首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A one-year study was carried out off the west coast of Scotland to compare the epifaunal colonization of concrete material used in the construction of the Loch Linnhe artificial reef with that on four other types of artificial substrata (preservative treated wood, rubber, steel and PVC). Settlement panels made from each of the materials were submerged in a vertical orientation during four seasonal exposure periods. There were clear seasonal trends across the four exposure periods with higher epifaunal biodiversity on all types of panel in the spring and summer exposure periods. Epifaunal assemblage structure was significantly different between the five types of material after each three-month exposure period. Concrete, preservative treated wood and PVC tended to have the highest species diversities. A successional study was also carried out. Over a 12-month exposure period epifaunal biodiversity increased on all five materials. After 12 months of exposure, the epifaunal assemblage structure was still significantly different between materials but had become more similar indicating a successional change towards a stable assemblage on all panels. The results indicate that material type and season have a significant effect on epifaunal assemblage structure after short (three-month) periods of submersion but that these effects are reduced with increasing length of exposure. The study concludes that the choice of construction material for an artificial reef will have little effect on the long-term epifaunal community structure, as long as the material is physically stable, non-toxic and offers a high degree of habitat complexity.  相似文献   

2.
Artificial reefs provide shelter and can be an important source of food for fish depending on the epibenthic community on the structure. The growth and diversity of this community is influenced by the substratum material and the surface orientation of the reef. Settlement plates of four materials (Perspex, sandstone, wood and steel) were deployed in three orientations (upwards, downwards and vertical) at a depth of 33 m on a designed artificial reef (DAR) off the coast of Sydney, Australia. After three months, the steel surfaces had lower invertebrate species richness, total abundance and diversity compared to other surfaces. Steel was not an ideal material for the initial recruitment and growth of epibenthic invertebrates. A longer duration would be required to develop a mature epibenthic community. Surface orientation had species-specific impacts. Surface material and orientation are important factors for developing epibenthic assemblages, and are thus likely to affect the broader artificial reef assemblage, including fish.  相似文献   

3.
A 2-year study was conducted in Hong Kong to examine the effects of substratum, season and length of submersion on the development of a subtidal epibiotic community using four types of settlement panels (concrete, steel, wood and tyre). The season and length of submersion had a strong influence on the total biomass and on community structure while the type of substratum had very little impact on the total biomass or the structure of the epibiotic community. The season of submersion determined the species composition of the newly submerged surfaces. In the spring and summer, tubeworms were the most abundant. In the autumn and winter, barnacles and tunicates dominated. Community succession was not obvious in the first year of submersion as it was intermingled with strong seasonal settlement, growth and death of barnacles and tunicates. In the second year of submersion, green mussels and tunicates settled and grew to occupy most of the panel surfaces, forming an assemblage that was characteristic of climax communities in the local subtidal waters. The results suggest that the type of construction material has limited impact on the development of epibiotic communities on artificial reefs deployed in Hong Kong; the season of submersion may affect community structure in the early successional stage, but not the characteristics of the climax communities. This study indicates that the type of substratum should not be of concern when deploying artificial reefs in the subtidal waters in this region. The design of artificial reefs should focus more on other physical and economical aspects such as durability, flow dynamics, stability, cost, and effects on the ambient environment.  相似文献   

4.

A 2-year study was conducted in Hong Kong to examine the effects of substratum, season and length of submersion on the development of a subtidal epibiotic community using four types of settlement panels (concrete, steel, wood and tyre). The season and length of submersion had a strong influence on the total biomass and on community structure while the type of substratum had very little impact on the total biomass or the structure of the epibiotic community. The season of submersion determined the species composition of the newly submerged surfaces. In the spring and summer, tubeworms were the most abundant. In the autumn and winter, barnacles and tunicates dominated. Community succession was not obvious in the first year of submersion as it was intermingled with strong seasonal settlement, growth and death of barnacles and tunicates. In the second year of submersion, green mussels and tunicates settled and grew to occupy most of the panel surfaces, forming an assemblage that was characteristic of climax communities in the local subtidal waters. The results suggest that the type of construction material has limited impact on the development of epibiotic communities on artificial reefs deployed in Hong Kong; the season of submersion may affect community structure in the early successional stage, but not the characteristics of the climax communities. This study indicates that the type of substratum should not be of concern when deploying artificial reefs in the subtidal waters in this region. The design of artificial reefs should focus more on other physical and economical aspects such as durability, flow dynamics, stability, cost, and effects on the ambient environment.  相似文献   

