首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The phosphorylation of histone H2AX at serine 139 is one of the earliest responses of mammalian cells to ionizing radiation-induced DNA breaks. DNA breaks are also generated during the terminal stages of apoptosis when chromosomal DNA is cleaved into oligonucleosomal pieces. Apoptotic DNA fragmentation and the consequent chromatin condensation are important for efficient clearing of genomic DNA and nucleosomes and for protecting the organism from auto-immmunization and oncogenic transformation. In this study, we demonstrate that H2AX is phosphorylated during apoptotic DNA fragmentation in mouse, Chinese hamster ovary, and human cells. We have previously shown that ataxia telangiectasia mutated kinase (ATM) is primarily responsible for H2AX phosphorylation in murine cells in response to ionizing radiation. Interestingly, we find here that DNA-dependent protein kinase (DNA-PK) is solely responsible for H2AX phosphorylation during apoptosis while ATM is dispensable for the process. Moreover, the kinase activity of DNA-PKcs (catalytic subunit of DNA-PK) is specifically required for the induction of gammaH2AX. We further show that DNA-PKcs is robustly activated in apoptotic cells, as evidenced by autophosphorylation at serine 2056, before it is inactivated by cleavage. In contrast, ATM is degraded well before DNA fragmentation and gammaH2AX induction resulting in the predominance of DNA-PK during the later stages of apoptosis. Finally, we show that DNA-PKcs autophosphorylation and gammaH2AX induction occur only in apoptotic nuclei with characteristic chromatin condensation but not in non-apoptotic nuclei from the same culture establishing the most direct link between DNA fragmentation, DNA-PKcs activation, and H2AX phosphorylation. It is well established that DNA-PK is inactivated by cleavage late in apoptosis in order to forestall DNA repair. Our results demonstrate, for the first time, that DNA-PK is actually activated in late apoptotic cells and is able to initiate an early step in the DNA-damage response, namely H2AX phosphorylation, before it is inactivated by proteolysis.  相似文献   

2.
H2AX, a member of the histone H2A family, is rapidly phosphorylated in response to ionizing radiation. This phosphorylation, at an evolutionary conserved C-terminal phosphatidylinositol 3-OH-kinase-related kinase (PI3KK) motif, is thought to be critical for recognition and repair of DNA double strand breaks. Here we report that inhibition of DNA replication by hydroxyurea or ultraviolet irradiation also induces phosphorylation and foci formation of H2AX. These phospho-H2AX foci colocalize with proliferating cell nuclear antigen (PCNA), BRCA1, and 53BP1 at the arrested replication fork in S phase cells. This response is ATR-dependent but does not require ATM or Hus1. Our findings suggest that, in addition to its role in the recognition and repair of double strand breaks, H2AX also participates in the surveillance of DNA replication.  相似文献   

3.
Reitsema T  Klokov D  Banáth JP  Olive PL 《DNA Repair》2005,4(10):1172-1181
Exposure of cells to hypertonic medium after X-irradiation results in a 3-4-fold increase in the phosphorylation of histone H2AX (gammaH2AX) at sites of radiation-induced DNA double-strand breaks. This increase was previously associated with salt-induced radiosensitization and inhibition of repair of DNA double-strand breaks. To examine possible mechanisms for the increase in foci size, chemical inhibitors of kinase and phosphatase activity and cell lines deficient in ATM and DNA-PK, two kinases known to phosphorylate H2AX, were examined. H2AX kinase and phosphatase activity were maintained in the presence of high salt. ATM mutant HT144 melanoma cells showed the expected 3-4-fold increase in H2AX phosphorylation in the presence of 0.5M Na(+). However, DNA-PKcs deficient M059J cells failed to respond to hypertonic treatment and M059J Fus1 cells corrected for this deficiency showed the expected increase in foci size. Although the active phosphoform of ATM, phosphoserine-1981, increased after irradiation, the level was unaffected by the addition of 0.5M Na(+). Instead, 0.5M Na(+) caused a partial redistribution of serine-1981-ATM to perinuclear regions. Hypertonic medium added after irradiation was effective in inhibiting rejoining of the radiation-induced double-strand breaks even in DNA-PK deficient M059J cells. We suggest that hypertonic treatment following irradiation inhibits double-strand break rejoining that in turn maintains DNA-PK activity at the site of the break, enhancing the size of the gammaH2AX foci.  相似文献   

