首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystal have been grown of myoglobin produced in Escherichia coli from a synthetic gene, and the structure has been solved to 1.9 Å resolution. The space group of the crystals is P6, which is different from previously solved myoglobin crystal forms. The synthetic myoglobin is essentially identical to myoglobin isolated from sperm whale tissue, except for the retention of the initiator methionine at the N-terminus and the substitution of asparagine for aspartic acid at position 122. Superposition of the coordinates of native and synthetic sperm whale myoglobins reveals only minor changes in the positions of main chain atoms and roeientation of some surface side chains. Crystals of variant of the “synthetic” myoglobin have also been grown for structural analysis of the role of key amino acid residues in ligand and specificity.  相似文献   

2.
J A Radding 《Biochemistry》1987,26(12):3530-3536
Model folding studies of sperm whale myoglobin have illustrated the presence of hydrophobic interfacial regions between elements of secondary structure. The specific oxidation of two tryptophan residues, in the A-H helix contact of sperm whale myoglobin, to the less hydrophobic oxindolylalanine residues is utilized to probe the contribution of hydrophobic packing density in this contact region. The acid denaturation of the modified protein is no longer a simple two-state process exhibiting the presence of stable intermediates. The relative stability of the intermediate is shown to be +5.3 kcal/mol less stable than native myoglobin. This value is consistent with the predicted relative stability, based upon electrostatic model calculations, of the docking of the A helix with a des-A helix myoglobin. The presence of stable intermediate structures in the denaturation pathway of the modified protein is consistent with the proposed role of hydrophobic interactions in damping structural fluctuations and statistical mechanical models of noncooperative protein unfolding. These results demonstrate the relationship between large-scale fluctuations and the frictional forces governing small-scale motions within the protein core.  相似文献   

3.
We have grown crystals in trigonal space group P3(2)21 of a mutant human myoglobin, aquomet form, in which lysine at position 45 has been replaced by arginine and cysteine at position 110 has been replaced by alanine. Suitable crystals of native recombinant human myoglobin have not been obtained. We have used the molecular replacement method to determine the X-ray crystal structure of the mutant at 2.8 A resolution. At the present stage of refinement, the crystallographic R-value for the model, with tightly restrained stereochemistry, is 0.158 for 5.0 to 2.8 A data. As expected, the overall structure is quite similar to the sperm whale myoglobin structure. Arginine 45 adopts a well-ordered conformation similar to that found in aquomet sperm whale myoglobin.  相似文献   

4.
We carried out the flash photolysis of oxy complexes of sperm whale myoglobin, cobalt-substituted sperm whale myoglobin, and Aplysia myoglobin. When the optical absorption spectral changes associated with the O2 rebinding were monitored on the nanosecond to millisecond time scale, we found that the transient spectra of the O2 photoproduct of sperm whale myoglobin were significantly different from the static spectra of deoxy form. This was sharply contrasted with the observations that the spectra of the CO photoproduct of sperm whale myoglobin and of the O2 photoproducts of cobalt-substituted sperm whale myoglobin and Aplysia myoglobin are identical to the corresponding spectra of their deoxy forms. These results led us to suggest the presence of a fairly stable transient species in the O2 photodissociation from the oxy complex of sperm whale myoglobin, which has a protein structure different from the deoxy form. We denoted the O2 photo-product to be Mb*. In the time-resolved resonance Raman measurements, the nu Fe-His mode of Mb* gave the same value as that of the deoxy form, indicating that the difference in the optical absorption spectra is possibly due to the structural difference at the heme distal side rather than those of the proximal side. The structure of Mb* is discussed in relation to the dynamic motion of myoglobin in the O2 entry to or exit from the heme pocket. Comparing the structural characteristics of several myoglobins employed, we suggested that the formation of Mb* relates to the following two factors: a hydrogen bonding of O2 with the distal histidine, and the movement of iron upon the ligation of O2.  相似文献   

5.
Myoglobin structure and regulation of solvent accessibility of heme pocket   总被引:1,自引:0,他引:1  
The effects of heme removal on the molecular structure of tuna and sperm whale myoglobin have been investigated by comparing the solvent accessibility to the heme pocket of the two proteins with that of the corresponding apoproteins. Although the heme microenvironment of tuna myoglobin is more polar than that of sperm whale myoglobin, the accessibility of solvent to heme is identical in the two proteins as revealed by thermal perturbation of Soret absorption. The removal of heme produces loss of helical folding and increase of solvent accessibility but the effects are rather different for the two proteins. More precisely, the loss of helical structure upon heme removal is 50% for tuna myoglobin and 15% for sperm whale myoglobin; moreover, the solvent accessibility of the heme pocket of tuna apomyoglobin is 2-3-fold greater than that of sperm whale apomyoglobin. These results have been explained in terms of the lack of helical folding in segment D, the structural organization of which may have a relevant effect in regulating the accessibility of ligands to the heme. The effects produced by charged quenchers reveal that the ligand path from the surface of the molecule to the ion atom of the heme involves a positively charged residue which may reasonably be identified as Arg-45 (sperm whale myoglobin) or Lys-41 (tuna myoglobin) on the basis of recent X-ray crystallographic information.  相似文献   

