首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Integration of inositol phosphate signaling pathways via human ITPK1   总被引:2,自引:0,他引:2  
Inositol 1,3,4-trisphosphate 5/6-kinase (ITPK1) is a reversible, poly-specific inositol phosphate kinase that has been implicated as a modifier gene in cystic fibrosis. Upon activation of phospholipase C at the plasma membrane, inositol 1,4,5-trisphosphate enters the cytosol and is inter-converted by an array of kinases and phosphatases into other inositol phosphates with diverse and critical cellular activities. In mammals it has been established that inositol 1,3,4-trisphosphate, produced from inositol 1,4,5-trisphosphate, lies in a branch of the metabolic pathway that is separate from inositol 3,4,5,6-tetrakisphosphate, which inhibits plasma membrane chloride channels. We have determined the molecular mechanism for communication between these two pathways, showing that phosphate is transferred between inositol phosphates via ITPK1-bound nucleotide. Intersubstrate phosphate transfer explains how competing substrates are able to stimulate each others' catalysis by ITPK1. We further show that these features occur in the human protein, but not in plant or protozoan homologues. The high resolution structure of human ITPK1 identifies novel secondary structural features able to impart substrate selectivity and enhance nucleotide binding, thereby promoting intersubstrate phosphate transfer. Our work describes a novel mode of substrate regulation and provides insight into the enzyme evolution of a signaling mechanism from a metabolic role.  相似文献   

2.
Inositol polyphosphates perform essential functions as second messengers in eukaryotic cells, and their cellular levels are regulated by inositol phosphate kinases. Most of these enzymes belong to the inositol phosphate kinase superfamily, which consists of three subgroups, inositol 3-kinases, inositol phosphate multikinases, and inositol hexakisphosphate kinases. Family members share several strictly conserved signature motifs and are expected to have the same backbone fold, despite very limited overall amino acid sequence identity. Sequence differences are expected to play important roles in defining the different substrate selectivity of these enzymes. To investigate the structural basis for substrate specificity, we have determined the crystal structure of the yeast inositol phosphate multikinase Ipk2 in the apoform and in a complex with ADP and Mn(2+) at up to 2.0A resolution. The overall structure of Ipk2 is related to inositol trisphosphate 3-kinase. The ATP binding site is similar in both enzymes; however, the inositol binding domain is significantly smaller in Ipk2. Replacement of critical side chains in the inositolbinding site suggests how modification of substrate recognition motifs determines enzymatic substrate preference and catalysis.  相似文献   

3.
The enzyme(s) responsible for the production of inositol hexakisphosphate (InsP(6)) in vertebrate cells are unknown. In fungal cells, a 2-kinase designated Ipk1 is responsible for synthesis of InsP(6) by phosphorylation of inositol 1,3,4,5,6-pentakisphosphate (InsP(5)). Based on limited conserved sequence motifs among five Ipk1 proteins from different fungal species, we have identified a human genomic DNA sequence on chromosome 9 that encodes human inositol 1,3,4,5,6-pentakisphosphate 2-kinase (InsP(5) 2-kinase). Recombinant human enzyme was produced in Sf21 cells, purified, and shown to catalyze the synthesis of InsP(6) or phytic acid in vitro. The recombinant protein converted 31 nmol of InsP(5) to InsP(6)/min/mg of protein (V(max)). The Michaelis-Menten constant for InsP(5) was 0.4 microM and for ATP was 21 microM. Saccharomyces cerevisiae lacking IPK1 do not produce InsP(6) and show lethality in combination with a gle1 mutant allele. Here we show that expression of the human InsP(5) 2-kinase in a yeast ipk1 null strain restored the synthesis of InsP(6) and rescued the gle1-2 ipk1-4 lethal phenotype. Northern analysis on human tissues showed expression of the human InsP(5) 2-kinase mRNA predominantly in brain, heart, placenta, and testis. The isolation of the gene responsible for InsP(6) synthesis in mammalian cells will allow for further studies of the InsP(6) signaling functions.  相似文献   