4.
All types of DNA damage cause a local alteration and relaxation of chromatin structure. Sensing and reacting to this initial chromatin alteration is a necessary trigger for any type of DNA damage response (DDR). In this context, chromatin kinases are likely candidates to participate in detection and reaction to a locally altered chromatin as a consequence of DNA damage and, thus, initiate the appropriate cellular response. In this work, we demonstrate that VRK1 is a nucleosomal chromatin kinase and that its depletion causes loss of histones H3 and H4 acetylation, which are required for chromatin relaxation, both in basal conditions and after DNA damage, independently of ATM. Moreover, VRK1 directly and stably interacts with histones H2AX and H3 in basal conditions. In response to DNA damage induced by ionizing radiation, histone H2AX is phosphorylated in Ser139 by VRK1. The phosphorylation of H2AX and the formation of γH2AX foci induced by ionizing radiation (IR), are prevented by VRK1 depletion and are rescued by kinase-active, but not kinase-dead, VRK1. In conclusion, we found that VRK1 is a novel chromatin component that reacts to its alterations and participates very early in DDR, functioning by itself or in cooperation with ATM.  相似文献   

5.
ATM phosphorylates histone H2AX in response to DNA double-strand breaks   总被引:38,自引:0,他引:38  
A very early step in the response of mammalian cells to DNA double-strand breaks is the phosphorylation of histone H2AX at serine 139 at the sites of DNA damage. Although the phosphatidylinositol 3-kinases, DNA-PK (DNA-dependent protein kinase), ATM (ataxia telangiectasia mutated), and ATR (ATM and Rad3-related), have all been implicated in H2AX phosphorylation, the specific kinase involved has not yet been identified. To definitively identify the specific kinase(s) that phosphorylates H2AX in vivo, we have utilized DNA-PKcs-/- and Atm-/- cell lines and mouse embryonic fibroblasts. We find that H2AX phosphorylation and nuclear focus formation are normal in DNA-PKcs-/- cells and severely compromised in Atm-/- cells. We also find that ATM can phosphorylate H2AX in vitro and that ectopic expression of ATM in Atm-/- fibroblasts restores H2AX phosphorylation in vivo. The minimal H2AX phosphorylation in Atm-/- fibroblasts can be abolished by low concentrations of wortmannin suggesting that DNA-PK, rather than ATR, is responsible for low levels of H2AX phosphorylation in the absence of ATM. Our results clearly establish ATM as the major kinase involved in the phosphorylation of H2AX and suggest that ATM is one of the earliest kinases to be activated in the cellular response to double-strand breaks.  相似文献   

6.
Histone H2AX undergoes phosphorylation on Ser 139 (γ-H2AX) rapidly in response to DNA double-strand breaks induced by exogenous stimuli, such as ionizing radiation. However, the endogenous phosphorylation pattern and modifier of H2AX remain unclear. Here we show that H2AX is regulated physically at the level of phosphorylation at Ser139 during a hair cycle in the mouse skin. In anagen hair follicles, γ-H2AX-positive cells were observed in the outer root sheath (ORS) and hair bulb in a cycling inferior region but not in a permanent superficial region. In telogen hair follicles, γ-H2AX-positive cells were only detected around the germ cell cap. In contrast, following X-irradiation, γ-H2AX was observed in various cell types including the ORS cells in the permanent superficial region. Furthermore, γ-H2AX-positive cells were detected in the skin of mice lacking either ATM or DNA-PK, suggesting that these kinases are not essential for phosphorylation in vivo.  相似文献   

