首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although arsenic is a human carcinogen, the molecular mechanisms of its action remain to be understood. The present study reports that exposure to arsenic induced actin filament reorganization, resulting in lamellipodia and filopodia structures through the activation of Cdc42 in SVEC4-10 endothelial cells. It was also found that arsenic induced the formation of the superoxide anion (O2*) in SVEC4-10 cells. Immunoprecipitation and Western blotting analysis demonstrated that arsenic stimulation induced serine phosphorylation of p47phox, a key component of NADPH oxidase, indicating that arsenic induces O2* formation through NADPH oxidase activation. Inhibition of arsenic-induced actin filament reorganization by either overexpression of a dominant negative Cdc42 or pretreatment of an actin filament stabilizing regent, jasplakinolide, abrogated arsenic-induced NADPH oxidase activation, showing that the activation of NADPH oxidase was regulated by Cdc42-mediated actin filament reorganization. This study also showed that overexpression of a dominant negative Rac1 was sufficient to abolish arsenic-induced O2*- production, implying that Rac1 activities are required for Cdc42-mediated NADPH oxidase activation in response to arsenic stimulation. Furthermore, arsenic stimulation induced cell migration, which can be inhibited by the inactivation of either Cdc42 or NADPH oxidase. Taken together, the results indicate that arsenic is able to activate NADPH oxidase through Cdc42-mediated actin filament reorganization, leading to the induction of an increase in cell migration in SVEC4-10 endothelial cells.  相似文献   

2.
Rho family GTPases play a major role in actin cytoskeleton reorganization. Recent studies have shown that the activation of Rho family GTPases also induces collapse of the vimentin intermediate filament (IF) network in fibroblasts. Here, we report that Cdc42V12 induces the reorganization of vimentin IFs in Hela cells, and such reorganization is independent of actin and microtubule status. We analyzed the involvement of three serine/threonine kinase effectors, MRCK, PAK and p70 S6K in the Cdc42-induced vimentin reorganization. Surprisingly, the ROK-related MRCK is not involved in this IF reorganization. We detected phosphorylation of vimentin Ser72, a site phosphorylated by PAK, after Cdc42 activation. PAK inhibition partially blocked Cdc42-induced vimentin IF collapse suggesting the involvement of other effectors. We report that p70 S6 kinase (S6K)1 participates in this IF rearrangement since the inhibitor rapamycin or a dominant inhibitory S6K could reduce the Cdc42V12 or bradykinin-induced vimentin collapse. Further, inhibition of PAK and S6K in combination very effectively prevents Cdc42-induced vimentin IF collapse. Conversely, only in combination active PAK and S6K could induce a vimentin IF rearrangement that mimics the Cdc42 effect. Thus, Cdc42-induced vimentin reorganization involves PAK and, in a novel cytoskeletal role, p70 S6K.  相似文献   

3.
CD151, a member of the tetraspanin family proteins, tightly associates with integrin alpha3beta1 and localizes at basolateral surfaces of epithelial cells. We found that overexpression of CD151 in A431 cells accelerated intercellular adhesion, whereas treatment of cells with anti-CD151 mAb perturbed the integrity of cortical actin filaments and cell polarity. E-Cadherin puncta formation, indicative of filopodia-based adhesion zipper formation, as well as E-cadherin anchorage to detergent-insoluble cytoskeletal matrix, was enhanced in CD151-overexpressing cells. Levels of GTP-bound Cdc42 and Rac were also elevated in CD151-overexpressing cells, suggesting the role of CD151 in E-cadherin-mediated cell-cell adhesion as a modulator of actin cytoskeletal reorganization. Consistent with this possibility, engagement of CD151 by the substrate-adsorbed anti-CD151 mAb induced prominent Cdc42-dependent filopodial extension, which along with E-cadherin puncta formation, was strongly inhibited by calphostin C, a protein kinase C (PKC) inhibitor. Together, these results indicate that CD151 is involved in epithelial cell-cell adhesion as a modulator of PKC- and Cdc42-dependent actin cytoskeletal reorganization.  相似文献   