5.
The SeaGen tidal energy turbine is located in the Strangford Narrows, Northern Ireland. The Narrows are designated as a Natura 2000 site, host unique biological assemblages and exhibit very high tidal velocities.This study describes an asymmetrical BACI design monitoring program that was aimed at assessing the potential impact the SeaGen may have on epifaunal boulder reef communities. This study presents a novel methodology for monitoring epifaunal communities within highly variable and poorly understood tidal rapid environments.We identify bare rock as a key measure of disturbance within tidal energy extraction sites and propose a new successional model for epifaunal reef communities on subtidal stable substrates. We also present an Ecological Quality Ratio (EQR); the High Energy Hard Substrate (HEHS) index for use in monitoring programs within tidal energy extraction sites.Seasonality significantly affected epifaunal community structure, bare rock distributions and EQR values at all stations equally over time. SeaGen is not significantly affecting epifaunal community structure, bare rock distributions or EQR values at the impact site. The HEHS index has the potential to standardise benthic monitoring in tidal energy extraction sites.  相似文献   

6.
This study describes the early epifaunal succession associated with an artificial reef constructed to regenerate damaged biogenic habitats formed by Modiolus modiolus (Linnaeus, 1758). Clumps of live M. modiolus were translocated onto three treatments: flattened cultch, elevated cultch, and directly onto the sea floor. Photographic surveys were carried out 1, 6, and 12 months after completion of the experimental array to test the hypothesis that the artificial reef would enhance habitat complexity thus increasing biodiversity and accelerating faunal community succession. These effects were predicted to be greater on elevated cultch due to higher level of protection and greater accessibility to food compared to sea floor treatments. Univariate analysis indicated that after 12 months the artificial reef had developed a significantly richer and more diverse community compared to 1- and 6-month stages. Multivariate analysis revealed a significant temporal shift in species composition from mobile taxa to sessile and interstitial macroinvertebrates as the artificial reef settled. Reef elevation offered no significant advantages for the development of the epifaunal assemblage. Although further regular monitoring is advisable, this study demonstrated that translocation of a foundation species can help restore marine benthic habitats through the development of a diverse community in a relatively short time.  相似文献   

7.
Synopsis We sampled the littoral-zone fish fauna of Lake Texoma reservoir by electrofishing from January through December 1986 to examine species abundance, species associations and assemblage structure. Although total fish abundance differed significantly across seasons, only one common species (Dorosoma cepedianum) exhibited significant seasonal movement into or out of the littoral zone. Overall littoral-zone assemblage structure (based on rank order of species abundance) was concordant across seasons and habitat types, (vegetation, wood, open). However, within individual seasons and habitat types, assemblage structure was likely influenced by temporal and spatial differences in habitat availability and physicochemical conditions. Associations characteristic of species in natural aquatic environments were not well developed among species in this partly artificial, evolutionarily short-lived reservoir assemblage. Conditions related to water-level fluctuation appeared to deter the formation of persistent species associations and assemblage structure, especially in vegetation and open littoral zone habitats of this multi-purpose reservoir.Senior author  相似文献   

8.
Fish assemblages of unconsolidated sedimentary habitats on continental shelves are poorly described when compared to those of hard substrata. This lack of data restricts the objective management of these extensive benthic habitats. In the context of protecting representative areas of all community types, one important question is the nature of the transition from reefal to sedimentary fish assemblages. We addressed this question using Baited Remote Underwater Videos (BRUVs) to assess fish assemblages of sedimentary habitats at six distances from rocky reefs (0, 25, 50, 100, 200, and 400 m) at four sites in subtropical eastern Australia. Distance from reef was important in determining fish assemblage structure, and there was no overlap between reef sites and sedimentary sites 400 m from reef. While there was a gradient in assemblage structure at intermediate distances, this was not consistent across sites. All sites, however, supported a mixed ‘halo’ assemblage comprising both reef and sediment species at sampling stations close to reef. BRUVs used in conjunction with high-resolution bathymetric and backscatter spatial data can resolve differences in assemblage structure at small spatial scales (10s to 100s of metres), and has further application in unconsolidated habitats. Unless a ‘reef halo’ assemblage is being examined, a minimum of 200 m but preferably 400 m distance from any hard substrate is recommended when designing broader-scale assessments of fish assemblages of sedimentary habitats.  相似文献   

