首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Males of the predaceous stink bug Podisus maculiventris (Say) (Heteroptera: Pentatomidae: Asopinae) emit low frequency tremulatory signals. Laser vibrometry was used to record and analyze naturally emitted signals, focusing on variation in signal velocity and frequency during transmission through plants (Phaseolus vulgaris L. and Plumbago auriculata Lam.) as a function of distance from the vibrational source. Signal velocity varied individually between 2 and 15 mm/s recorded on a plant close to the calling male and decreased by 0.3 to 1.5 dB/cm on bean and 0.3 to 0.9 dB/cm on plumbago. The dominant frequency of signals was variable at frequencies below 50 Hz. On bean frequencies centered around 10 Hz or 20 Hz were dominant for signals recorded at the source. Transmission through bean resulted in an increase in the 20 Hz peak relative to other frequencies in the signal. Variation of the dominant frequencies of signals transmitted through plumbago stems were more predictable, showing typical changes in amplitude relative to the distance from the source. The regular variation of the dominant frequency along the stem with linear increase of signal velocity at decreasing distance from the source may provide plant-dwelling insects with information about the distance to the calling individual.  相似文献   

2.
The female calling song (FCS) of the southern green stink bug Nezara viridula is composed of vibrational pulse trains that include either short pulses and a long pulse (FCS-1) or just short pulses (FCS-2). Their function in communication was studied by investigating male vibratory responses to natural and artificial signals on artificial and natural substrates. On a loudspeaker membrane, FCS-1 triggered in males from a Slovene and a French population significantly more courtship songs (MCrS) than FCS-2. Experiments with artificial signals showed that male responses are modulated by the duration of pulse trains and pulse repetition time. On a bean plant, males of both populations responded in the same way to the two types of female calling song pulse trains. Moreover, a laser vibrometer study of the transmission of different natural and artificial vibratory signals through the bean plant showed that the pulses of a high repetition rate are prolonged and fused at distances from the emitter. We conclude that female calling song pulse trains of different temporal structure have the same function in vibrational communication of the species. The temporal and spectral structures of the female calling songs of N. viridula are discussed in terms of effective transmission through plants.  相似文献   

3.
Substrate-borne vibrational communication is a common mode of information transfer in many invertebrate groups, with vibration serving as both primary and secondary signal channels in Orthopterans. The Cook Strait giant weta, Deinacrida rugosa (Orthoptera: Anostostomatidae), is an endangered New Zealand insect whose communication system has not been previously described. After field observations of intraspecific interactions in D. rugosa provided preliminary evidence for substrate-borne vibrational communication in the species, we sought to identify the following: vibrational signal structure, the mechanism of signal production, whether signal production is a sexually dimorphic trait, whether substrate-borne signals encode information regarding sender size, the primary social context in which vibration is utilized and finally, the function of vibrational signaling in the species. We used laser Doppler vibrometry to show that D. rugosa males produce low frequency (DF?=?37.00?±?1.63 Hz) substrate-borne vibrations through dorso-ventral tremulation. Rarely produced by females, male signals appear to target rivals while both are in the direct physical presence of a female. Tremulatory responses to playbacks were only produced by males in male-male-female trial contexts, and neither sex exhibited walking vibrotaxis to playback signals, indicating that substrate-borne vibrational signals are not likely a component of the courtship repertoire. While we found that vibrational signal structure was not closely related to signaler size, males that initiated male-male signaling bouts held a significant advantage in contests.  相似文献   

4.
Inter-plant vibrational communication in a leafhopper insect   总被引:2,自引:0,他引:2  
Vibrational communication is one of the least understood channels of communication. Most studies have focused on the role of substrate-borne signals in insect mating behavior, where a male and a female establish a stereotyped duet that enables partner recognition and localization. While the effective communication range of substrate-borne signals may be up to several meters, it is generally accepted that insect vibrational communication is limited to a continuous substrate. Until now, interplant communication in absence of physical contact between plants has never been demonstrated in a vibrational communicating insect. With a laser vibrometer we investigated transmission of natural and played back vibrational signals of a grapevine leafhopper, Scaphoideus titanus, when being transmitted between leaves of different cuttings without physical contact. Partners established a vibrational duet up to 6 cm gap width between leaves. Ablation of the antennae showed that antennal mechanoreceptors are not essential in detection of mating signals. Our results demonstrate for the first time that substrate discontinuity does not impose a limitation on communication range of vibrational signals. We also suggest that the behavioral response may depend on the signal intensity.  相似文献   