4.
In animal and fungal cells, the monomeric GTPase Cdc42p is a key regulator of cell polarity that itself exhibits a polarized distribution in asymmetric cells. Previous work showed that in budding yeast, Cdc42p polarization is unaffected by depolymerization of the actin cytoskeleton (Ayscough et al., J. Cell Biol. 137, 399-416, 1997). Surprisingly, we now report that unlike complete actin depolymerization, partial actin depolymerization leads to the dispersal of Cdc42p from the polarization site in unbudded cells. We provide evidence that dispersal is due to endocytosis associated with cortical actin patches and that actin cables are required to counteract the dispersal and maintain Cdc42p polarity. Thus, although Cdc42p is initially polarized in an actin-independent manner, maintaining that polarity may involve a reinforcing feedback between Cdc42p and polarized actin cables to counteract the dispersing effects of actin-dependent endocytosis. In addition, we report that once a bud has formed, polarized Cdc42p becomes more resistant to dispersal, revealing an unexpected difference between unbudded and budded cells in the organization of the polarization site.  相似文献   

5.
We have recently isolated a novel actin filament-binding protein, named frabin. Frabin has one actin filament-binding domain (ABD), one Dbl homology domain (DHD), first pleckstrin homology domains (PHD) adjacent to DHD, one cysteine rich-domain (CRD), and second PHD from the N terminus to the C terminus in this order. Full-length frabin induces microspike formation and c-Jun N-terminal kinase (JNK) activation. We found here that the fragment of frabin containing DHD and first PHD stimulated guanine nucleotide exchange of Cdc42Hs small G protein, but not that of RhoA or Rac1 small G protein. However, this fragment of frabin did not induce microspike formation, and ABD was additionally necessary for microspike formation. Frabin having ABD was associated with the actin cytoskeleton, whereas frabin lacking ABD was diffusely distributed in the cytoplasm. In contrast, ABD was not necessary for JNK activation but CRD and second PHD were additionally necessary for this activation. These results indicate that the association of frabin with the actin cytoskeleton is essential for microspike formation but not for JNK activation and that different domains of frabin are involved in microspike formation and JNK activation through Cdc42 activation.  相似文献   

6.
Cdc42Hs is involved in cytoskeletal reorganization and is required for neurite outgrowth in N1E-115 cells. To investigate the molecular mechanism by which Cdc42Hs regulates these processes, a search for novel Cdc42Hs protein partners was undertaken by yeast two-hybrid assay. Here, we identify the 58-kD substrate of the insulin receptor tyrosine kinase (IRS-58) as a Cdc42Hs target. IRS-58 is a brain-enriched protein comprising at least four protein-protein interaction sites: a Cdc42Hs binding site, an Src homology (SH)3-binding site, an SH3 domain, and a tryptophan, tyrptophan (WW)-binding domain. Expression of IRS-58 in Swiss 3T3 cells leads to reorganization of the filamentous (F)-actin cytoskeleton, involving loss of stress fibers and formation of filopodia and clusters. In N1E-115 cells IRS-58 induces neurite outgrowth with high complexity. Expression of a deletion mutant of IRS-58, which lacks the SH3- and WW-binding domains, induced neurite extension without complexity in N1E-115 cells. In Swiss 3T3 cells and N1E-115 cells, IRS-58 colocalizes with F-actin in clusters and filopodia. An IRS-58(1267N) mutant unable to bind Cdc42Hs failed to localize with F-actin to induce neurite outgrowth or significant cytoskeletal reorganization. These results suggest that Cdc42Hs facilitates cytoskeletal reorganization and neurite outgrowth by localizing protein complexes via adaptor proteins such as IRS-58 to F-actin.  相似文献   

7.
《The Journal of cell biology》1995,131(5):1223-1230
Glucocorticoids induce the remodeling of the actin cytoskeleton and the formation of numerous stress fibers in a protein synthesis-dependent fashion in a variety of cell types (Castellino, F., J. Heuser, S. Marchetti, B. Bruno, and A. Luini. 1992. Proc. Natl. Acad. Sci. USA. 89:3775-3779). These cells can thus be used as models to investigate the mechanisms controlling the organization of actin filaments. Caldesmon is an almost ubiquitous actin- and calmodulin-binding protein that synergizes with tropomyosin to stabilize microfilaments in vitro (Matsumura, F., and Yamashiro, S. 1993. Current Opin. Cell Biol. 5:70- 76). We now report that glucocorticoids (but not other steroids) enhanced the levels of caldesmon (both protein and mRNA) and induced the reorganization of microfilaments with similar time courses and potencies in A549 cells. A caldesmon antisense oligodeoxynucleotide targeted to the most abundant caldesmon isoform in A549 cells dramatically inhibited glucocorticoid-induced caldesmon synthesis and actin reorganization with similar potencies. Several control oligonucleotides were inactive. These results demonstrate that caldesmon has a crucial role in vivo in the organization of the actin cytoskeleton and suggest that hormone-induced changes in caldesmon levels mediate microfilament remodeling.  相似文献   