9.
Seasonal variation in densities of mobile epifauna associated with three species of subtidal brown seaweeds (Phaeophyta) was investigated over 2–3 years in northeastern New Zealand. There was strong seasonal variation in the total number of individuals per plant wet weight for epifauna inhabiting two fucalean seaweeds of the genus Carpophyllum, with epifaunal densities roughly tracking solar irradiance. In contrast, epifaunal densities on the laminarian Ecklonia radiata peaked during autumn/winter in the first two years of sampling, and during spring in the third, showing no predictable seasonal pattern of abundance. Few individual epifaunal taxa showed clear seasonal abundance patterns, even on the Carpophyllum spp. The composition of the epifaunal assemblage on each seaweed species was fairly constant over time.  相似文献   

10.
The mobile fauna associated with two sympatric kelp species with different holdfast morphology (Saccorhiza polyschides and Laminaria hyperborea) was compared to test for differences in the assemblage structure of holdfast-associated mobile epifauna. A total of 24,140 epifaunal individuals were counted from 30 holdfasts of each kelp species. Overall epifaunal abundances exceeded faunal abundances previously reported from holdfasts of other kelps. Three taxonomic groups, Amphipoda, Mollusca, and Polychaeta, accounted for ca. 85% of all individuals. Total abundances increased with the amount of habitat available, quantified either as the volume or the area provided by the holdfasts. The multivariate structure of the epifaunal assemblage did not differ between holdfasts of the two kelp species. However, epifaunal assemblages responded differentially to the habitat attributes provided by each type of kelp holdfast: multivariate variation in the assemblage structure of epifauna was mostly explained by holdfast area and volume for L. hyperborea, and by the surface-to-volume ratio for S. polyschides holdfasts. Therefore, the physical attributes of biogenic habitats, here kelp holdfasts that better predict patterns in the assemblage structure of associated fauna can differ according to their different physical morphology, even though the overall assemblage structure of associated fauna was similar.  相似文献   

11.
In this study, fishes and habitat attributes were quantified, four times over 1 year, on three reefs within four regions encompassing a c. 6° latitudinal gradient across south-western Australia. The variability observed was partitioned at these spatio-temporal scales in relation to reef fish variables and the influence of environmental drivers quantified at local scales, i.e. at the scale of reefs (the number of small and large topographic elements, the cover of kelp, fucalean and red algae, depth and wave exposure) and at the scale of regions (mean and maximum nutrient concentrations and mean seawater temperature) with regard to the total abundance, species density, species diversity and the multivariate structure of reef fishes. Variation in reef fish species density and diversity was significant at the regional scale, whereas variation in the total abundance and assemblage structure of fishes was also significant at local scales. Spatial variation was greater than temporal variation in all cases. A systematic and gradual species turnover in assemblage structure was observed between adjacent regions across the latitudinal gradient. The cover of red algae within larger patches of brown macroalgae (a biological attribute of the reef) and the number of large topographic elements (a structural attribute of the reef) were correlated with variation observed at local scales, while seawater temperature correlated with variation at the scale of regions. In conclusion, conservation efforts on reef fishes need to incorporate processes operating at regional scales with processes that shape local reef fish communities at local scales.  相似文献   

