首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The C activation fragment C5a is the most potent plasma-derived chemotactic factor known. This humoral factor induces both neutrophil and macrophage activation at low nanomolar concentrations. We have synthesized a series of C-terminal C5a analogues that exhibit all of the characteristic biologic activities of C5a. These peptides apparently contain the effector site for C5a receptor-mediated cellular activation, but express only a fraction of the potency of intact C5a. We have demonstrated the following in vitro activities for these C5a peptides: 1) ileal (guinea pig) contraction; 2) platelet (guinea pig) activation; and 3) neutrophil (human) polarization and chemotaxis. The effect of C5a peptides in vivo was evaluated by measuring enhancement in vascular permeability. Although potencies of the most effective synthetic C5a analogues were on the order of 0.01 to 0.1% that of the natural factor, our biologic data confirm that the C5a peptides are full agonists of the intact factor and may be useful substitutes for intact C5a. Furthermore, our results indicate that elongation of the C5a analogues from 10 to 19 residues in length contributes little toward enhancing or decreasing potency of the synthetic C5a analogues. Replacement of residues in the effector region by D-amino acids or by introduction of a cyclic group to reduce flexibility of the backbone decreased potency of the analogues. Substitution of His 67 by Phe in the decapeptide C5a 65-74 resulted in a significant increase in potency of the C5a analogue. The marked enhancement in potency from replacing His 67 by Phe in analogue C5a peptides identifies an important hydrophobic subsite. We conclude that site-specific amino acid modifications in or near the C-terminal effector site sequence can diminish or optimize potency of the model C5a peptides. However, there apparently are subsites on folded C5a, from regions other than the C-terminal portion of the molecule, that contribute significant receptor interactions. These subsites must be identified and incorporated into C5a model peptide designs before expression of full potency by synthetic analogues of this factor will be realized.  相似文献   

2.
Designing synthetic superagonists of C3a anaphylatoxin   总被引:4,自引:0,他引:4  
J A Ember  N L Johansen  T E Hugli 《Biochemistry》1991,30(15):3603-3612
An extensive structure-activity study of synthetic analogues of the C3a anaphylatoxin was conducted. Our goal was to map C3a-C3a receptor interactions by designing synthetic analogue molecules having maximal biologic potency. Nonspecific binding of the polycationic C3a to polyanionic molecules on cellular surfaces often obscures specific binding to the receptor. Less cationic synthetic C3a analogues would be useful tools in identifying and characterizing the various cell types having C3a receptors. These factors should also be useful as pharmacologic probes for mechanism studies, as high-affinity ligands for target cell identification, and for receptor isolation. Attachment of amino-terminal hydrophobic groups such as Fmoc to C3a analogues [as orginally introduced by Gerardy-Schahn et al. (1988) Biochem. J. 255, 209] markedly enhanced the potency of synthetic C3a peptides. The enhancement effect on potency from introducing hydrophobic groups to C3a analogues was interpreted as possibly being nonspecific. Our systematic search for an optimal peptide length, composition, and N-terminal hydrophobic unit resulted in several superpotent C3a analogues having 200-1500% the potency of natural C3a. One particularly potent C3a peptide was designed by incorporating two tryptophanyl residues at the N-terminal end of a 15-residue C3a analogue. The superpotent peptide W-W-G-K-K-Y-R-A-S-K-L-G-L-A-R has several residues differing (underlined) from the sequence corresponding to positions 63-77 in human C3a, a region that contains the essential functional site of the molecule. This 15-residue model peptide exhibited the greatest biological potency of all peptides tested, being 12-15 times more active than natural C3a. Since an optimal distance was found to exist between the N-terminal hydrophobic unit (W-W) and the C-terminal primary binding site (LGLAR), we concluded that the hydrophobic unit interacts specifically with a secondary binding site on the C3a receptor. The presence of both a primary (effector) and secondary (hydrophobic) binding site on these linear synthetic ligands, which can interact cooperatively with the C3a receptor, presumably accounts for the high relative potency of the analogues. Our design of superpotent analogues of C3a demonstrates the feasibility for constructing small synthetic peptides to mimic natural biologic factors that depend on secondary or tertiary structure for their activity. These synthetic peptide studies demonstrate that a linear array of amino acids (e.g., W-W) can successfully substitute for a conformation-dependent binding site on a bioactive factor.  相似文献   