8.
Microtubule-associated protein 1 light chain-3 (LC3) plays a critical role in autophagosome formation during autophagy; however, its potential alternative functions remain largely unexplored. Here we demonstrate a discrete role for LC3 in osteoclast, a specialized bone-resorbing cell that requires a dynamic microtubule network for its activity. We found that an increase in the conversion of soluble LC3-I to lipid-bound LC3-II in mature osteoclast was correlated with osteoclast activity, but not with autophagic activity. Knockdown of LC3 using small interfering RNA did not affect TRAP-positive multinucleated cell formation, but suppressed actin ring formation, cathepsin K release, and the subsequent bone-resorbing capacity of osteoclasts. LC3 mediated this function by associating with microtubules and regulating Cdc42 activity. More importantly, LC3-II protein levels were reduced by the Atg5 knockdown, and this knockdown led to decrease in Cdc42 activity, indicating that LC3-II is critical for Cdc42 activity. Overexpression of a constitutively active form of Cdc42 partially rescued the phenotype induced by LC3 knockdown. Our results demonstrate that LC3 contributes to the regulatory link between the microtubule and Cdc42 involved in bone-resorbing activity, providing evidence for a role for LC3 in mediating diverse cellular functions beyond its role as an autophagy protein.  相似文献   

9.
A Abo  J Qu  M S Cammarano  C Dan  A Fritsch  V Baud  B Belisle    A Minden 《The EMBO journal》1998,17(22):6527-6540
The GTPases Rac and Cdc42Hs control diverse cellular functions. In addition to being mediators of intracellular signaling cascades, they have important roles in cell morphogenesis and mitogenesis. We have identified a novel PAK-related kinase, PAK4, as a new effector molecule for Cdc42Hs. PAK4 interacts only with the activated form of Cdc42Hs through its GTPase-binding domain (GBD). Co-expression of PAK4 and the constitutively active Cdc42HsV12 causes the redistribution of PAK4 to the brefeldin A-sensitive compartment of the Golgi membrane and the subsequent induction of filopodia and actin polymerization. Importantly, the reorganization of the actin cytoskeleton is dependent on PAK4 kinase activity and on its interaction with Cdc42Hs. Thus, unlike other members of the PAK family, PAK4 provides a novel link between Cdc42Hs and the actin cytoskeleton. The cellular locations of PAK4 and Cdc42Hs suggest a role for the Golgi in cell morphogenesis.  相似文献   

10.
Inspired by the usefulness of small molecules to study membrane traffic, we used high-throughput synthesis and phenotypic screening to discover secramine, a molecule that inhibits membrane traffic out of the Golgi apparatus by an unknown mechanism. We report here that secramine inhibits activation of the Rho GTPase Cdc42, a protein involved in membrane traffic, by a mechanism dependent upon the guanine dissociation inhibitor RhoGDI. RhoGDI binds Cdc42 and antagonizes its membrane association, nucleotide exchange and effector binding. In vitro, secramine inhibits Cdc42 binding to membranes, GTP and effectors in a RhoGDI-dependent manner. In cells, secramine mimics the effects of dominant-negative Cdc42 expression on protein export from the Golgi and on Golgi polarization in migrating cells. RhoGDI-dependent Cdc42 inhibition by secramine illustrates a new way to inhibit Rho GTPases with small molecules and provides a new means to study Cdc42, RhoGDI and the cellular processes they mediate.  相似文献   

11.
Cytoskeletal proteins assemble into dynamic polymers that play many roles in nuclear and cell division, signal transduction, and determination of cell shape and polarity. The distribution and dynamics of microtubules (MTs) and actin filaments (AFs) are determined, among other factors, by the location of their nucleation sites. Whereas the sites of microtubule nucleation in plants are known to be located under the plasma membrane and on the nuclear envelope during interphase, there is a striking lack of information about nucleation sites of AFs. In the studies reported herein, low temperature (0 °C) was used to de‐polymerize AFs and MTs in tobacco BY‐2 (Nicotiana tabacum L.) cells at interphase. The extent of de‐polymerization of cytoskeletal filaments in interphase cells during cold treatment and the subcellular distribution of nucleation sites during subsequent recovery at 25 °C were monitored by means of fluorescence microscopy. The results show that AFs re‐polymerized rapidly from sites located in the cortical region and on the nuclear envelope, similarly to the initiation sites of MTs. In contrast to MTs, however, complete reconstitution of AFs was preceded by the formation of transient actin structures including actin dots, rods, and filaments with a dotted signal. Immunoblotting of soluble and sedimentable protein fractions showed no changes in the relative amounts of free and membrane‐bound actin or tubulin.  相似文献   