4.
An enzyme which catalyses the ATP-dependent phosphorylation of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] was purified approx. 180-fold from rat brain cytosol by (NH4)2SO4 precipitation, chromatography through hydroxyapatite, anion-exchange fast protein liquid chromatography and gel-filtration chromatography. Gel filtration on Sepharose 4B CL gives an Mr of 200 x 10(3) for the native enzyme. The inositol tetrakisphosphate (InsP4) produced by the enzyme has the chromatographic, chemical and metabolic properties of Ins(1,3,4,5)P4. Ins(1,4,5)P3 3-kinase displays simple Michaelis-Menten kinetics for both its substrates, having Km values of 460 microM and 0.44 microM for ATP and Ins(1,4,5)P3 respectively. When many of the inositol phosphates known to occur in cells were tested, only Ins(1,4,5)P3 was a substrate for the enzyme; the 2,4,5-trisphosphate was not phosphorylated. Inositol 4,5-bisphosphate and glycerophosphoinositol 4,5-bisphosphate were phosphorylated much more slowly than Ins(1,4,5)P3. CTP, GTP and adenosine 5'-[gamma-thio]triphosphate were unable to substitute for ATP. When assayed under conditions of first-order kinetics, Ins(1,4,5)P3 kinase activity decreased by about 40% as the [Ca2+] was increased over the physiologically relevant range. This effect was insensitive to the presence of calmodulin and appeared to be the result of an increase in the Km of the enzyme for Ins(1,4,5)P3. Preincubation with ATP and the purified catalytic subunit of cyclic AMP-dependent protein kinase did not affect the rate of phosphorylation of Ins(1,4,5)P3 when the enzyme was assayed at saturating concentrations of Ins(1,4,5)P3 or at concentrations close to its Km for this substrate.  相似文献   

5.
S H Ryu  S Y Lee  K Y Lee  S G Rhee 《FASEB journal》1987,1(5):388-393
Inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) is an important second-messenger molecule that mobilizes Ca2+ from intracellular stores in response to the occupancy of receptor by various Ca2+-mobilizing agonists. The fate of Ins-1,4,5-P3 is determined by two enzymes, a 3-kinase and a 5-phosphomonoesterase. The first enzyme converts Ins-1,4,5-P3 to Ins-1,3,4,5-P4, whereas the latter forms Ins-1,4-P2. Recent studies suggest that Ins-1,3,4,5-P4 might modulate the entry of Ca2+ from an extracellular source. In the current report, we describe the partial purification of the 3-kinase [approximately 400-fold purified, specific activity = 0.12 mumol/(min.mg)] from the cytosolic fraction of bovine brain and studies of its catalytic properties. We found that the 3-kinase activity is significantly activated by the Ca2+/calmodulin complex. Therefore, we propose that Ca2+ mobilized from endoplasmic reticulum by the action of Ins-1,4,5-P3 forms a complex with calmodulin, and that the Ca2+/calmodulin complex stimulates the conversion of Ins-1,4,5-P3, an intracellular Ca2+ mobilizer, to Ins-1,3,4,5-P4, an extracellular Ca2+ mobilizer. A rapid assay method for the 3-kinase was developed that is based on the separation of [3-32P]Ins-1,3,4,5-P4 and [gamma-32P]ATP by thin-layer chromatography. Using this new assay method, we evaluated kinetic parameters (Km for ATP = 40 microM, Km for Ins-1,4,5-P3 = 0.7 microM, Ki for ADP = 12 microM) and divalent cation specificity (Mg2+ much greater than Mn2+ greater than Ca2+) for the 3-kinase. Studies with various inositol polyphosphates indicate that the substrate-binding site is quite specific to Ins-1,4,5-P3. Nevertheless, Ins-2,4,5-P3 could be phosphorylated at a velocity approximately 1/20-1/30 that of Ins-1,4,5-P3.  相似文献   