5.
Vibrational communication is important for successful mating in various stink bugs species. The vibrational signals from males and females of Dichelops melacanthus Dallas (Hemiptera: Pentatomidae) are recorded from a nonresonant substrate (i.e. a loudspeaker membrane) to characterize the temporal and spectral properties of these vibrational signals, as well as on a resonant substrate (i.e. bean plants) to obtain information about how these signals are altered when they are transmitted through the plants. On the loudspeaker membrane, D. melacanthus males and females emit only one male or one female song, respectively. However, when the insects are placed on bean leaves, a more complex repertoire is recorded, with three different songs for each sex. The first female and male songs appear to have calling functions and the third male and female songs are emitted during courtship. The second female and male songs are emitted after the first song, although their functions in mating behaviour are not clear. The identified repertoire is similar to those of other Neotropical stink bugs, starting with songs 1 and 2 and developing into song 3. Frequency modulation is observed in the female songs recorded from the loudspeaker membrane and the plants. The signals recorded from plants present higher harmonic peaks compared with the signals recorded from the loudspeaker membrane. The presence of species and sex‐specific songs during mating confirms the important role of vibrational communication in mate location and recognition. The temporal and spectral characteristic signals are influenced by the substrate used to record the songs emitted by D. melacanthus.  相似文献   

6.
Vibratory signals of four Neotropical stink bug species   总被引:3,自引:0,他引:3  
Abstract. The stink bugs Acrosternum impicticorne, Euschistus heros, Piezodorus guildinii and Thyanta perditor (Heteroptera: Pentatomidae) feed and mate on the same host plants and constitute major components of the soybean pest complex in Brazil. During mating, they communicate with species and sex-specific vibratory signals whose spectral properties are characteristic of the subfamily Pentatominae. Songs differ between species in the time structure and amplitude modulation of their units. The repertoire of A. impicticorne, E. heros and T. perditor fits into the scheme described for most investigated stink bugs: females call with a sequence of pulses that differ between species in their duration and repetition rate, and males respond with courtship songs of species-specific temporal structure and amplitude modulation of complex pulse trains. Female calling and male courtship songs are the main constituents of vibratory communication between sexes in the mating period. The other vibratory emissions appear to represent either transitional songs, support recognition during close-range courtship, or are involved in male rivalry. The first recorded vibratory emissions of P. guildinii confirm that the genus Piezodorus represents an exception within the Pentatominae. Irregularly repeated female vibratory signals of P. guildinii do not trigger typical male courtship responses as they would in the small stink bugs Holcostethus strictus and Murgantia histrionica. On the other hand, complex rivalry with extensive frequency modulation of pulses, as also described in Piezodorus lituratus, opens a new insight into the role of vibratory communication in stink bugs.  相似文献   

7.
Vibratory communication during reproductive behaviour is less well described in predatory (Asopinae) than in phytophagous (Pentatominae) stink bugs. Different steps in the mating behaviour of the predatory stink bug Podisus nigrispinus (Dallas) (Hemiptera: Pentatomidae; Asopinae) are described in the present study, together with vibratory signals emitted on artificial and natural substrate during courtship and copulation. Vibratory signals in Podisus nigrispinus have a decisive role in copulation success and are produced in both sexes by abdominal vibration and tremulation. In P. nigrispinus, one species‐specific female and two male songs, which do not show the calling function typically found in phytophagous stink bugs, are produced by abdominal vibration and are emitted during reproductive behaviour. Additionally, P. nigrispinus produces tremulatory signals that have no species or sex specificity. Tremulatory signals emitted spontaneously on a plant as a sequence of readily repeated pulses are similar to the calling songs of the Pentatominae stink bug. These signals may carry information on the presence of a mate; however, in other behavioural contexts, they may have a different function, such as advertisement or even alarm signals. Plants transmit vibratory signals produced by both mechanisms as a low‐pass filter, increasing the amount of low‐frequency components. The results of the present study raise important questions about the interaction between chemical and vibratory signals in the mating behaviour of predatory stink bugs.  相似文献   