12.
Cdc42, a member of the Rho family of GTP binding proteins, functions in the formation of polarized actin structures, in elongation of cell shape, and in cell signaling. Although genetic mutations previously have not been available in multicellular organisms, studies have attempted to discern Cdc42 functions in organisms, including Drosophila, using dominant active or interfering alleles. Here, for the first time, we examine the functions of Cdc42 in developing tissues using loss-of-function mutations in the Drosophila Cdc42 gene. We find that Cdc42(-) epithelial cells fail to elongate into a columnar cell shape and cannot maintain a monolayered epithelial structure. In contrast to previous studies, we find no requirement for Cdc42 in cell division or in activation of the Jun N-terminal kinase pathway. In addition, Cdc42 function is not required for cytoplasmic actin filament assembly in the nurse cells during oogenesis, although it may facilitate this process. Furthermore, our results indicate that Cdc42 plays a role in intercellular interactions between the germ line and the somatic follicle cells. These results confirm the role of Cdc42 in actin filament assembly and provide new insights into its functions in epithelial morphogenesis and regulating intercellular signaling events.  相似文献   

13.
Hu X  Kuhn JR 《PloS one》2012,7(2):e31385
We reconstructed cellular motility in vitro from individual proteins to investigate how actin filaments are organized at the leading edge. Using total internal reflection fluorescence microscopy of actin filaments, we tested how profilin, Arp2/3, and capping protein (CP) function together to propel thin glass nanofibers or beads coated with N-WASP WCA domains. Thin nanofibers produced wide comet tails that showed more structural variation in actin filament organization than did bead substrates. During sustained motility, physiological concentrations of Mg(2+) generated actin filament bundles that processively attached to the nanofiber. Reduction of total Mg(2+) abolished particle motility and actin attachment to the particle surface without affecting actin polymerization, Arp2/3 nucleation, or filament capping. Analysis of similar motility of microspheres showed that loss of filament bundling did not affect actin shell formation or symmetry breaking but eliminated sustained attachments between the comet tail and the particle surface. Addition of Mg(2+), Lys-Lys(2+), or fascin restored both comet tail attachment and sustained particle motility in low Mg(2+) buffers. TIRF microscopic analysis of filaments captured by WCA-coated beads in the absence of Arp2/3, profilin, and CP showed that filament bundling by polycation or fascin addition increased barbed end capture by WCA domains. We propose a model in which CP directs barbed ends toward the leading edge and polycation-induced filament bundling sustains processive barbed end attachment to the leading edge.  相似文献   

14.
Burkholderia cenocepacia, a member of the Burkholderia cepacia complex, is an opportunistic pathogen that causes devastating infections in patients with cystic fibrosis. The ability of B. cenocepacia to survive within host cells could contribute significantly to its virulence in immunocompromised patients. In this study, we explored the mechanisms that enable B. cenocepacia to survive inside macrophages. We found that B. cenocepacia disrupts the actin cytoskeleton of infected macrophages, drastically altering their morphology. Submembranous actin undergoes depolymerization, leading to cell retraction. The bacteria perturb actin architecture by inactivating Rho family GTPases, particularly Rac1 and Cdc42. GTPase inactivation follows internalization of viable B. cenocepacia and compromises phagocyte function: macropinocytosis and phagocytosis are markedly inhibited, likely impairing the microbicidal and antigen‐presenting capability of infected macrophages. The type VI secretion system is essential for the bacteria to elicit these changes. This is the first report demonstrating inactivation of Rho family GTPases by a member of the B. cepacia complex.  相似文献   