6.
The yeast and Drosophila pathways leading to the production of inositol hexakisphosphate (InsP(6)) have been elucidated recently. The in vivo pathway in humans has been assumed to be similar. Here we show that overexpression of Ins(1,3,4)P(3) 5/6-kinase in human cell lines results in an increase of inositol tetrakisphosphate (InsP(4)) isomers, inositol pentakisphosphate (InsP(5)) and InsP(6), whereas its depletion by RNA interference decreases the amounts of these inositol phosphates. Expression of Ins(1,3,4,6)P(4) 5-kinase does not increase the amount of InsP(5) and InsP(6), although its depletion does block InsP(5) and InsP(6) production, showing that it is necessary for production of InsP(5) and InsP(6). Expression of Ins(1,3,4,5,6)P(5) 2-kinase increases the amount of InsP(6) by depleting the InsP(5) in the cell, and depletion of 2-kinase decreases the amount of InsP(6) and causes an increase in InsP(5). These results are consistent with a pathway that produces InsP(6) through the sequential action of Ins(1,3,4)P(3) 5/6-kinase, Ins(1,3,4,6)P(4) 5-kinase, and Ins(1,3,4,5,6)P5 2-kinase to convert Ins(1,3,4)P(3) to InsP(6). Furthermore, the evidence implicates 5/6-kinase as the rate-limiting enzyme in this pathway.  相似文献   

7.
The human inositol phosphate multikinase (IPMK, 5-kinase) has a preferred 5-kinase activity over 3-kinase and 6-kinase activities and a substrate preference for inositol 1,3,4,6-tetrakisphosphate (Ins(1,3,4,6)P4) over inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4). We now report that the recombinant human protein can catalyze the conversion of inositol 1,4,5,6-tetrakisphosphate (Ins(1,4,5,6)P4) to Ins(1,3,4,5,6)P5 in vitro; the reaction product was identified by HPLC to be Ins(1,3,4,5,6)P5. The apparent Vmax was 42 nmol of Ins(1,3,4,5,6)P5 formed/min/mg protein, and the apparent Km was 222 nM using Ins(1,3,4,6)P4 as a substrate; the catalytic efficiency was similar to that for Ins(1,4,5)P3. Stable over-expression of the human protein in HEK-293 cells abrogates the in vivo elevation of Ins(1,4,5,6)P4 from the Salmonella dublin SopB protein. Hence, the human 5-kinase may also regulate the level of Ins(1,4,5,6)P4 and have an effect on chloride channel regulation.  相似文献   

8.
Myo-inositol is present in nature either unmodified or in more complex phosphorylated derivates. Of the latest, the two most abundant in eukaryotic cells are inositol pentakisphosphate (IP(5;)) and inositol hexakisphosphate (phytic acid or IP(6;)). IP(5;) and IP(6;) are the precursors of inositol pyrophosphate molecules that contain one or more pyrophosphate bonds(1). Phosphorylation of IP(6;) generates diphoshoinositolpentakisphosphate (IP(7;) or PP-IP(5;)) and bisdiphoshoinositoltetrakisphosphate (IP(8;) or (PP)(2;)-IP(4;)). Inositol pyrophosphates have been isolated from all eukaryotic organisms so far studied. In addition, the two distinct classes of enzymes responsible for inositol pyrophosphate synthesis are highly conserved throughout evolution(2-4). The IP(6;) kinases (IP(6;)Ks) posses an enormous catalytic flexibility, converting IP(5;) and IP(6;) to PP-IP(4;) and IP(7;) respectively and subsequently, by using these products as substrates, promote the generation of more complex molecules(5,6). Recently, a second class of pyrophosphate generating enzymes was identified in the form of the yeast protein VIP(1;) (also referred as PP-IP(5;)K), which is able to convert IP(6;) to IP(7;) and IP(8;)(7,8). Inositol pyrophosphates regulate many disparate cellular processes such as insulin secretion(9), telomere length(10,11), chemotaxis(12), vesicular trafficking(13), phosphate homeostasis(14) and HIV-1 gag release(15). Two mechanisms of actions have been proposed for this class of molecules. They can affect cellular function by allosterically interacting with specific proteins like AKT(16). Alternatively, the pyrophosphate group can donate a phosphate to pre-phosphorylated proteins(17). The enormous potential of this research field is hampered by the absence of a commercial source of inositol pyrophosphates, which is preventing many scientists from studying these molecules and this new post-translational modification. The methods currently available to isolate inositol pyrophosphates require sophisticated chromatographic apparatus(18,19). These procedures use acidic conditions that might lead to inositol pyrophosphate degradation(20) and thus to poor recovery. Furthermore, the cumbersome post-column desalting procedures restrict their use to specialized laboratories. In this study we describe an undemanding method for the generation, isolation and purification of the products of the IP(6;)-kinase and PP-IP(5;)-kinases reactions. This method was possible by the ability of polyacrylamide gel electrophoresis (PAGE) to resolve highly phosphorylated inositol polyphosphates(20). Following IP(6;)K1 and PP-IP(5;)K enzymatic reactions using IP(6;) as the substrate, PAGE was used to separate the generated inositol pyrophosphates that were subsequently eluted in water.  相似文献   