8.
Abstract  Here the first record of communication through substrate-borne vibrations for the Lophopidae family is reported. The signals from Magia subocellata that the authors recorded were short calls with a decreasing frequency modulation. Acoustic vibrations have been observed for other families within the Hemiptera and a scenario concerning the historical use of vibrational communication within the Hemiptera is tested using a phylogenetic inference. The most parsimonious hypothesis suggests that substrate-borne communication is ancestral for the hemipteran order and highlights the groups for which future acoustic research should be undertaken.  相似文献   

9.
The effect of vibratory disturbance on sexual behaviour and substrate-borne sound communication of the southern green stink bug, Nezara viridula L. was studied. Disturbance signals do not change the time N. viridula males need to locate the source of vibratory signals, but decrease the number of males responding with the calling and courtship song to calling females. Female N. viridula proceed calling during stimulation with disturbance signals but some of them change the song rhythm by skipping one or more signal intervals or emitting the repelling signals. The number of females which change the dominant frequency of the calling song decreases proportionally with increasing differences between the dominant frequency of the disturbance signals and the emitted female calling song. Variation of the song dominant frequency probably serves females to avoid interference by increasing the signal to noise ratio. Signal duration and repetition rate do not change significantly when the female is stimulated with the disturbance signals. This indicates that frequency shift by calling females is the main strategy for reducing interference by competitive signalers in N. viridula vibrational communication.  相似文献   

10.
Abstract. Males of the harlequin bug, Murgantia histrionica (Hahn), produce five different vibrational songs, whereas females produce one song. Songs differ from those of other stink bugs primarily in their species‐specific temporal characteristics. The broad band male courtship songs of M. histrionica are achieved by a combination of different frequency modulated and/or narrow band subunits, with several higher harmonic frequencies. Males rather than females initiate substrate‐borne vibrational communication, and the longer‐range calling songs found typically in other pentatomid species are lacking. Interindividual differences in song temporal and spectral characteristics are discussed. Transmission of vibrational songs through a cabbage head is more efficient along veins than along lamina. Attenuation of signals transmitted through veins is low and similar to that reported previously for plant stalks. On the leaf vein, distances between peak amplitude minima and maxima are different for the dominant and subdominant frequencies. At any distance from the vibration source, a different relationship between spectral peak amplitudes can be recorded. Resolution of these differences, together with velocity differences between signals recorded on the vein and lamina, may help small stink bugs to estimate distance and to locate each other on a plant.  相似文献   

11.
12.
Greenhouse and laboratory studies were conducted to evaluate feeding activity and superficial damage to soybean seed by the brown-winged stink bug, Edessa meditabunda (F.), and the Neotropical brown stink bug, Euschistus heros (F.). Soybean plants (cv. BRS 282), at R6 stage of development were used. Thirty pairs of each species were used individually for 48?h. Two daily observations (9:00?AM and 3:00?PM) were taken to record the number of bugs (feeding/resting) on plant parts. Harvested seeds imbibed in tetrazolium solution were photographed for measurement of the damaged surface. Adult E. meditabunda significantly preferred soybean stems (19.7 bugs) to pods (2.7). Feeding/resting was similar at 9:00?AM (mean number of 28.0 bugs) and 3:00?PM (24.3). Euschistus heros equally fed/stayed on stems (7.3 bugs) and pods (6.9), although most bugs (12.3) remained on the cage net; feeding/resting on all plant structures amounted to 13.7 bugs at 9:00?AM and 17.7 bugs at 3:00?PM. Amylase activity was greater for E. heros (41.61?±?0.89?U/mg) and almost none for E. meditabunda (2.35?±?0.14?U/mg). The superficial damage to seeds was significantly greater for E. meditabunda (22. 9?mm2) compared to E. heros (12.5?mm2). However, E. meditabunda caused less shrinkage of the seed tegument, while E. heros damage was deeper and seeds showed reduction in size.  相似文献   

