共查询到20条相似文献,搜索用时 0 毫秒
1.
J. G. Salway J. L. Harwood M. Kai G. L. White J. N. Hawthorne 《Journal of neurochemistry》1968,15(3):221-226
—The activities of four enzymes concerned with inositol lipid metabolism have been determined in homogenates of rat brains of different ages. The enzymes are CDP-diglyceride inositol phosphatidate transferase, phosphatidylinositol kinase, diphosphoinositide kinase and triphosphoinositide phosphomonoesterase. The activities of all the enzymes increased with age. Phosphatidylinositol kinase activity rose most sharply well before myelination, reaching a maximum at about 6 days of age. Diphosphoinositide kinase and triphosphoinositide phosphomonoesterase activities increased most rapidly during myelination. The increase in CDP-diglyceride inositol phosphatidate transferase showed no definite association with any period of development. It is concluded that triphosphoinositide metabolism is associated with myelin or a closely related structure. 相似文献
2.
NUCLEOTIDE METABOLISM IN RAT BRAIN 总被引:8,自引:7,他引:8
Abstract— The uptake, the conversion to nucleotides, and their incorporation into RNA for labelled glycine, aspartate, the free bases and nucleosides of purines and pyrimidines were investigated with cortical slices of rat cerebrum. At the end of a 1-hr incubation time the slice-to-medium ratio of the radioactivities for labelled aspartate, glycine, adenine and adenosine were 34, 26, 20 and 5, respectively, while the slice-to-medium ratios for hypoxanthine, inosine, guanine, guanosine, xanthine, orotate, cytidine, cytosine, uridine, and uracil ranged from 1.3:1 to 2:1. Over 99 per cent of the total radioactivity taken up by the cortical slices was present in the TCA supernatant and 86, 82, 65, 50, 34, 23, 20 and 1.6 per cent of this radioactivity was in the form of nucleotides at the end of a 1-hr incubation with labelled adenine, adenosine, hypoxanthine, inosine, uridine, orotate, cytidine, and glycine, respectively. The incorporation of various radioactive precursors into RNA of cortical slices suggests that nucleotides originating from either de novo synthesis or preformed purine derivatives enter the same nucleotide pool utilized for RNA synthesis. The supernatant fraction from homogenized cerebrum was investigated for the presence of various anabolic and catabolic enzymes associated with nucleotide metabolism. These results were correlated with the data from the RNA incorporation studies, and a possible role for AMP: pyrophosphate phosphoribosyltransferase (adenine phosphoribosyltransferase, I.U.B. 2.4.2.7) to achieve intercellular transfer of AMP is discussed. 相似文献
3.
SYNTHESIS AND METABOLISM OF l-KYNURENINE IN RAT BRAIN 总被引:4,自引:7,他引:4
Abstract— A method for the quantitative analysis of femtomole amounts of kynurenine (along with tryptophan, 3-hydroxykynurenine and kynuramine) in rat brain using high pressure liquid chroma-tography and electron-capture GLC is described. Endogenous concentrations of these substances in rat brain regions were measured, and their formation after the injection of radioactive tryptophan or kynurenine was determined. Kynurenine was formed from tryptophan in brain and was also taken up from the periphery. Extracerebral kynurenine was calculated to account for 60% of the cerebral pool of kynurenine. The cerebral rates of synthesis of kynurenine and 3-hydroxykynurenine were 0.29 and 0.17nmol/g/h. The turnover rate of kynurenine in the brain was 1.02 nmol/g/h measured from [14 C]tryptophan or 1.14 nmol/g/h from [3 H]kynurenine injected intraperitoneally. Kynuramine levels in different areas of the brain were similar to those of tryptamine. Following intraperitoneal injection of [14 C]tryptophan, the presence of anthranilic, 3-hydroxyanthranilic, xanthurenic, kynurenic and quinaldic acids was demonstrated in the brain. 相似文献
4.
Abstract— (1) The encephalitogenic basic protein obtained from adult rat brain by treatment with 0·03 N-HCl was demonstrable in the brain on the 10th day after birth. It showed a marked increase in quantity during the phase of active myelination.