9.
Tsujishita Y  Guo S  Stolz LE  York JD  Hurley JH 《Cell》2001,105(3):379-389
Inositol polyphosphate 5-phosphatases are central to intracellular processes ranging from membrane trafficking to Ca(2+) signaling, and defects in this activity result in the human disease Lowe syndrome. The 1.8 resolution structure of the inositol polyphosphate 5-phosphatase domain of SPsynaptojanin bound to Ca(2+) and inositol (1,4)-bisphosphate reveals a fold and an active site His and Asp pair resembling those of several Mg(2+)-dependent nucleases. Additional loops mediate specific inositol polyphosphate contacts. The 4-phosphate of inositol (1,4)-bisphosphate is misoriented by 4.6 compared to the reactive geometry observed in the apurinic/apyrimidinic endonuclease 1, explaining the dephosphorylation site selectivity of the 5-phosphatases. Based on the structure, a series of mutants are described that exhibit altered substrate specificity providing general determinants for substrate recognition.  相似文献   

10.
Inositol 1,4,5-trisphosphate 5-phosphatase catalyses the dephosphorylation of the phosphate in the 5-position from inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate. One particulate and two soluble enzymes were previously described in bovine brain. In this study, we have obtained a precipitating antiserum against soluble type I inositol 1,4,5-trisphosphate 5-phosphatase. The particulate, but not the soluble type II enzyme, was immunoprecipitated by the serum. Inositol 1,4,5-triphosphate 5-phosphatase activity from crude extracts of rat brain, human platelets and rat liver were immmunoprecipitated by the same antibodies, suggesting the existence of common antigenic determinant among inositol 1,4,5-trisphosphate 5-phosphatases of diverse sources.  相似文献   

11.
High performance liquid chromatography analysis of supernatants from acid-quenched [3H]inositol-labeled parotid acinar cells revealed an inositol pentakisphosphate and three inositol tetrakisphosphates. Two of the latter were identified as the 1,3,4,5 and 1,3,4,6 isomers, whereas the third was probably a mixture of unknown proportions of the 3,4,5,6/1,4,5,6 enantiomeric pair. Methacholine (100 microM) produced a 40-50-fold increase in the levels of inositol trisphosphate (mainly the 1,3,4 isomer) and inositol 1,3,4,5-tetrakisphosphate, but inositol 1,3,4,6-tetrakisphosphate only increased 5-fold. Levels of inositol 3,4,5,6/1,4,5,6-tetrakisphosphate and inositol pentakisphosphate were unaffected by agonist stimulation. Thus, in parotid cells, an agonist-induced increase in both inositol trisphosphate and inositol 1,3,4,6-tetrakisphosphate formation does not result in an increase in the rate of formation of inositol pentakisphosphate. Following the addition of 100 microM atropine to methacholine-stimulated parotid cells, the levels of [3H]inositol 1,3,4,5-tetrakisphosphate fell rapidly, returning to basal levels within 5 min. Inositol trisphosphate was metabolized more slowly and was still elevated 20-fold above basal 5 min after the addition of atropine. Inositol 1,3,4,6-tetrakisphosphate was metabolized much more slowly (t1/2 approximately 15 min). Inositol 1,3,4-trisphosphate metabolism was examined in parotid homogenates as well as in 100,000 x g cytosolic and particulate fractions. Inositol 1,3,4-trisphosphate was both dephosphorylated and phosphorylated. Two inositol tetrakisphosphate products were formed, namely the 1,3,4,6 and 1,3,4,5 isomers. Over 90% of both kinase and phosphatase activities were found in the cytosolic fractions. The ratio of activities of kinase to phosphatase decreased as the levels of inositol 1,3,4-trisphosphate substrate were increased from 1 nM to 10 microM. These data led to the conclusion that the kinetic parameters of the inositol 1,3,4-trisphosphate kinases and phosphatases are such that in stimulated cells, dephosphorylation of inositol 1,3,4-trisphosphate is greatly favored. Inositol 1,3,4-trisphosphate kinase activity was potently inhibited by inositol 3,4,5,6-tetrakisphosphate (IC50 = 0.1-0.2 microM), which leads us to propose that inositol 3,4,5,6-tetrakisphosphate is an endogenous inhibitor of the kinase.  相似文献   