13.
Many insects and other arthropods communicate using plant‐borne vibrational signals. Vibration transmission along plant stems imposes a frequency filter on signals, and may cause signal degradation from reflected waves. Furthermore, different plant species and plant parts can differ in their transmission properties. This variability in the communication channel may constrain the reliability of signals, with important consequences for the evolution of vibrational communication systems, as well as for researchers studying signal variation at an individual, population, or species level. In this study we estimate the magnitude of substrate‐related variation in the mate advertisement signals of a treehopper (Hemiptera: Membracidae: Umbonia crassicornis). We used laser vibrometry to record the signals produced by 25 adult males on two different plant species, one host and one non‐host. We recorded male signals on two plants per species; within each plant, signals were recorded simultaneously at two distances. We measured three spectral characteristics (dominant frequency, relative amplitude of the signals’ high and low frequency components, frequency at the end of the signal) and two temporal characteristics (signal duration and click repetition rate). Spectral characteristics were influenced by the distance at which the signal was recorded, and this influence varied among plant species and individuals. Temporal characteristics were less influenced, although signal length was influenced by distance, an effect that varied among individual plants. Overall, the magnitude of the effects was small. Furthermore, there was significant within‐individual repeatability of almost all signal traits across different plant substrates. Signal characteristics were thus reliably associated with individuals, even when they signaled on different plants.  相似文献   

14.
In solitary plant-dwelling stink bug species, success depends crucially on efficient mate location and recognition, mediated by signals transmitted through the plant. All stink bugs investigated so far communicate with species and sex-specific narrow-band calling and courtship song signals produced by abdomen vibration. Calling songs of lower specificity are characterized by readily repeated units emitted with regular repetition rate from the same place on a plant, while courtship songs take place at shorter distances in the process of species and sex recognition, together with signals of other modalities. Signal spectra with about 100Hz fundamental frequency and harmonics below 1000Hz are tuned to the resonant properties of their green host plants. The majority of the identified leg vibratory receptor cells and the underlying ventral cord interneurons respond best in the frequency range below 500Hz. Green plants with low pass filtering properties transmit optimally signals with a dominant frequency around 100Hz and strongly attenuate vibrations above 600Hz. Accurate tuning of signal spectral properties with the plant's mechanical characteristics enables communication over several meter distances, with dispersive bending waves running through the plant's rod-like structures under standing wave conditions.  相似文献   

15.
Mating behaviour of Scaphoideus titanus Ball, the vector of the grapevine disease Flavescence dorée, was investigated in order to determine the role of substrate-borne vibrational signals in intra-specific communication and pair formation. Vibrational signals were recorded from grapevine leaves with a laser vibrometer. Signalling activity of single males changed throughout the day and the peak in activity was associated with twilight and early night when 'call and fly' behaviour was observed. Pair formation began with the spontaneous emission of male signals. The male calling signal consisted of a single series of pulses, partially accompanied with a 'rumble'. The male courtship phrase consisted of four consecutive sections characterized by two sound elements, pulse and 'buzz'. Female vibrational signals were emitted only in response to male signals. The female response was a single pulse that closely resembled male pulses and was inserted between pulses within the male signals. All recorded vibrational signals of S. titanus have a dominant frequency below 900 Hz. A unique feature of vibrational communication in S. titanus is well-developed intrasexual competition; males may use alternative tactics, in the form of disturbance signals, or silently approach duetting females (satellite behaviour). While the male-female duet appears to be essential for successful localization of females and copulation, it is also vulnerable to, and easily disrupted by, alternative tactics like masking.  相似文献   

16.
While a plethora of studies have focused on the role of visual, chemical and near-field airborne signals in courtship of Drosophila fruit flies, the existence of substrate-borne vibrational signals has been almost completely overlooked. Here we describe substrate vibrations generated during courtship in three species of the D. melanogaster group, from the allegedly mute species D. suzukii, its sister species D. biarmipes, and from D. melanogaster. In all species, we recorded several types of substrate vibrations which were generated by locomotion, abdominal vibrations and most likely through the activity of thoracic wing muscles. In D. melanogaster and D. suzukii, all substrate vibrations described in intact males were also recorded in males with amputated wings. Evidence suggests that vibrational signalling may be widespread among Drosophila species, and fruit flies may provide an ideal model to study various aspects of this widespread form of animal communication.  相似文献   