7.
An RNA-dependent association of Ku antigen with nuclear DNA helicase II (NDH II), alternatively named RNA helicase A (RHA), was found in nuclear extracts of HeLa cells by immunoprecipitation and by gel filtration chromatography. Both Ku antigen and NDH II were associated with hnRNP complexes. Two-dimensional gel electrophoresis showed that Ku antigen was most abundantly associated with hnRNP C, K, J, H and F, but apparently not with others, such as hnRNP A1. Unexpectedly, DNA-dependent protein kinase (DNA-PK), which comprises Ku antigen as the DNA binding subunit, phosphorylated hnRNP proteins in an RNA-dependent manner. DNA-PK also phosphorylated recombinant NDH II in the presence of RNA. RNA binding assays displayed a preference of DNA-PK for poly(rG), but not for poly(rA), poly(rC) or poly(rU). This RNA binding affinity of DNA-PK can be ascribed to its Ku86 subunit. Consistently, poly(rG) most strongly stimulated the DNA-PK-catalyzed phosphorylation of NDH II. RNA interference studies revealed that a suppressed expression of NDH II altered the nuclear distribution of hnRNP C, while silencing DNA-PK changed the subnuclear distribution of NDH II and hnRNP C. These results support the view that DNA-PK can also function as an RNA-dependent protein kinase to regulate some aspects of RNA metabolism, such as RNA processing and transport.  相似文献   

8.
  相似文献   

9.
In eukaryotic cells, DNA double strand breaks (DSBs) cause the prompt phosphorylation of serine 139 at the carboxy terminus of histone H2AX to generate gamma-H2AX, detectable by Western blotting or immunofluorescence. The consensus sequence at the phosphorylation site implicates the phosphatidylinositol 3-like family of protein kinases in H2AX phosphorylation. It remains open whether ATM (ataxia telangiectasia mutated) is the major H2AX kinase, or whether other members of the family, such as DNA-PK (DNA dependent protein kinase) or ATR (ATM and Rad3 related), contribute in a functionally complementary manner. To address this question, we measured global H2AX phosphorylation in cell lysates and foci formation in individual cells of either wild type or mutant (ATM or DNA-PK) genetic background. Normal global phosphorylation kinetics is observed after irradiation in cells defective either in ATM or DNA-PK alone, suggesting a complementary contribution to H2AX phosphorylation. This is further supported by the observation that initial H2AX phosphorylation is delayed when both kinases are inhibited by wortmannin, as well as when ATM is inhibited by caffeine in DNA-PK deficient cells. However, robust residual global phosphorylation is detectable under all conditions of genetic or chemical inhibition suggesting the function of additional kinases, such as ATR. Treatment with wortmannin, caffeine, or UCN-01 produces a strong DNA-PK dependent late global hyperphosphorylation of H2AX, uncoupled from DNA DSB rejoining and compatible with an inhibition of late steps in DNA DSB processing. Evaluation of gamma-H2AX foci formation confirms the major conclusions made on the basis of global H2AX phosphorylation, but also points to differences particularly several hours after exposure to IR. The results in aggregate implicate DNA-PK, ATM and possibly other kinases in H2AX phosphorylation. The functional significance and the mechanisms of coordination in space and time of these multiple inputs require further investigation.  相似文献   

10.
Xie A  Scully R 《Molecular cell》2007,27(2):178-179
In a step toward clarifying how acute viral infections provoke the host DNA damage response, Tarakanova et al. (2007) characterized a gamma-herpesvirus protein, which phosphorylates histone H2AX during infection, suggesting that the virus actively initiates and benefits from the host DNA damage response.  相似文献   

11.
Heo K  Kim H  Choi SH  Choi J  Kim K  Gu J  Lieber MR  Yang AS  An W 《Molecular cell》2008,30(1):86-97
The phosphorylation of histone variant H2AX at DNA double-strand breaks is believed to be critical for recognition and repair of DNA damage. However, little is known about the molecular mechanism regulating the exchange of variant H2AX with conventional H2A in the context of the nucleosome. Here, we isolate the H2AX-associated factors, which include FACT (Spt16/SSRP1), DNA-PK, and PARP1 from a human cell line. Our analyses demonstrate that the H2AX-associated factors efficiently promote both integration and dissociation of H2AX and this exchange reaction is mainly catalyzed by FACT among the purified factors. The phosphorylation of H2AX by DNA-PK facilitates the exchange of nucleosomal H2AX by inducing conformational changes of the nucleosome. In contrast, poly-ADP-ribosylation of Spt16 by PARP1 significantly inhibits FACT activities for H2AX exchange. Thus, these data establish FACT as the major regulator involved in H2AX exchange process that is modulated by H2AX phosphorylation and Spt16 ADP-ribosylation.  相似文献   