6.
The work in the literature on apomyoglobin is almost equally divided between horse and sperm whale myoglobins. The two proteins share high homology, show similar folding behavior, and it is often assumed that all folding phenomena found with one protein will also be found with the other. We report data at equilibrium showing that horse myoglobin was 2.1 kcal/mol less stable than sperm whale myoglobin at pH 5.0, and aggregated at high concentrations as measured by gel filtration and analytical ultracentrifugation experiments. The higher stability of sperm whale myoglobin was identified for both apo and holo forms, and was independent of pH from 5 to 8 and of the presence of sodium chloride. We also show that the substitution of sperm whale myoglobin residues Ala15 and Ala74 to Gly, the residues found at positions 15 and 74 in horse myoglobin, decreased the stability by 1.0 kcal/mol, indicating that helix propensity is an important component of the explanation for the difference in stability between the two proteins.  相似文献   

7.
The peptide backbones in folded native proteins contain distinctive secondary structures, alpha-helices, beta-sheets, and turns, with significant frequency. One question that arises in folding is how the stability of this secondary structure relates to that of the protein as a whole. To address this question, we substituted the alpha-helix-stabilizing alanine side chain at 16 selected sites in the sequence of sperm whale myoglobin, 12 at helical sites on the surface of the protein, and 4 at obviously internal sites. Substitution of alanine for bulky side chains at internal sites destabilizes the protein, as expected if packing interactions are disrupted. Alanine substitutions do not uniformly stabilize the protein, either in capping positions near the ends of helices or at mid-helical sites near the surface of myoglobin. When corrected for the extent of exposure of each side chain replaced by alanine at a mid-helix position, alanine replacement still has no clear effect in stabilizing the native structure. Thus linkage between the stabilization of secondary structure and tertiary structure in myoglobin cannot be demonstrated, probably because of the relatively small free energy differences between side chains in stabilizing isolated helix. By contrast, about 80% of the variance in free energy observed can be accounted for by the loss in buried surface area of the native residue substituted by alanine. The differential free energy of helix stabilization does not account for any additional variation.  相似文献   

8.
Peroxide-induced oxidative modifications of haem proteins such as myoglobin and haemoglobin can lead to the formation of a covalent bond between the haem and globin. These haem to protein cross-linked forms of myoglobin and haemoglobin are cytotoxic and have been identified in pathological conditions in vivo. An understanding of the mechanism of haem to protein cross-link formation could provide important information on the mechanisms of the oxidative processes that lead to pathological complications associated with the formation of these altered myoglobins and haemoglobins. We have re-examined the mechanism of the formation of haem to protein cross-link to test the previously reported hypothesis that the haem forms a covalent bond to the protein via the tyrosine 103 residue (Catalano, C. E., Choe, Y. S., Ortiz de Montellano, P. R., J. Biol. Chem. 1989, 10534 - 10541). Comparison of native horse myoglobin, recombinant sperm whale myoglobin and Tyr(103) --> Phe sperm whale mutant shows that, contrary to the previously proposed mechanism of haem to protein cross-link formation, the absence of tyrosine 103 has no impact on the formation of haem to protein cross-links. In contrast, we have found that engineered myoglobins that lack the distal histidine residue either cannot generate haem to protein cross-links or show greatly suppressed levels of modified protein. Moreover, addition of a distal histidine to myoglobin from Aplysia limacina, that naturally lacks this histidine, restores the haem protein's capacity to generate haem to protein cross-links. The distal histidine is, therefore, vital for the formation of haem to protein cross-link and we explore this outcome.  相似文献   

9.
The pH dependence of the proton NMR chemical shifts of met-cyano and deoxy forms of native and reconstituted myoglobins reflects a structural transition in the heme pocket modulated by a single proton with pK 5.1-5.6. Comparison of this pH dependence of sperm whale and elephant myoglobin and that of the former protein reconstituted with esterified hemin eliminates both the distal histidine as well as the heme propionates as the titrating residue. Reconstitution of sperm whale met-cyano myoglobin with hemin modified at the 2,4-positions leads to a systematic variation in the pK for the structural transition, thus indicating the presence of a coupling between the titrating group and the heme pi system. The results are consistent with histidine FG3 (His-FG3) being the titrating group, and a donor-acceptor pi-pi interaction between its imidazole and the heme is proposed.  相似文献   