12.
 Visual censusing was used to characterize fish assemblages on artificial and natural reefs located within the boundaries of the Flower Garden Banks National Marine Sanctuary (FGBNMS) in the northwestern Gulf of Mexico. Emphasis was placed on determining spatial and temporal patterns in habitat utilization by fishes on an offshore artificial reef (Mobil Platform HI-A389A). Overall, 43 species were observed during diurnal surveys in the upper 24 m of the artificial reef. Midwater pelagic fishes (i.e., carangids and scombrids) accounted for over 50% of all taxa enumerated on the artificial reef; however, these taxa were transient members of the assemblage and were observed infrequently. Labrids, pomacentrids, and serranids were the dominant reef-dependent taxa. Distinct trends in vertical, diel, and seasonal abundances were observed for juvenile and adult fishes. Of the three designated depth zones (upper 1.5–9.0, middle 9.0–16.5; lower 16.5–24.0 m), abundance and species diversity were lowest in the upper zone. Nocturnal counts were characterized by a marked reduction or complete absence of most species, due in part to twilight cover-seeking and movement activities. Seasonal variation in community composition and species abundance (May versus September) was primarily due to recruitment of juveniles (0-age fishes) to the artificial reef in late summer. Increases in total fish abundance (all taxa combined) coincided with both increasing habitat rugosity and degree of fouling. Species richness on natural coral reefs in the FGBNMS was higher than on the artificial reef. Unlike the artificial reef, fish assemblages on the natural reefs were dominated by a single family (Pomacentridae) which accounted for over 50% of all individuals observed. Accepted: 1 August 1996  相似文献   

13.
If the primary goal of artificial reef construction is the creation of additional reef habitat that is comparable to adjacent natural rocky-reef, then performance should be evaluated using simultaneous comparisons with adjacent natural habitats. Using baited remote underwater video (BRUV) fish assemblages on purpose-built estuarine artificial reefs and adjacent natural rocky-reef and sand-flat were assessed 18 months post-deployment in three south-east Australian estuaries. Fish abundance, species richness and diversity were found to be greater on the artificial reefs than on either naturally occurring reef or sand-flat in all estuaries. Comparisons within each estuary identified significant differences in the species composition between the artificial and natural rocky-reefs. The artificial reef assemblage was dominated by sparid species including Acanthopagrus australis and Rhabdosargus sarba. The preference for a range of habitats by theses sparid species is evident by their detection on sand-flat, natural rocky reef and artificial reef habitats. The fish assemblage identified on the artificial reefs remained distinct from the adjacent rocky-reef, comprising a range of species drawn from naturally occurring rocky-reef and sand-flat. In addition, some mid-water schooling species including Trachurus novaezelandiae and Pseudocaranx georgianus were only identified on the artificial reef community; presumably as result of the reef''s isolated location in open-water. We concluded that estuarine artificial reef assemblages are likely to differ significantly from adjacent rocky-reef, potentially as a result of physical factors such as reef isolation, coupled with species specific behavioural traits such as the ability of some species to traverse large sand flats in order to locate reef structure, and feeding preferences. Artificial reefs should not be viewed as direct surrogates for natural reef. The assemblages are likely to remain distinct from naturally occurring habitat comprised of species that reside on a range of adjacent natural habitats.  相似文献   

14.
Long-term changes in a benthic assemblage associated with artificial reefs   总被引:1,自引:0,他引:1  
The aim of the study was to evaluate the long-term development of a hard bottom benthic assemblage over a period of 20 years in an area off the mouth of a large river. The artificial reef of Fregene was selected because benthic assemblage data were available for the period 1981–1992. This artificial reef is located in the mid Tyrrhenian Sea, 5 nautical miles north of the two mouths of the Tevere River (Latium, Italy) and 1.5 nautical miles offshore from Fregene (Rome, Italy). The artificial reef was deployed in March 1981 for fisheries enhancement in 10–14 m of water on a sandy-silty seabed. The Tevere River carries suspended materials and a heavy load of organics since it transports Rome’s effluent, resulting in the eutrophic state of area waters. Benthic sampling was conducted in 2001 by SCUBA diving; two standard surfaces of 400 cm2 were scraped from the vertical walls of the same uppermost block in four different periods. All organisms were identified and counted. The methodology used is the same as that adopted in the previous periods, so that the 2001 data could be compared with past collected data. The benthic assemblage was analysed by cluster analysis using the Bray-Curtis index and clustered using the group average clustering algorithm. The SIMPER procedure was used to identify those taxa that characterize each station group identified by cluster analysis. Changes in benthic assemblages and hydrological trends of the Tevere River were investigated using the cumulative sum series method. The 20-year development of the benthic community, starting from the new substratum, is composed of different phases characterised by different benthic assemblages. In particular five different phases were distinguished: 1. Pioneer species recruitment (May 1981–June 1981); 2. Mytilus galloprovincialis (mussel) dominance (August 1981–November 1983); 3. M. galloprovincialis regression (July 1984–October 1985); 4. M. galloprovincialis absence (91–92); 5. Bryozoans bioconstruction dominance (2001). The dynamic succession of the observed benthic assemblages exhibited a good relation with the Tevere River flow. The Tevere River flow, and the subsequent sedimentation process, seems to have strongly influenced the benthic assemblage succession of the Fregene artificial reef. Guest editors: G. Relini & J. Ryland Biodiversity in Enclosed Seas and Artificial Marine Habitats  相似文献   