3.
Human Type IIA secreted phospholipase A(2) (sPLA(2)-IIA) is an important modulator of cytokine-dependent inflammatory responses and a member of a growing superfamily of structurally related phospholipases. We have previously shown that sPLA(2)-IIA is inhibited by a pentapeptide sequence comprising residues 70-74 of the native sPLA(2)-IIA protein and that peptides derived from the equivalent region of different sPLA(2)-IIA species specifically inhibit the enzyme from which they are derived. We have now used an analogue screen of the human pentapeptide (70)FLSYK(74) in which side-chain residues were substituted, together with molecular docking approaches that modeled low-energy conformations of (70)FLSYK(74) bound to human sPLA(2)-IIA, to generate inhibitors with improved potency. Importantly, the modeling studies showed a close association between the NH(2) and COOH termini of the peptide, predicting significant enhancement of the potency of inhibition by cyclization. Cyclic compounds were synthesized and indeed showed 5-50-fold increased potency over the linear peptide in an Escherichia coli membrane assay. Furthermore, the potency of inhibition correlated with steady-state binding of the cyclic peptides to sPLA(2)-IIA as determined by surface plasmon resonance studies. Two potential peptide interaction sites were identified on sPLA(2)-IIA from the modeling studies, one in the NH(2)-terminal helix and the other in the beta-wing region, and in vitro association assays support the potential for interaction of the peptides with these sites. The inhibitors were effective at nanomolar concentrations in blocking sPLA(2)-IIA-mediated amplification of cytokine-induced prostaglandin synthesis in human rheumatoid synoviocytes in culture. These studies provide an example where native peptide sequences can be used for the development of potent and selective inhibitors of enzyme function.  相似文献   

4.
Molecular interactions between TCR and its natural ligand, in the presence of costimulatory signals, elicit T cell effector functions, whereas subtle changes in the structure of antigenic peptides may induce only selected T cell effector function including anergy. In this study, we have investigated the immunological activity of an altered TCR ligand (p 2, 28-40A34,36) derived from the immunodominant T cell epitope of the group 2 allergen of house dust mite, in which residues at positions 34 and 36 were substituted by alanine. Elevated IFN-gamma synthesis was induced by equimolar concentrations of the analogue compared with native peptide (p 2, 28-40) and was paralleled by increased down-regulation of cell surface CD3. IL-5 and IL-10 production exhibit the same sensitivity to both peptides, implying that the induction of T cell effector functions are not all proportional to TCR occupancy. Both native peptide and the analogue bound to MHC class II (DRB1*1101) molecules with similar affinities. Furthermore, p 2, 28-40A34,36 induced T cell anergy at lower concentrations than native peptide. During the induction of anergy, TGF-beta production was comparable for both peptides, whereas IL-10 secretion was markedly increased but more so in response to p 2, 28-40A34,36. Membrane expression of costimulatory ligands CD80 and CD86 was similar for native peptide and p 2, 28-40A34,36 and increased in activation, whereas only CD86 was elevated during anergy. The modulation of T cell effector function with altered TCR ligands may have practical applications in reprogramming allergic inflammatory responses through the induction of T cell anergy and/or the promotion of Th1 cytokines.  相似文献   