12.
Histone H2A variants H2AX and H2AZ   总被引:36,自引:0,他引:36  
  相似文献   

13.
Tau is a microtubule-associated protein (MAP) that is functionally modulated by phosphorylation and that is hyperphosphorylated in several neurodegenerative diseases. Because phosphorylation regulates both normal and pathological tau functioning, it is of interest to identify the signaling pathways and enzymes capable of modulating tau phosphorylation in vivo. Previously, it was demonstrated that in SH-SY5Y human neuroblastoma cells and rat primary cortical cultures tau is phosphorylated at Ser262/356, within its microtubule-binding domain, by a staurosporine-sensitive protein kinase in response to the vicinal thiol-directed agent phenylarsine oxide. The current study demonstrates the presence of a 100-kDa protein kinase activity in SH-SY5Y cells that associates with microtubules, phosphorylates tau at Ser262/356, is activated by phenylarsine oxide, and is inhibited by the protein kinase inhibitor staurosporine. Isolation of individual protein bands from a polyacrylamide gel revealed two closely spaced proteins containing Ser262/356-directed protein kinase activity. Mass spectrometry analysis indicated that these protein bands correspond to the 100-kDa microtubule/MAP-affinity regulating kinase (MARK), which has been shown previously to phosphorylate tau within its microtubule-binding domain. Immunoblot analysis of the protein kinase bands confirmed this finding, providing the first demonstration that activation of endogenous MARK results in increased tau phosphorylation within its microtubule-binding domain in situ.  相似文献   

14.
Cheng WH  Sakamoto S  Fox JT  Komatsu K  Carney J  Bohr VA 《FEBS letters》2005,579(6):1350-1356
The WRN protein is mutated in the chromosomally unstable Werner syndrome (WS) and the Nbs1 protein is mutated in Nijmegen breakage syndrome (NBS). The Nbs1 protein is an integral component of the M/R/N complex. Although WRN is known to interact with this complex in response to gamma-irradiation, the mechanism of action is unclear. Here, we show that WRN co-localizes and associates with gamma H2AX, a marker protein of DNA double strand breaks (DSBs), after cellular exposure to gamma-irradiation. While the DNA damage-inducible Nbs1 foci formation is normal in WS cells, WRN focus formation is defective in NBS cells. Consistent with this, gamma H2AX colocalizes with Nbs1 in WS cells but not with WRN in NBS cells. The defective WRN-gamma H2AX association in NBS cells can be complemented with wild-type Nbs1, but not with an Nbs1 S343A point mutant that lacks an ATM phosphorylation site. WRN associates with H2AX in a manner dependent upon the M/R/N complex. Our results suggest a novel pathway in which Nbs1 may recruit WRN to the site of DNA DSBs in an ATM-dependent manner.  相似文献   

15.
The Ser-139 phosphorylated form of replacement histone H2AX (gamma-H2AX) is induced within large chromatin domains by double-strand DNA breaks (DSBs) in mammalian chromosomes. This modification is known to be important for the maintenance of chromosome stability. However, the mechanism of gamma-H2AX formation at DSBs and its subsequent elimination during DSB repair remains unknown. gamma-H2AX formation and elimination could occur by direct phosphorylation and dephosphorylation of H2AX in situ in the chromatin. Alternatively, H2AX molecules could be phosphorylated freely in the nucleus, diffuse into chromatin regions containing DSBs and then diffuse out after DNA repair. In this study we show that free histone H2AX can be efficiently phosphorylated in vitro by nuclear extracts and that free gamma-H2AX can be dephosphorylated in vitro by the mammalian protein phosphatase 1-alpha. We made N-terminal fusion constructs of H2AX with green fluorescent protein (GFP) and studied their diffusional mobility in transient and stable cell transfections. In the absence or presence of DSBs, only a small fraction of GFP-H2AX is redistributed after photobleaching, indicating that in vivo this histone is essentially immobile in chromatin. This suggests that gamma-H2AX formation in chromatin is unlikely to occur by diffusion of free histone and gamma-H2AX dephosphorylation may involve the mammalian protein phosphatase 1alpha.  相似文献   

16.
《Molecular cell》2022,82(23):4458-4470.e5
  1. Download : Download high-res image (166KB)
  2. Download : Download full-size image
  相似文献   