15.
Eliza C. Moore  Kevin A. Hovel 《Oikos》2010,119(8):1299-1311
Habitat structure at many scales influences faunal communities. Although habitat structure at different scales often covaries, studies rarely examine the relative effects of structure at multiple scales on faunal density and diversity. In shallow‐water seagrass systems, epifaunal density at local scales generally increases with increased habitat structural complexity (e.g. shoot density per unit area). In turn, structural complexity often varies with other aspects of habitat structure at patch scales, such as proximity to patch edges, which itself modifies ecological processes that structure epifaunal communities. We conducted surveys and a manipulative experiment in the eelgrass Zostera marina beds of San Diego Bay, California, USA, to determine (1) whether eelgrass structural complexity, epifaunal density and diversity, and fish (predator) density and diversity vary with proximity to patch edges, and (2) the relative influences of structural complexity, proximity to patch edges and predator presence on epifaunal distribution. Seagrass structural complexity generally increased from patch edges to patch interiors at all sites and in all sampling periods. However, patterns of epifaunal density, diversity, and biomass varied among sites and sampling periods, with density and biomass increasing from patch edges to interiors at some sites and decreasing at others. In the manipulative experiment, we allowed epifauna to colonize sparse or dense artificial seagrass habitat at both the edge and interior of a seagrass patch, and enclosed a subset of experimental units in predator exclusion cages. Overall, proximity to patch edges had a larger influence on epifaunal density and community structure than did structural complexity or predation, with the exception of some common taxa which responded more strongly to either complexity or predator exclusion. Our results emphasize the importance of addressing and evaluating habitat structure at multiple scales to better understand the distribution and interactions of organisms in a particular environment.  相似文献   

16.
We quantify the relative importance of multi‐scale drivers of reef fish assemblage structure on isolated coral reefs at the intersection of the Indian and Indo‐Pacific biogeographical provinces. Large (>30 cm), functionally‐important and commonly targeted species of fish, were surveyed on the outer reef crest/front at 38 coral reef sites spread across three oceanic coral reef systems (i.e. Christmas Island, Cocos (Keeling) Islands and the Rowley Shoals), in the tropical Indian Ocean (c. 1.126 x 106 km2). The effects of coral cover, exposure, fishing pressure, lagoon size and geographical context, on observed patterns of fish assemblage structure were modelled using Multivariate Regression Trees. Reef fish assemblages were clearly separated in space with geographical location explaining ~53 % of the observed variation. Lagoon size, within each isolated reef system was an equally effective proxy for explaining fish assemblage structure. Among local‐scale variables, ‘distance from port’, a proxy for the influence of fishing, explained 5.2% of total variation and separated the four most isolated reefs from Cocos (Keeling) Island, from reefs with closer boating access. Other factors were not significant. Major divisions in assemblage structure were driven by sister taxa that displayed little geographical overlap between reef systems and low abundances of several species on Christmas Island corresponding to small lagoon habitats. Exclusion of geographical context from the analysis resulted in local processes explaining 47.3% of the variation, highlighting the importance of controlling for spatial correlation to understand the drivers of fish assemblage structure. Our results suggest reef fish assemblage structure on remote coral reef systems in the tropical eastern Indian Ocean reflects a biogeographical legacy of isolation between Indian and Pacific fish faunas and geomorphological variation within the region, more than local fishing pressure or reef condition. Our findings re‐emphasise the importance that historical processes play in structuring contemporary biotic communities.  相似文献   