5.
We have synthesized four oligopeptides that are structural analogues of a low-affinity Ca2+-specific binding site (site II) of rabbit skeletal troponin C. One analogue (peptide 3) was a dodecapeptide with a sequence corresponding to the 12-residue Ca2+-binding loop (residues 63-74 in troponin C), two (peptides 4 and 5) were 23-residue in length, corresponding to residues 52-74 of the protein, and the fourth (peptide 6) was a 25-residue peptide corresponding to residues 50-74. All four peptides had one amino acid substitution within the 12-residue binding loop in which phenylalanine at position 10 was replaced by tyrosine to provide a marker for spectroscopic studies. In addition, peptides 3 and 4 each had a second substitution within the binding loop where glycine at position 6 was replaced by alanine. The second substitution was motivated by the conservation of glycine at the position in the Ca2+-binding loops of all four Ca2+-binding sites in troponin C. The peptides were characterized by their intrinsic fluorescence, ability to enhance the emission of bound Tb3+, affinity for Ca2+ and Tb3+, and circular dichroism. The affinity for Ca2+ was in the range 10-10(2) M-1, and the affinity for Tb3+ was in the range 10(4)-10(5) M-1. The binding constants of the longer peptides were several-fold larger than that of the dodecapeptide. With peptides 4 and 5, substitution of glycine by alanine at position 6 within the 12-residue loop decreased the affinity for Ca2+ by a factor of four, but had little effect on the affinity for Tb3+. However, the mean residue ellipticity of peptide 4 was substantially higher than that of peptide 5. Since peptide 4 differs from peptide 5 only in the substitution of glycine at position 6 in the loop segment, the conservation of glycine at that position may serve a role in providing a suitable secondary structure of the binding sites for interaction with troponin I. Peptides 4 and 6, when present in a large excess, mimic troponin C in regulating fully reconstituted actomyosin ATPase by showing partial calcium sensitivity and activation of the ATPase. Since these peptides are the smallest peptides containing the Ca2+-binding loop of site II, their biological activity suggests that a Ca2+-dependent binding site of troponin C for troponin I could be as short as the segment comprising residues 52-62.  相似文献   

6.
R E Reid 《Biochemistry》1987,26(19):6070-6073
The sequential solid-phase synthesis of a peptide analogue of bovine brain calmodulin calcium binding site III covering residues 81-113 of the natural sequence is described. Methionine-109 is replaced by a leucine residue to avoid complications in the synthesis and purification. In an attempt to relate the structure of the calcium binding sites in the naturally occurring calcium binding protein to the calcium affinity of these sites, the synthetic analogue is examined for calcium binding by circular dichroism spectroscopy. The calcium binding characteristics are compared to those of a synthetic analogue of the homologous calcium binding site III in rabbit skeletal troponin C. The Kd of the calmodulin site III fragment for Ca2+ is determined as 878 microM whereas the Kd of the troponin C fragment is 30 times smaller at 28 microM. Structural changes induced in the peptides by Ca2+ and trifluoroethanol are similar. This study supports our contention that the single synthetic calcium binding site is a reasonable model for the study of the structure-activity relationships of the calcium binding sites in calcium-regulated proteins such as calmodulin and troponin C.  相似文献   

7.
P D Hoeprich  T E Hugli 《Biochemistry》1986,25(8):1945-1950
Human C3a, a 77-residue fragment released during complement activation, is a potent spasmogen that contracts smooth muscle, enhances vascular permeability, and suppresses humoral immune responses. Studies with synthetic peptides have shown that the active site of this anaphylatoxin resides in the COOH-terminal portion of C3a; the minimal peptide structure capable of expressing activity contains residues 73-77, Leu-Gly-Leu-Ala-Arg (C3a-73-77). Longer synthetic C3a analogue peptides, e.g., C3a-57-77 containing the 21 COOH-terminal amino acids, exhibit activity nearly equivalent to that of intact C3a. Circular dichroism spectra of peptide C3a-57-77 in aqueous buffer containing 25% (v/v) trifluoroethanol indicated helical structure (41% helix), and analysis of the sequence suggested an amphipathic surface. We have synthesized several 21-residue peptide analogues of the natural C3a sequence containing residues 57-77 that were designed to enhance helix and to accentuate amphipathy. Syntheses were designed to include strategic placement of the helix-promoting residues 2-aminobutyric acid (beta-methylalanine) and 2-aminoisobutyric acid (alpha-methylalanine). Two 21-residue C3a analogue peptides that were designed to enhance helical content were shown to exhibit greater biological activity than either the native factor C3a or C3a-57-77. Moreover, activity was abrogated by the appropriate placement of helix-breaking residues, e.g., proline, suggesting that a conformational requirement for activity is genuine. These observations suggest that a helical conformation is requisite for optimal C3a activity and that in intact C3a the NH2-terminal portion (residues 1-21) and the disulfide-linked core (residues 22-57) function primarily to stabilize ordered conformation at the COOH-terminal region of the molecule.  相似文献   