12.
The production of inositol polyphosphate (IPs) and pyrophosphates (PP-IPs) from inositol 1,4,5-trisphosphate (I(1,4,5)P3) requires the 6-/3-/5-kinase activity of Ipk2 (also known as Arg82 and inositol polyphosphate multikinase). Here, we probed the distinct roles for I(1,4,5)P3 6- versus 3-kinase activities in IP metabolism and cellular functions reported for Ipk2. Expression of either I(1,4,5)P3 6- or 3-kinase activity rescued growth of ipk2-deficient yeast at high temperatures, whereas only 6-kinase activity enabled growth on ornithine as the sole nitrogen source. Analysis of IP metabolism revealed that the 3-kinase initiated the synthesis of novel pathway consisting of over eleven IPs and PP-IPs. This pathway was present in wild-type and ipk2 null cells, albeit at low levels as compared with inositol hexakisphosphate synthesis. The primary route of synthesis was: I(1,4,5)P3 --> I(1,3,4,5)P4 --> I(1,2,3,4,5)P5 --> PP-IP4 --> PP2-IP3 and required Kcs1 (or possibly Ipk2), Ipk1, a novel inositol pyrophosphate synthase, and then Kcs1 again, respectively. Mutation of kcs1 ablated this pathway in ipk2 null cells and overexpression of Kcs1 in ipk2 mutant cells phenocopied IP3K expression, confirming it harbors a novel 3-kinase activity. Our work provides a revised genetic map of IP metabolism in yeast and evidence for dosage compensation between IPs and PP-IPs downstream of I(1,4,5)P3 in the regulation of nucleocytoplasmic processes.  相似文献   

13.
Inositol 1,4,5-trisphosphate (InsP3) 3-kinase, which phosphorylates InsP3 to form inositol 1,3,4,5-tetrakisphosphate, was purified to apparent homogeneity by (NH4)2SO4 fractionation and sequential chromatographic steps on DEAE-sepharose, calmodulin-Affi-Gel and DEAE-5PW h.p.l.c. The purified enzyme had a specific activity of 24.4 nmol of inositol tetrakisphosphate formed/min per mg of protein, which represented a purification of approx. 195-fold with a 0.29% recovery, compared with the cytosol fraction of the muscle. SDS/polyacrylamide-gel electrophoresis showed a single protein-staining band of Mr 93,000. Moreover, the major protein peak, of Mr 84,000, was detected by TSK gel G3000SW gel-permeation chromatography of the purified sample. As this value was approximately consistent with the Mr determined by SDS/polyacrylamide-gel-electrophoretic analysis, the InsP3 3-kinase might be a monomeric enzyme. The purified enzyme had a Km for InsP3 of 0.4 microM, with an optimum pH range of 5.8-7.7. The enzyme was maximally activated by calmodulin, with a stoichiometry of 1:1.  相似文献   