(2) The proteins extracted under similar conditions from 5-day old rat brain contained several highly basic proteins other than the encephalitogenic basic protein. These basic proteins, which were electrophoretically similar to highly basic proteins extracted similarly from adult rat liver, are histones.
(3) For metabolic studies the entire group of highly basic proteins in the acid extract was obtained after one-step adsorption of other proteins on DEAE-cellulose equilibrated at pH 9·8
(4) After injection of [14 C]lysine the fractions containing highly basic proteins, water soluble non-basic proteins and other tissue proteins of the brain showed higher relative specific radioactivities during the period 1–10 days after birth than during later stages of postnatal development. The fraction containing proteolipid protein, another myelin protein, showed a low relative specific radioactivity throughout the whole period of postnatal development. The relative specific radioactivity of proteolipid protein was somewhat higher in young than in adult rat brain. 相似文献
(2) The proteins extracted under similar conditions from 5-day old rat brain contained several highly basic proteins other than the encephalitogenic basic protein. These basic proteins, which were electrophoretically similar to highly basic proteins extracted similarly from adult rat liver, are histones.
(3) For metabolic studies the entire group of highly basic proteins in the acid extract was obtained after one-step adsorption of other proteins on DEAE-cellulose equilibrated at pH 9·8
(4) After injection of [
5.
SUBCELLULAR DISTRIBUTION OF ENZYMES OF GLUTAMATE METABOLISM IN RAT BRAIN 总被引:11,自引:1,他引:11
6.
THE MITOCHONDRIAL REDOX STATE OF RAT BRAIN 总被引:3,自引:8,他引:3
The use of the glutamate dehydrogenase (EC 1.4.1.3) and β-hydroxybutyrate dehydrogenase (EC 1.1.1.30) reactions for the calculation of the mitochondrial redox state of brain has been examined. To prevent post-mortem anoxic metabolism, brains were frozen in less than a second by using a new technique. Levels of ketone bodies in brain were so low relative to the contamination by blood and extracellular fluid that calculation of the mitochondrial redox state using the β-hydroxybutyrate dehydrogenase reaction was not practical. The concentrations of the non-nucleotide substrates of the glutamate dehydrogenase reaction could be accurately measured in brain and themitochondrial [NAD+]/[NADH] ratio calculated from the ratio [α-oxoglutarate] [NH4+]/[glutamate]. The calculation is valid if the ratio [α-oxoglutarate] [NH4+]/[glutamate] in mitochondria is the same as that measured in whole tissue. The evidence supporting this conclusion is the near-equilibrium of the aspartate aminotransferase (EC 2.6.1.l) reaction in brain and the observation by others that the distribution of label between α-oxoglutarate and glutamate in brain, after administration of labelled precursors, conforms to expectation. The alanine aminotransferase (EC 2.6.1.2) reaction was not near equilibrium in brain, probably because of the low in vivo activity of the enzyme. 相似文献
7.
O. P. Sharma 《Journal of neurochemistry》1977,28(6):1377-1379
Abstract— Phospholipids, particularly phosphatidylcholine, are the main substrates for lipid peroxidation in rat brain mitochondria. The neutral lipids do not undergo peroxidation. The lipoproteins of mitochondria in their native form protect the phospholipids from auto-oxidation. The mitochondrial protein fraction stimulates peroxide formation presumably due to its surface active properties. 相似文献
8.
Labeled malonic acid ([1-14C] and [2-14C]) was injected into the left cerebral hemisphere of anesthetized adult rats in order to determine the metabolic fate of this dicarboxylic acid in central nervous tissue. The animals were allowed to survive for 2, 5, 10. 15 or 30min. Blood was sampled from the torcular during the experimental period and labeled metabolites were extracted from the brain after intracardiac perfusion. There was a very rapid efflux of unreacted malonate in the cerebral venous blood. Labeled CO2 was recovered from the venous blood and the respired air after the injection of [1-14C]malonate but not after [2-14C]malonate. The tissue extracts prepared from the brain showed only minimal labeling of fatty acids and sterols. Much higher radioactivity was present in glutamate, glutamine, aspartate, and GABA. The relative specific activities (RSA) of glutamine never rose above 1.00. Aspartate was labeled very rapidly and revealed evidence of 14CO2 fixation in addition to labeling through the Krebs cycle. GABA revealed higher RSA after [1-14C]malonate than after [2-14C]malonate. Sequential degradations of glutamate and aspartate proved that labeling of these amino acids occurred from [1-14C] acetyl-CoA and [2-14C] acetyl-CoA, respectively, via the Krebs cycle. Malonate activation and malonyl-CoA decarboxylation in vivo were similar to experiments with isolated mitochondria. However, labeled malonate was not incorporated into the amino acids of free mitochondria. The results were compared to data obtained after intracerebral injection of [1-14C]acetate and [2-14C]acetate. 相似文献
9.