10.
The effects of aqueous ethanol or 2,2,2-trifluoroethanol media on the structure of sperm whale myoglobin have been investigated by absorption, CD, and NMR spectra. The structural properties of myoglobin such as heme environments, helix contents, protein folding, and interactions between heme and the protein moiety have been sharply manifested in these spectra. The characterization demonstrated that alcohol-induced conformational change of myoglobin depends on the nature of alcohol and its concentration. It was shown for the first time that, upon the alcohol-induced denaturation of myoglobin, heme is released from partially denatured protein of which helix contents is altered by only about 20% relative to that of native state. Myoglobin has shown to unfold and refold reversibly by controlling the alcohol concentration. Novel methods for the preparation of apomyoglobin and in situ reconstitution of apomyoglobin with heme, based on the alcohol-induced denaturation of the protein, were presented.  相似文献   

11.
Carugo O 《Protein engineering》1999,12(12):1021-1024
An empirical relationship between occupancy and the atomic displacement parameter of water molecules in protein crystal structures has been found by comparing a set of well refined sperm whale myoglobin crystal structures. The relationship agrees with a series of independent structural features whose impact on water occupancy can easily be predicted as well as with other known data and is independent of the protein fold. The estimation of the water occupancy in protein crystal structures may help in understanding the physico-chemical properties of the protein-solvent interface and can allow the monitoring of the accuracy of the protein crystal structure refinement.  相似文献   

12.
Five myoglobins (sperm whale, Sei whale, Hubbs' beaked whale, pilot whale, and Amazon River dolphin) were examined using two-dimensional electrophoresis. Previous reports indicated that none of these proteins could be separated by using denaturing (in the presence of 8-9 M urea) isoelectric focusing. This result is confirmed in the present study. However, all the proteins could be separated by using denaturing nonequilibrium pH-gradient electrophoresis in the first dimension. Additionally, all the myoglobins have characteristic mobilities in the second dimension (sodium dodecyl sulfate), but these mobilities do not correspond to the molecular weights of the proteins. We conclude that two-dimensional electrophoresis can be more sensitive to differences in primary protein structure than previous studies indicate and that the assessment seems to be incorrect that this technique can separate only proteins that have a unit charge difference.  相似文献   

13.
Summary Sequence-specific backbone 1H and 15N resonance assignments have been made for 95% of the amino acids in sperm whale myoglobin, complexed with carbon monoxide (MbCO). Many assignments for side-chain resonances have also been obtained. Assignments were made by analysis of an extensive series of homonuclear 2D spectra, measured with unlabeled protein, and both 2D and 3D 1H-15N-correlated spectra obtained from uniformly 15N-labeled myoglobin. Patterns of medium-range NOE connectivities indicate the presence of eight helices in positions that are very similar to those found in the crystal structures of sperm whale myoglobin. The resonance assignments of MbCO form the basis for determination of the solution structure and for hydrogen-exchange measurements to probe the stability and folding pathways of myoglobin. They will also form a basis for assignment of the spectra of single-site mutants with altered ligand-binding properties.  相似文献   

14.
We have carried out a series of multiple Xaa-->Ala changes at nonadjacent surface positions in the sequence of sperm whale myoglobin. Although the corresponding single substitutions do not increase the thermal stability of the protein, multiple substitutions enhance the stability of the resulting myoglobins. The effect observed is an increase in the observed Tm (midpoint unfolding temperature) relative to that predicted from assuming additivity of the free energy changes corresponding to single mutations. The stabilization occurs in the presence of urea, as measured by the dependence of the unfolding temperature on urea concentration. The sites that have been altered occur in different helices and are not close in sequence or in the native structure of myoglobin. The observed effect is consistent with a role of multiple alanines in residual interactions in the unfolded state of the mutant proteins.  相似文献   

15.
Proton nuclear magnetic resonance spectroscopy has been utilized to demonstrate that the degree of heme orientational disorder within a given myoglobin protein matrix can be a sensitive function of the oxidation/ligation/spin state of the heme iron. For sperm whale deuterohemin-reconstituted myoglobin, the equilibrium was found to strongly favor (5.7 to 7.8 kJ/mol) the X-ray characterized heme orientation in all six-coordinate states, but with a considerable reduction in preference (to 1.6 kJ/mol) in the five-coordinate deoxy state. In native yellow fin tuna myoglobin, changes in heme orientational preferences of approximately 3 kJ/mol occur even between two six-coordinate ferric states differing solely in spin states.  相似文献   