17.
While herbivory is recognized as a fundamental process structuring coral reef communities, herbivore assemblages and processes are poorly described for reefs in the Indian Ocean region. We quantified herbivorous fish assemblage structure (abundance and diversity) in Laamu Atoll, Republic of Maldives, in four reef habitat types: faro reef flats, faro reef slopes, inner and outer atoll reef slopes (20 sites in total). Herbivorous fish assemblages, representing a total of 30 species, grouped strongly by habitat type, with the highest absolute abundance observed on faro reef flats and lowest abundance on inside atoll rim reef slopes. Removal of Thalassia seagrass blades by ambient herbivore assemblages was used in a bioassay to assess relative herbivory pressure among four habitat types (eight sites). Also, at one site a choice herbivory assay was performed to assess herbivore preference among four benthic plants across three depth zones. Relative herbivory, as indicated by Thalassia assays, was highest on inside atoll rim reef slopes and lowest on outside atoll rim reef slopes. Thalassia consumption did not correspond to overall herbivorous fish abundance, but corresponded more closely with parrotfish abundance. In the choice assays, herbivores showed strong preferences among plant types and consumption of most plant types was higher at mid-depth than in the shallow reef flat or deep reef knoll zones.  相似文献   

18.
Local habitat structure and the environment in which it occurs are some of the key components in the development of fish communities. In this case study we examined a snapshot of their relative role following relocation of four artificial reefs (ARs) from a coral reef environment to a sandy area with adjacent sea grass beds. Monitoring the fish communities on ARs and in the surrounding areas revealed that in their new locations, the ARs contained greater fish richness and abundance, with more diurnal than nocturnal fish, but their feeding guilds were similar to those of fish in the reef location. A multivariate analysis showed that the ARs had distinctly different fish assemblage from those of their surroundings regardless of their location. Nonetheless, we identified an effect of the surroundings on AR fish community assemblage. We propose that on a meso- scale, fish community structure is primarily dependent on the properties of the AR rather than on those of the surrounding environment.  相似文献   

19.
Changes in invertebrate body size-distributions that follow loss of habitat-forming species can potentially affect a range of ecological processes, including predation and competition. In the marine environment, small crustaceans and other mobile invertebrates (‘epifauna') represent a basal component in reef food webs, with a pivotal secondary production role that is strongly influenced by their body size-distribution. Ongoing degradation of reef habitats that affect invertebrate size-distributions, particularly transformation of coral and kelp habitat to algal turf, may thus fundamentally affect secondary production. Here we explored variation in size spectra of shallow epifaunal assemblages (i.e. the slope and intercept of the linear relationship between log abundance and body size at the assemblage level) across 21 reef microhabitats distributed along an extensive eastern Australian climatic gradient from the tropical northern Great Barrier Reef to cool temperate Tasmania. When aggregated across microhabitats at the site scale, invertebrate body size spectra (0.125–8 mm range) were consistently log-linear (R2 ranging 0.87–0.98). Size spectra differed between, but not within, major groups of microhabitats, and exhibited little variability between tropical and temperate biomes. Nevertheless, size spectra showed significant tropical/temperate differences in slopes for epifauna sampled on macroalgal habitats, and in elevation for soft coral and sponge habitats. Our results reveal epifaunal size spectra to be a highly predictable macro-ecological feature. Given that variation in epifaunal size spectra among groups of microhabitats was greater than variation between tropical and temperate biomes, we postulate that ocean warming will not greatly alter epifaunal size spectra directly. However, transformation of tropical coral and temperate macroalgal habitats to algal turfs due to warming will alter reef food web dynamics through redistribution of the size of prey available to fishes.  相似文献   

20.
Accumulation of oxalic acid (OA) by brown-rot fungi and precipitation of copper oxalate crystals in wood decayed by copper-tolerant decay fungi has implicated OA in the mechanism of copper tolerance. Understanding the role of OA in copper tolerance is important due to an increasing reliance on copper-based wood preservatives. In this study, four copper-tolerant brown-rot fungi were evaluated for decay capacity and OA production in early stages of exposure to four waterborne copper-based wood preservatives (ammonical copper quat type B and D, ammonical copper citrate, and chromated copper arsenate, type C) and one oilborne copper-based wood preservative (oxine copper) in southern yellow pine blocks. Weight losses were less than 14% during the 4-week incubation. The presence of copper in waterborne preservatives uniformly stimulated OA production by the test fungi within 2 weeks of exposure of the treated blocks to test fungi; 66% to 93% more OA was produced in treated blocks than untreated controls. Oxine copper, a nickel-containing oilborne preservative, prevented both weight loss and OA production in all fungi tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号