14.
Inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) metabolism has been studied in liver homogenates and in 100,000 x g supernatant and particulate fractions. When liver homogenates were incubated in an "intracellular" medium containing 5 mM MgATP, equal proportions of Ins(1,3,4)P3 were dephosphorylated and phosphorylated. Two inositol tetrakisphosphate (InsP4) products and an inositol pentakisphosphate (InsP5) were detected. The InsP4 isomers were unequivocally identified as inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) and inositol 1,3,4,6-tetrakisphosphate (Ins(1,3,4,6)P4) by high performance liquid chromatography separation of inositol phosphates, periodate oxidation, alkaline hydrolysis, and stereo-specific polyol dehydrogenase. Ins(1,3,4)P3 5-kinase is a novel enzyme activity and accounted for 16% of the total Ins(1,3,4)P3 phosphorylation. Ins(1,3,4,6)P4 was also shown to be further phosphorylated to inositol 1,3,4,5,6-pentakisphosphate (Ins(1,3,4,5,6)P5) by a kinase not previously known to occur in liver. About 75% of Ins(1,3,4)P3 kinase activities were soluble and were partly purified by anion-exchange fast protein liquid chromatography. The two Ins(1,3,4)P3 kinase activities eluted as a single peak that was well resolved from Ins(1,3,4)P3 phosphatase, Ins(1,3,4,6)P4 5-kinase, and Ins(1,3,4,5)P4 5-phosphatase activities. A further novel observation was that 10 microM Ins(1,3,4,5)P4 inhibited Ins(1,3,4)P3 kinase activities by 60%.  相似文献   

15.
Inositol glycerolipids make up less than 10% of total phospholipids of Paramecium tetraurelia cells. Unlike inositol lipids found in mammalian and other cell types, these lipids from Paramecium lack arachidonic acid. It was demonstrated that kinase and possibly phosphatase enzymes that interconvert phosphatidylinositol (PI), phosphatidylinositol phosphate (PI-P) and phosphatidylinositol-bis-phosphate (PI-P2) exist in ciliary membranes of this ciliate. When exogenous soybean PI and [gamma-32P]ATP were provided as substrates, isolated cilia preparations exhibited PI and PI-P kinase activities as demonstrated by the incorporation of radiolabel into PI-P and PI-P2. Kinase activity was activated by millimolar [Mg2+] and inhibited by millimolar [Ca2+]. Significant inhibition of kinase activity in the presence of unlabeled excess ATP suggested that ATP is the preferred phosphate donor for this reaction. Of 4 suborganellar fractions of isolated cilia, the membrane fraction had the greatest kinase activity indicating that the enzyme(s) is membrane-associated.  相似文献   

16.
The Arabidopsis genome encodes a family of inositol 1,3,4-trisphosphate 5/6-kinases which form a subgroup of a larger group of ATP-grasp fold proteins. An analysis of the inositol 1,3,4-trisphosphate 5/6-kinase family might, ultimately, be best rewarded by detailed comparison of related enzymes in a single genome. The enzyme encoded by At2G43980, AtITPK4; is an outlier to its family. At2G43980 is expressed in male and female organs of young and mature flowers. AtITPK4 differs from other family members in that it does not display inositol 3,4,5,6-tetrakisphosphate 1-kinase activity; rather, it displays inositol 1,4,5,6-tetrakisphosphate and inositol 1,3,4,5-tetrakisphosphate isomerase activity.  相似文献   

17.
We have identified a cDNA encoding a novel inositol polyphosphate 5-phosphatase. It contains two highly conserved catalytic motifs for 5-phosphatase, has a molecular mass of 51 kDa, and is ubiquitously expressed and especially abundant in skeletal muscle, heart, and kidney. We designated this 5-phosphatase as SKIP (Skeletal muscle and Kidney enriched Inositol Phosphatase). SKIP is a simple 5-phosphatase with no other motifs. Baculovirus-expressed recombinant SKIP protein exhibited 5-phosphatase activities toward inositol 1,4,5-trisphosphate, inositol 1,3,4,5-tetrakisphosphate, phosphatidylinositol (PtdIns) 4,5-bisphosphate, and PtdIns 3,4, 5-trisphosphate but has 6-fold more substrate specificity for PtdIns 4,5-bisphosphate (K(m) = 180 microM) than for inositol 1,4, 5-trisphosphate (K(m) = 1.15 mM). The ectopic expression of SKIP protein in COS-7 cells and immunostaining of neuroblastoma N1E-115 cells revealed that SKIP is expressed in cytosol and that loss of actin stress fibers occurs where the SKIP protein is concentrated. These results imply that SKIP plays a negative role in regulating the actin cytoskeleton through hydrolyzing PtdIns 4,5-bisphosphate.  相似文献   