16.
R F Tilton  I D Kuntz  G A Petsko 《Biochemistry》1984,23(13):2849-2857
X-ray crystallographic data to 1.9-A resolution were collected on sperm whale metmyoglobin equilibrated with 7 atm of xenon gas. The results indicate four xenon sites of occupancy from 0.45 to 1.0. These sites are located in interior spaces or packing defects of the myoglobin molecule. The effects of the bound xenon on the protein structure are minor, and we observe a small overall reduction in refined isotropic atomic protein temperature factors. We interpret the results as a confirmation that, on a time-averaged basis, cavities exist within the myoglobin molecule and suggest that the binding of small ligands in these cavities affects the internal motions and conformational substrates of the protein.  相似文献   

17.
The structure of pig aquometmyoglobin has been refined to a crystallographic R-factor of 19.8% against X-ray diffraction data between 10- and 1.75-A spacing. The final structural model comprises two molecules of pig myoglobin, 233 water molecules, and two sulfate ions. A water molecule is coordinated to each of the heme iron atoms with an average Fe-OH2 bond distance of 2.19 A, and the mean Fe-N epsilon (proximal histidine-93) distance is 2.20 A. In contrast to the structure of sperm whale metmyoglobin, the iron is not significantly displaced from the plane of the heme. At the entrance to the heme pocket, the side-chain amino group of lysine-45 (CD3) is well-defined in the electron density map and forms salt-bridging interactions with the heme 6-propionate and with a sulfate ion. Serine and arginine replacements have been made previously at position 45 to examine the proposal that the CD3 side chain acts as a barrier to ligand entry into the protein. Crystal structures of the arginine-45 and serine-45 mutant metmyoglobins have been solved to 1.9 and 2.0 A resolution, respectively. In both cases the structural changes are confined to the site of mutation. Arginine-45 takes up a conformation closely similar to that observed for this residue in wild-type sperm whale myoglobin, in which it makes more extensive charge-charge and charge-dipole interactions and appears to restrict the movement of the distal histidine away from the ligand. The hydroxyl group of serine-45 is disordered, but it is clear that the effect of the mutation is to open up the solvent-exposed face of the heme pocket.  相似文献   

18.
Structural dynamics of liganded myoglobin.   总被引:5,自引:0,他引:5       下载免费PDF全文
X-ray crystallography can reveal the magnitudes and principal directions of the mean-square displacements of every atom in a protein. This structural information is complementary to the temporal information obtainable by spectroscopic techniques such as nuclear magnetic resonance. Determination of the temperature dependence of the mean-square displacements makes it possible to separate large conformational motions from simple thermal vibrations. The contribution of crystal lattice disorder to the overall apparent displacement can be estimated by Mössbauer spectroscopy. This technique has been applied to high resolution x-ray diffraction data from sperm whale myoglobin in its Met iron and oxy cobalt forms. Both crystal structures display regions of large conformational motions, particularly at the chain termini and in the region of the proximal histidine. Overall, the mean-square displacement increases with increasing distance from the center of gravity of the molecule. Some regions of the heme pocket in oxy cobalt myoglobin are more rigid than the corresponding regions in Met myoglobin.  相似文献   

19.
The folding process of sea hare myoglobin was simulated by the island model, which does not rely on sequence homologies or statistical inference from database of known structure. Sea hare myoglobin has low sequence homology (28%), but high structural similarity, with sperm whale myoglobin, which was already simulated by the island model. Their structural similarity is shown physiochemically from the distribution of hydrophobic-residue pairs, that is, the key pairs for packing of the secondary structures. Irrelevant to the sequence homology, the secondary structures can be packed into the tertiary structure through the hydrophobic interactions among the amino acid pairs responsible for the local structure formation. The results on the two species of myoglobins indicate that, in contrast to other prediction methods, the island model is applicable to any type of protein without extra information other than the distribution of hydrophobic-residue pairs and the positions of the secondary structures. Consequently the present results provide another verification of the validity of the island model for elucidating the mechanisms of protein folding and predicting protein structures.  相似文献   

20.
The complete amino acid sequence of the major component myoglobin from finback whale, Balaenoptera physalus, was determined by the automated Edman degradation of several large peptides obtained by specific cleavages of the protein. Three easily separable peptides were obtained by cleaving with cyanogen bromide at the two methionine residues and one large peptide was isolated after cleavage with (2-p-nitrophenylsulfenyl)-3-methyl-3'-bromoindolenine. More than 60% of the covalent structure was established by the sequential degradation of three of these peptides and the apomyoglobin. An additional 30% of the primary sequence was established with peptides obtained from tryptic digestion of both the apomyoglobin and the acetimidoapomyoglobin, and the final 10% of the sequence was completed after digestion of the two larger cyanogen bromide peptides with S. aureus strain V8 protease. This myoglobin differs from that of the sperm whale, Physeter catodon, at 15 positions, from that of the arctic minke whale, Balaenoptera acutorostrata, at 3 positions, and from that of the California gray whale, Eschrichtius gibbosus, at 4 positions. All of the substitutions observed in this sequence fit easily into the three-dimensional structure of the sperm whale myoglobin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号