17.
Histone H2AX rapidly undergoes phosphorylation at Ser139 (γ-H2AX) in response to DNA double-strand breaks. Although ATM kinase and DNA-PK phosphorylate Ser139 of H2AX in culture cells, the regulatory mechanism of γ-H2AX level remains unclear in vivo. Here, we detected the phosphorylation of H2AX and the elimination of γ-H2AX in the mouse skin after X-irradiation. Furthermore, following X-irradiation, the level of γ-H2AX also increased in mice lacking either ATM or DNA-PK. Although the elimination after X-irradiation was detected in the skin of these mutant mice, the elimination in DNA-PK-deficient mice was slower than that in C3H and ATM knockout mice, suggesting that a fraction of γ-H2AX in the skin is eliminated in a DNA-PK-dependent manner. Although the DNA-PK-dependent elimination of γ-H2AX was also detected in the liver, kidney, and spleen, the DNA-PK-dependent phosphorylation of H2AX was detected in the spleen only. These results suggest that the regulatory mechanism of γ-H2AX level is tissue-specific.  相似文献   

18.
Cytosolic DNA stimulates innate immune responses, including type I interferons (IFN), which have antiviral and immunomodulatory activities. Cyclic GMP‐AMP synthase (cGAS) recognizes cytoplasmic DNA and signals via STING to induce IFN production. Despite the importance of DNA in innate immunity, the nature of the DNA that stimulates IFN production is not well described. Using low DNA concentrations, we show that dsDNA induces IFN in a length‐dependent manner. This is observed over a wide length‐span of DNA, ranging from the minimal stimulatory length to several kilobases, and is fully dependent on cGAS irrespective of DNA length. Importantly, in vitro studies reveal that long DNA activates recombinant human cGAS more efficiently than short DNA, showing that length‐dependent DNA recognition is an intrinsic property of cGAS independent of accessory proteins. Collectively, this work identifies long DNA as the molecular entity stimulating the cGAS pathway upon cytosolic DNA challenge such as viral infections.  相似文献   

19.
It is widely accepted that the H2AX histone in its phosphorylated form (gamma-H2AX) is related to the repair of DNA double-strand breaks (DSBs). In several organisms, gamma-H2AX presence has been demonstrated in meiotic processes such as recombination and sex chromosome inactivation during prophase I (from leptotene to pachytene). To test whether gamma-H2AX is present beyond pachytene, we have analysed the complete sequence of changes in H2AX phosphorylation during meiosis in grasshopper, a model organism for meiotic studies at the cytological level. We show the presence of phosphorylated H2AX during most of meiosis, with the exception only of diplotene and the end of each meiotic division. During the first meiotic division, gamma-H2AX is associated with i) recombination, as deduced from its presence in leptotene-zygotene over all chromosome length, ii) X chromosome inactivation, since at pachytene gamma-H2AX is present in the X chromosome only, and iii) chromosome segregation, as deduced from gamma-H2AX presence in centromere regions at first metaphase-anaphase. During second meiotic division, gamma-H2AX was very abundant at most chromosome lengths from metaphase to telophase, suggesting its possible association with the maintenance of chromosome condensation and segregation.  相似文献   

20.
DNA damage response is an important surveillance mechanism used to maintain the integrity of the human genome in response to genotoxic stress. Histone variant H2AX is a critical sensor that undergoes phosphorylation at serine 139 upon genotoxic stress, which provides a docking site to recruit the mediator of DNA damage checkpoint protein 1 (MDC1) and DNA repair protein complex to sites of DNA breaks for DNA repair. Here, we show that monoubiquitination of H2AX is induced upon DNA double strand breaks and plays a critical role in H2AX Ser-139 phosphorylation (γ-H2AX), in turn facilitating the recruitment of MDC1 to DNA damage foci. Mechanistically, we show that monoubiquitination of H2AX induced by RING finger protein 2 (RNF2) is required for the recruitment of active ataxia telangiectasia mutated to DNA damage foci, thus affecting the formation of γ-H2AX. Importantly, a defect in monoubiquitination of H2AX profoundly enhances ionizing radiation sensitivity. Our study therefore suggests that monoubiquitination of H2AX is an important step for DNA damage response and may have important clinical implications for the treatment of cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号