15.
Classical cadherin adhesion molecules are key determinants of cell-cell recognition during development and in post-embryonic life. A decisive step in productive cadherin-based recognition is the conversion of nascent adhesions into stable zones of contact. It is increasingly clear that such contact zone extension entails active cooperation between cadherin adhesion and the force-generating capacity of the actin cytoskeleton. Cortactin has recently emerged as an important regulator of actin dynamics in several forms of cell motility. We now report that cortactin is recruited to cell-cell adhesive contacts in response to homophilic cadherin ligation. Notably, cortactin accumulates preferentially, with Arp2/3, at cell margins where adhesive contacts are being extended. Recruitment of cortactin is accompanied by a ligation-dependent biochemical interaction between cortactin and the cadherin adhesive complex. Inhibition of cortactin activity in cells blocked Arp2/3-dependent actin assembly at cadherin adhesive contacts, significantly reduced cadherin adhesive contact zone extension, and perturbed both cell morphology and junctional accumulation of cadherins in polarized epithelia. Together, our findings identify a necessary role for cortactin in the cadherin-actin cooperation that supports productive contact formation.  相似文献   

16.
Actin is one of the most conserved and ubiquitous proteins in eukaryotes. Its sequence has been highly conserved for its monomers to self-assemble into filaments that mediate essential cell functions such as trafficking, cell shape and motility. The malaria-causing parasite, Plasmodium, expresses a highly sequence divergent actin that is critical for its rapid motility at different stages within its mammalian and mosquito hosts. Each of Plasmodium actin’s four subdomains have divergent regions compared to canonical vertebrate actins. We previously identified subdomains 2 and 3 as providing critical contributions for parasite actin function as these regions could not be replaced by subdomains of vertebrate actins. Here we probed the contributions of individual divergent amino acid residues in these subdomains on parasite motility and progression. Non-lethal changes in these subdomains did not affect parasite development in the mammalian host but strongly affected progression through the mosquito with striking differences in transmission to and through the insect. Live visualization of actin filaments showed that divergent amino acid residues in subdomains 2 and 4 enhanced localization associated with filaments, while those in subdomain 3 negatively affected actin filaments. This suggests that finely tuned actin dynamics are essential for efficient organ entry in the mosquito vector affecting malaria transmission. This work provides residue level insight on the fundamental requirements of actin in highly motile cells.  相似文献   

17.
BACKGROUND: Cdc42, a GTP-binding protein of the Rho family, controls actin cytoskeletal organization and helps to generate actin-based protruding structures, such as filopodia. In vitro, Cdc42 regulates actin polymerization by facilitating the creation of free barbed ends - the more rapidly growing ends of actin filaments - and subsequent elongation at these ends. The Wiskott- Aldrich syndrome protein, WASP, which has a pleckstrin-homology domain and a Cdc42/Rac-binding motif, has been implicated in cell signaling and cytoskeleton reorganization. We have investigated the consequences of local recruitment of activated Cdc42 or WASP to the plasma membrane. RESULTS: We used an activated Cdc42 protein that could be recruited to an engineered membrane receptor by adding rapamycin as a bridge, and added antibody-coupled beads to aggregate these receptors. Inducible recruitment of Cdc42 to clusters of receptors stimulated actin polymerization, resulting in the formation of membrane protrusions. Cdc42-induced protrusions were enriched in the vasodilator-stimulated phosphoprotein VASP and the focal-adhesion-associated proteins zyxin and ezrin. The Cdc42 effector WASP could also induce the formation of protrusions, albeit of different morphology. CONCLUSIONS: This is the first demonstration that the local recruitment of activated Cdc42 or its downstream effector, WASP, to a membrane receptor in whole cells is sufficient to trigger actin polymerization that results in the formation of membrane protrusions. Our data suggest that Cdc42-induced actin-based protrusions result from the local and serial recruitment of cytoskeletal proteins including zyxin, VASP, and ezrin.  相似文献   