18.
A segment of inositol 1,4,5-trisphosphate 3-kinase responsible for inositol 1,4,5-trisphosphate (InsP(3)) binding was characterized and confirmed by three different approaches employing the fully active expressed catalytic domain of the enzyme. Part of this moiety was protected from limited tryptic proteolysis by InsP(3). Sequencing of two fragments of 16 and 21 kDa, generated in the absence or presence of InsP(3), respectively, identified segment Glu-271 to Arg-305 as being protected. 15 monoclonal antibodies, all binding to epitopes within this region, inhibited enzyme activity and interfered with inositol phosphate binding. Detailed enzyme kinetic parameters of 32 site-directed mutants revealed residues Arg-276 and Lys-303 in this segment and Arg-322, located nearby, as directly involved in and five other closely neighbored residues, all located within a segment of 73 amino acids, as also influencing InsP(3) binding. Part of this region is similar in sequence to an InsP(3) binding segment in InsP(3) receptors. Combined with the finding that mutants influencing only ATP binding all lie outside this region, these data indicate that an InsP(3) binding core domain is inserted between two segments acting together in ATP binding and phosphate transfer.  相似文献   

19.
Soluble phosphatidylinositol (PtdIns) 4- and 3-kinase activities were partially purified and characterized from human placental extracts. The placental PtdIns 4-kinase (type 3) has a Km for ATP of 460 microM and is kinetically different to a partially purified human erythrocyte, membrane-bound, PtdIns 4-kinase (type 2). These three inositol lipid kinases were then used to compare their substrate specificities against the four synthetic stereoisomers of dipalmitoyl PtdIns. Only the placental 4-kinase was influenced by the chirality of the glycerol moiety of PtdIns. However, neither of the 4-kinases was able to phosphorylate L-PtdIns and, therefore, these kinases have an absolute requirement for the inositol ring to be linked to the glyceryl backbone of the lipid through the D-1 position. Phosphoinositide 3-kinase, on the other hand, was found to phosphorylate both D- and L-PtdIns. While the 3-kinase phosphorylated exclusively the D-3 position of D-PtdIns, further analyses demonstrated that the same enzyme phosphorylated two sites on L-PtdIns, namely the D-6 and D-5 positions of the inositol ring. Some implications of these findings are discussed.  相似文献   

20.
Despite the high deposition of inositol hexakisphosphate (IP(6)), also known as phytate or phytin, in certain plant tissues little is known at the molecular level about the pathway(s) involved in its production. In budding yeast, IP(6) synthesis occurs through the sequential phosphorylation of I(1,4,5)P(3) by two gene products, Ipk2 and Ipk1, a IP(3)/IP(4) dual-specificity 6-/3-kinase and an inositol 1,3,4,5,6-pentakisphosphate 2-kinase, respectively. Here we report the identification and characterization of two inositol polyphosphate kinases from Arabidopsis thaliana, designated AtIpk2alpha and AtIpk2beta that are encoded by distinct genes on chromosome 5 and that are ubiquitously expressed in mature tissue. The primary structures of AtIpk2alpha and AtIpk2beta are 70% identical to each other and 12-18% identical to Ipk2s from yeast and mammals. Similar to yeast Ipk2, purified recombinant AtIpk2alpha and AtIpk2beta have 6-/3-kinase activities that sequentially phosphorylate I(1,4,5)P(3) to generate I(1,3,4,5,6)P(5) predominantly via an I(1,4,5,6)P(4) intermediate. While I(1,3,4,5)P(4) is a substrate for the plant Ipk2s, it does not appear to be a detectable product of the IP(3) reaction. Additionally, we report that the plant and yeast Ipk2 have a novel 5-kinase activity toward I(1,3,4,6)P(4) and I(1,2,3,4,6)P(5), which would allow these proteins to participate in at least two proposed pathways in the synthesis of IP(6). Heterologous expression of either plant isoform in an ipk2 mutant yeast strain restores IP(4) and IP(5) production in vivo and rescues its temperature-sensitive growth defects. Collectively our results provide a molecular basis for the synthesis of higher inositol polyphosphates in plants through multiple routes and indicate that the 6-/3-/5-kinase activities found in plant extracts may be encoded by the IPK2 gene class.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号