected plants from 40 to 50 d after parasitization, but decreased their relative growth rate and unit leaf rate starting from 20 d after parasitization and their leaf area ratio from 30 to 60 d after parasitization. Cuscuta campestris significantly reduced the total biomass, changed the biomass allocation patterns, and completely inhibited the flowering of the infected M. micrantha plants. These results indicate that the use of C. campestris could be a potentially effective way of controlling M. micrantha.  相似文献   

19.
Whether or not organisms become infected by parasites is likely to be a complex interplay between host and parasite genotypes, as well as the physiological condition of both species. Details of this interplay are very important because physiology‐driven susceptibility has the potential to confound genetic coevolutionary responses. Here we concentrate on how physiological aspects of infection may interfere with genetic‐based infectivity in a snail–trematode (Potamopyrgus antipodarum/Microphallus sp.) interaction by asking: (1) how does host condition affect susceptibility to infection? and (2) how does host condition affect the survival of infected individuals? We manipulated host condition by experimentally varying resources. Contrary to our expectation, host condition did not affect susceptibility to infection, suggesting that genetics are more important than physiology in this regard. However, hosts in poor condition had higher parasite‐induced mortality than hosts in good condition. Taken together, these results suggest that coevolutionary interactions with parasites may depend on host condition, not by altering susceptibility, but rather by affecting the likelihood of parasite transmission.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号