Both de novo and preformed base or salvage pathways are simultaneously operative in the biosynthesis of purine nucleotides in rat brain per se. A preferential utilization of de novo precursors is demonstrated. 相似文献
10.
EFFECTS OF HYPOPHYSECTOMY ON RNA METABOLISM IN RAT BRAIN STEM 总被引:3,自引:2,他引:1
Abstract— Ribosomal aggregates were isolated from rat brain stem and characterized as polysomes by sedimentation analysis and by their sensitivity to RNase and EDTA treatment.
Three weeks following hypophysectomy there was a significant decrease in the content of large polysomes in the rat brain stem. The incorporation of radioactive uridine into RNA was studied using a double-labelling technique with [3 H]- and [14 C]uridine and labelling periods of 70 and 180 min. It was found that after hypophysectomy the incorporation of radioactive uridine into total, nuclear and cytoplasmic RNA and in polysomes was decreased after 70 and 180 min. Information on the nature of the rapidly-labelled RNA in the various subcellular fractions was obtained by sucrose gradient sedimentation analysis.
After 70 min of labelling the nucleus contained heterogeneous RNA with a considerable fraction of RNA sedimenting faster than 28 S. In the cytoplasmic fraction heterogeneous 4 to 30 S RNA was found, presumably associated with RNP particles, whereas after 180 min the polyribosomal aggregates were also labelled.
The present results indicate a profound effect of hypophysectomy on the metabolism of all species of brain RNA investigated. 相似文献
Three weeks following hypophysectomy there was a significant decrease in the content of large polysomes in the rat brain stem. The incorporation of radioactive uridine into RNA was studied using a double-labelling technique with [
After 70 min of labelling the nucleus contained heterogeneous RNA with a considerable fraction of RNA sedimenting faster than 28 S. In the cytoplasmic fraction heterogeneous 4 to 30 S RNA was found, presumably associated with RNP particles, whereas after 180 min the polyribosomal aggregates were also labelled.
The present results indicate a profound effect of hypophysectomy on the metabolism of all species of brain RNA investigated. 相似文献
11.
THE METABOLISM OF LABELLED ETHANOLAMINE IN THE BRAIN OF THE RAT IN VIVO 总被引:12,自引:1,他引:12
12.
Abstract— The overall steady state kinetic mechanism of pyruvate dehydrogenase multienzyme complex purified from rat brain has been investigated. Initial rate patterns were a series of parallel lines regardless of which substrate was varied at several fixed concentrations of other substrates. Product inhibition patterns showed that acetyl CoA is competitive vs CoA, that NADH is competitive vs NAD, and that both acetyl CoA and NADH are uncompetitive vs pyruvate. Both acetyl CoA and NADH are noncompetitive vs NAD and CoASH, respectively. These results are inconsistent with classical 'hexa uni' ping-pong mechanisms, but are consistent with a non-classical 3-site ping-pong mechanism. 相似文献
13.
The metabolism of N-acetyl-l -aspartic acid (NAA) was studied in rat brain. [Aspartyl-U-14C]NAA was metabolized predominantly by deacylation. Studies of NAA biosynthesis from l -[U-14C]aspartic acid have confirmed previous reports that NAA turns over slowly in rat brain. However, intracerebrally-injected N-acetyl-l -[U-14C]asparticacid was rapidly metabolized. Exogenous NAA appears to be taken up rapidly into a small, metabolically-active pool. This pool serves as substrate for a tricarboxylic acid cycle associated with the production of glutamate for the biosynthesis of glutamine. The bulk of the NAA content in brain appears to be relatively inactive metabolically. 相似文献
14.