18.
Although the renal proximal tubular epithelial cells are targeted in a variety of inflammatory diseases of the kidney, the signaling mechanism by which tumor necrosis factor (TNF)-alpha exerts its effects in these cells remains unclear. Here, we report that TNF-alpha elicits antiapoptotic effects in opossum kidney cells and that this response is mediated via actin redistribution through a novel signaling mechanism. More specifically, we show that TNF-alpha prevents apoptosis by inhibiting the activity of caspase-3 and this effect depends on actin polymerization state and nuclear factor-kappaB activity. We also demonstrate that the signaling cascade triggered by TNF-alpha is governed by the phosphatidylinositol-3 kinase, Cdc42/Rac1, and phospholipase (PLC)-gamma1. In this signaling cascade, Cdc42 was found to be selectively essential for PLC-gamma1 activation, whereas phosphatidylinositol-3,4,5-triphosphate alone is not sufficient to activate the phospholipase. Moreover, PLC-gamma1 was found to associate in vivo with the small GTPase(s). Interestingly, PLC-gamma1 was observed to associate with constitutively active (CA) Cdc42V12, but not with CA Rac1V12, whereas no interaction was detected with Cdc42(T17N). The inactive Cdc42(T17N) and the PLC-gamma1 inhibitor U73122 prevented actin redistribution and depolymerization, confirming that both signaling molecules are responsible for the reorganization of actin. Additionally, the actin filament stabilizer phallacidin potently blocked the nuclear translocation of nuclear factor-kappaB and its binding activity, resulting in abrogation of the TNF-alpha-induced inhibition of caspase-3. To conclude, our findings suggest that actin may play a pivotal role in the response of opossum kidney cells to TNF-alpha and implicate Cdc42 in directly regulating PLC-gamma1 activity.  相似文献   

19.
The rapid turnover of actin filaments and the tertiary meshwork formation are regulated by a variety of actin-binding proteins. Protein phosphorylation of cofilin, an actin-binding protein that depolymerizes actin filaments, suppresses its function. Thus, cofilin is a terminal effector of signaling cascades that evokes actin cytoskeletal rearrangement. When wild-type LIMK2 and kinase-dead LIMK2 (LIMK2/KD) were respectively expressed in cells, LIMK2, but not LIMK2/KD, phosphorylated cofilin and induced formation of stress fibers and focal complexes. LIMK2 activity toward cofilin phosphorylation was stimulated by coexpression of activated Rho and Cdc42, but not Rac. Importantly, expression of activated Rho and Cdc42, respectively, induced stress fibers and filopodia, whereas both Rho- induced stress fibers and Cdc42-induced filopodia were abrogated by the coexpression of LIMK2/KD. In contrast, the coexpression of LIMK2/KD with the activated Rac did not affect Rac-induced lamellipodia formation. These results indicate that LIMK2 plays a crucial role both in Rho- and Cdc42-induced actin cytoskeletal reorganization, at least in part by inhibiting the functions of cofilin. Together with recent findings that LIMK1 participates in Rac-induced lamellipodia formation, LIMK1 and LIMK2 function under control of distinct Rho subfamily GTPases and are essential regulators in the Rho subfamilies-induced actin cytoskeletal reorganization.  相似文献   

20.
In the yeast Saccharomyces cerevisiae, Cdc24p functions at least in part as a guanine-nucleotide-exchange factor for the Rho-family GTPase Cdc42p. A genetic screen designed to identify possible additional targets of Cdc24p instead identified two previously known genes, MSB1 and CLA4, and one novel gene, designated MSB3, all of which appear to function in the Cdc24p-Cdc42p pathway. Nonetheless, genetic evidence suggests that Cdc24p may have a function that is distinct from its Cdc42p guanine-nucleotide-exchange factor activity; in particular, overexpression of CDC42 in combination with MSB1 or a truncated CLA4 in cells depleted for Cdc24p allowed polarization of the actin cytoskeleton and polarized cell growth, but not successful cell proliferation. MSB3 has a close homologue (designated MSB4) and two more distant homologues (MDR1 and YPL249C) in S. cerevisiae and also has homologues in Schizosaccharomyces pombe, Drosophila (pollux), and humans (the oncogene tre17). Deletion of either MSB3 or MSB4 alone did not produce any obvious phenotype, and the msb3 msb4 double mutant was viable. However, the double mutant grew slowly and had a partial disorganization of the actin cytoskeleton, but not of the septins, in a fraction of cells that were larger and rounder than normal. Like Cdc42p, both Msb3p and Msb4p localized to the presumptive bud site, the bud tip, and the mother-bud neck, and this localization was Cdc42p dependent. Taken together, the data suggest that Msb3p and Msb4p may function redundantly downstream of Cdc42p, specifically in a pathway leading to actin organization. From previous work, the BNI1, GIC1, and GIC2 gene products also appear to be involved in linking Cdc42p to the actin cytoskeleton. Synthetic lethality and multicopy suppression analyses among these genes, MSB, and MSB4, suggest that the linkage is accomplished by two parallel pathways, one involving Msb3p, Msb4p, and Bni1p, and the other involving Gic1p and Gic2p. The former pathway appears to be more important in diploids and at low temperatures, whereas the latter pathway appears to be more important in haploids and at high temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号