17.
  1. Pest management of stink bugs (Hemiptera: Pentatomidae) in soybean [Glycine max (L.) Merr.], corn (Zea mays L.) and cotton (Gossypium spp.) agroecosystems has become a major concern in several countries of the Americas.
  2. In this review, we report an overview on geographical distribution, injury, damage and methods used to control (plant resistance mechanisms, biological control) the most important stink bugs in the Americas, with an emphasis on Brazil, the implications of the trend towards decreased susceptibility of stink bug populations to insecticides and the current difficulties of the management of these insect pests.
  3. Currently, the Neotropical brown stink bug Euschistus heros (Fabricius) is less susceptible to organophosphate insecticides than in the past. A slight reduction in E. heros susceptibility to pyrethroids and, to a lesser extent, to neonicotinoids has also been observed. In addition, the green‐belly stink bug [Dichelops melacanthus (Dallas)] is more tolerant to the three classes of insecticides (neonicotinoids, organophosphates and pyrethroids) than E. heros.
  4. Metabolic detoxification is involved in organophosphate, neonicotinoid and pyrethroid differences in susceptibility. Restricted availability of insecticides with different modes of action could favour the selection of resistant phenotypes in stink bug populations.
  相似文献   

18.
Specialized natural enemies that forage for polyphagous hosts need to locate hosts on different plants. Telenomus podisi (Hymenoptera: Platygastridae) is a stink bug egg parasitoid with a preference for Euschistus heros (Hemiptera, Pentatomidae), a polyphagous species. The aim of this study was to evaluate the induction of defences in three E. heros host plants: maize (Zea mays), sunflower (Helianthus annuus) and pigeon pea (Cajanus cajan). We hypothesized that E. heros damage to these three plants enhances the attraction of the parasitoid T. podisi as has been observed in other systems. Using Y-tube olfactometer bioassays, we tested parasitoid responses to combinations of the following odour sources: clean air, undamaged plants and plants damaged by stink bug feeding. Volatiles were collected by means of dynamic headspace collection and analysed by gas chromatography coupled to mass spectrometry. T. podisi did not distinguish odours from undamaged plants against air for any of the three plant species. For maize, the parasitoid preferred the odour from herbivore-damaged plants over both clean air and undamaged plants. For sunflower, the parasitoid only preferred the odour of herbivore-damaged plants over the odour of undamaged plants. For pigeon pea, no preferences were observed. Quantitative differences in the volatile profile of damaged and undamaged plants were observed in each plant species. We conclude that sunflower and maize plants, when damaged by E. heros, release volatiles that attract the parasitoid T. podisi; the parasitoid appears to use a different blend composition to distinguish herbivore-damaged plants of each species.  相似文献   

19.
20.
Banner-tailed kangaroo rats, Dipodomys spectabilis, footdrum to produce substrate-borne and airborne acoustic energy. Previous studies show that they communicate territorial ownership via airborne footdrumming signals. The research reported here used simulated footdrum patterns generated by an artificial `thumper' to address the question of whether kangaroo rats communicate through seismic components of these acoustic signals. With microphones suspended in sealed burrows, we found that airborne sounds were attenuated by approximately 40 dB as they passed through the burrow wall into the burrow chamber. The substrate-borne vibrations from the thumper yielded sound approximately 40 dB greater in peak amplitude than the attenuated airborne sound. Thus, 99.9% of the peak power of the thumper was transmitted directly through the substrate into the burrow. The rats in sealed burrows timed their responses to playbacks of footdrums from the thumper and a loudspeaker so they did not initiate a drumming sequence during either the seismic or airborne signals. When these signals were masked by loud noise, the rats continued to drum to the seismic signal but drummed randomly during the airborne playback. These results suggest that the sealed burrow provides a quiet place in which D. spectabilis can listen for substrate-borne communications from conspecifics. Accepted: 13 May 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号