M. G. Cummings J. H. James P. B. Soeters Jane M. Keane J. Foster J. E. Fischer 《Journal of neurochemistry》1976,27(3):741-746
Abstract— Tryptophan, 5-hydroxytryptamine and 5-hydroindoleacetic acid were found to be greatly increased in various parts of the brains of rats in acute hepatic failure following two stage hepatic devascularization. However, the increases in 5-hydroxytryptamine and 5-hydroxyindoleacetic acid varied by region and are not explicable solely in terms of increased concentrations of tryptophan. The results are discussed in terms of differences in the regional metabolism of 5-hydroxyindoleamines. Plasma free fatty acids, albumin, total tryptophan and free tryptophan were measured in plasma in hopes of elucidating the mechanism responsible for the cerebral elevation of tryptophan. Increased plasma free tryptophan appears sufficient to explain the rapid increase in brain tryptophan. The relationship between these results and recent observations in hepatic encephalopathy is discussed. 相似文献
15.
K. Dross 《Journal of neurochemistry》1975,24(4):701-706
—The subcutaneous administration of 2·0 mg DFP per kg to rats causes a diminution in the lysophosphatidylcholine content in the brain, which is followed by a decrease of glycerylphosphorylcholine concentration and by a reduced post mortem choline increase. This supports the hypothesis that a post mortem increase in choline is due to phosphatidylcholine breakdown. Since the amount of phosphatidylcholine in brains of di-isopropylfluorophosphate-treated rats increases, it is concluded that phospholipase A is inhibited by di-isopropylfluorophosphate, which corresponds to findings of other authors in vitro. The activity of glycerylphosphorylcholine diesterase (EC 3.1.4.2) is not altered. 相似文献
16.
THE EFFECTS OF INTOXICATING DOSES OF ETHANOL UPON INTERMEDIARY METABOLISM IN RAT BRAIN 总被引:3,自引:3,他引:3
Abstract— The effect of acute (8-min) and prolonged (13-h) exposures to high doses of ethanol upon the intermediary metabolites of rat brain has been studied, with the use of a new freezing technique which minimizes post-mortem changes. Injection of ethanol (80 mmol/kg body wt) produced general anaesthesia within 8 min after administration. At this time there were increases in the brain contents of glucose, glucose-6-phosphate and citrate; there was no change in arterial pCO2 . Rats under ethanol anaesthesia for 13 h showed increases in brain contents of glycogen, glucose and glucose 6-phosphate; and decreases in lactate, pyruvate, α-oxoglutarate and malate. Under similar experimental conditions, arterial pCO2 , increased from 37 to 51 Torr. The changes in levels of metabolites after injection of ethanol were similar to those after administration of many volatile anaesthetic agents or elevation of brain CO2 by other means. Although brain levels of malate and α-oxoglutarate decreased after prolonged exposure to ethanol, the mitochondrial redox state was maintained. Accordingly, the levels of glutamate and aspartate fell in accordance with the law of mass action. The maintenance of the cytoplasmic and mitochondrial redox states in the brain during ethanol intoxication was in marked contrast to the effects on the liver. We suggest that the different effects observed in brain and liver result from the action of ethanol upon the nerve cell membrane in brain, whereas the primary target in liver is alcohol dehydrogenase. 相似文献
17.
Abstract—
- 1 Metabolism of [2-14C]pyruvate, [1-14C]acetate and [5-14C]citrate in the rat cerebral cortex slices was studied in the presence of halothane. Metabolites assayed include acetylcholine (ACh), citrate, glutamate, glutamine, γ-aminobutyrate (GABA) and aspartate. The trichloroacetic acid soluble extract, the trichloroacetic acid insoluble precipitate and its lipid extract were also studied.
- 2 In control experiments, pyruvate preferentially labelled ACh, citrate, glutamate, GABA and aspartate. Acetate labeled ACh, but to a lesser extent than pyruvate. Acetate also labeled lipids and glutamine. Citrate labeled lipids but not ACh and served as a preferential precursor for glutamine. These data support a three-compartment model for cerebral tricarboxylic acid cycle metabolism.
- 3 Halothane caused increases in GABA and aspartate contents and a decrease in ACh content. It has no effect on the contents of citrate, glutamate and glutamine.
- 4 Halothane preferentially inhibited the metabolic transfer of radioactivity from pyruvate into almost all metabolites, an effect probably not related to pyruvate permeability. This is interpreted as halothane depression of the‘large metabolic compartment’ which includes the nerve endings.
- 5 Halothane increased the metabolic transfer of radioactivity from acetate into lipids but did not alter such a transfer into the trichloracetic acid extract.
- 6 Halothane increased the metabolic transfer of radioactivity from citrate into the trichloroacetic acid precipitate, lipids and especially glutamine. Transfer of citrate radioactivity into GABA was somewhat decreased.
- 7 The differential effects of halothane on acetate and citrate utilization suggest that the ‘small metabolic compartment’ should be subdivided. Therefore, at least three metabolic compartments are demonstrated.
- 8 Halothane did not interfere with the dicarboxylic acid portion of the tricarboxylic acid cycle.
18.
Abstract— The postnatal development of three enzymes in the rat forebrain was studied. When expressed per tissue weight the catechol- O -methyl transferase (COMT) increased 2-fold from birth to adult age, the lactate dehydrogenase (LDH) 4-fold and the monoamine oxidase (MAO) 12-fold. Expressed per mg protein the increase in the enzyme activities in the subcellular fractions which contained the main part of the different enzymes was still 2–4-fold for COMT and LDH while for MAO it was 4-fold.
There was a relative increase in the COMT activity in the P2 fraction (synaptosomes and mitochondria). This increase was identical with a corresponding increase in LDH activity and protein and was probably due to growth of nerve terminals. The COMT in the cytoplasm of the synaptosomes showed the same increase relative to the proteins as did the 'free' cytoplasmic enzyme.
The conclusion is drawn that the enzymes in the rat brain show a certain degree of development during brain growth. An additional increase of some enzymes is due to the development of specialized structures such as mitochondria and nerve terminals with synapses. COMT is not related to any such specialized structure. 相似文献
There was a relative increase in the COMT activity in the P
The conclusion is drawn that the enzymes in the rat brain show a certain degree of development during brain growth. An additional increase of some enzymes is due to the development of specialized structures such as mitochondria and nerve terminals with synapses. COMT is not related to any such specialized structure. 相似文献
19.
20.
B. Weiss 《Journal of neurochemistry》1971,18(3):469-477
Abstract— The activities of adenyl cyclase and phosphodiesterase were determined in homogenates of cerebrum, cerebellum and brain stem of rats of 1 day to 9 weeks of postnatal age. The activity of cerebral and brain stem adenyl cyclase measured either in the absence or presence of sodium fluoride increased rapidly for 2 weeks, reached at 20 days a maximum about three times (brain stem) or six times (cerebrum) that seen on day 1 and then declined slightly during the next several weeks. In contrast, activity of cerebrellar adenyl cyclase increased more slowly and reached a maximum at about 32 days. Activity of phosphodiesterase in cerebrum and brain stem increased several-fold during brain maturation; however, enzymic activity in the cerebellum decreased during the entire 9 week period.
In the pineal gland, adenyl cyclase activity measured in the absence of norepinephrine or sodium fluoride did not change significantly with age. However, enzymic activity measured in the presence of these agents increased with the age of the rat. Bilateral removal of the superior cervical ganglia at 1 day of age is known to arrest the sympathetic innervation of the pineal gland but did not prevent the development of this adenyl cyclase system activated by catecholamines or fluoride. 相似文献
In the pineal gland, adenyl cyclase activity measured in the absence of norepinephrine or sodium fluoride did not change significantly with age. However, enzymic activity measured in the presence of these agents increased with the age of the rat. Bilateral removal of the superior cervical ganglia at 1 day of age is known to arrest the sympathetic innervation of the pineal gland but did not prevent the development of this adenyl cyclase system activated by catecholamines or fluoride. 相似文献