8.
Human interleukin 8 (hIL-8), a neutrophil-activating and chemotactic cytokine, is known to play an important role in the pathogenesis of a large number of neutrophil-driven inflammatory diseases. This cytokine belongs to the family of CXC chemokines, mediating the response through binding to the seven-transmembrane helical G protein-coupled receptors CXCR1 and CXCR2. For the first time, we employed the expressed protein ligation (EPL) strategy to chemokine synthesis and subsequent modification. The ligation site was chosen with respect to the position of four cysteine residues within the hIL-8 sequence. Ligation with synthetic peptides that carry cysteine at their N-termini resulted in full-length hIL-8 and the specifically carboxyfluorescein-labelled analogue [K69(CF)]hIL-8(1-77). [K69(CF)]hIL-8(1-77) was fully active as shown by inhibition of cAMP production. Furthermore, this analogue was used to study receptor internalisation in human promyelotic HL60 cells that express CXCR1 and CXCR2 receptors. Binding and quenching studies were performed on HL60 membranes and suggest that the C-terminus of IL-8 is accessible to solvent in the receptor-bound state. Thus, we introduce here a powerful approach that allows the site-specific incorporation of chemical modifications into the sequence of chemokines, which opens new avenues for studying IL-8 function.  相似文献   

9.
Previous studies by several laboratories have identified a narrow sequence region of the nicotinic acetylcholine receptor (AChR) alpha subunit, flanking the cysteinyl residues at positions 192 and 193, as containing major elements of, if not all, the binding site for cholinergic ligands. In the present study, we used a panel of synthetic peptides as representative structural elements of the AChR to investigate whether additional segments of the AChR sequences are able to bind alpha-bungarotoxin (alpha-BTX) and several alpha-BTX-competitive monoclonal antibodies (mAbs). The mAbs used (WF6, WF5, and W2) were raised against native Torpedo AChR, specifically recognize the alpha subunit, and bind to AChR is inhibited by all cholinergic ligands. WF6 competes with agonists, but not with low mol. wt. antagonists, for AChR binding. The synthetic peptides used in this study were approximately 20 residue long, overlapped each other by 4-6 residues, and corresponded to the complete sequence of Torpedo AChR alpha subunit. Also, overlapping peptides, corresponding to the sequence segments of each Torpedo AChR subunit homologous to alpha 166-203, were synthesized. alpha-BTX bound to a peptide containing the sequence alpha 181-200 and also, albeit to a lesser extent, to a peptide containing the sequence alpha 55-74. WF6 bound to alpha 181-200 and to a lesser extent to alpha 55-74 and alpha 134-153. The two other mAbs predominantly bound to alpha 55-74, and to a lesser extent to alpha 181-200. Peptides alpha 181-200 and alpha 55-74 both inhibited binding of 125I-alpha-BTX to native Torpedo AChR. None of the peptides corresponding to sequence segments from other subunits bound alpha-BTX or WF6, or interfered with their binding. Therefore, the cholinergic binding site is not a single narrow sequence region, but rather two or more discontinuous sequence segments within the N-terminal extracellular region of the AChR alpha subunit, folded together in the native structure of the receptor, contribute to form a cholinergic binding region. Such a structural arrangement is similar to the "discontinuous epitopes" observed by X-ray diffraction studies of antibody-antigen complexes [reviewed in Davies et al. (1988)].  相似文献   

10.
Thymocyte-derived lymphokine-activated killer (LAK) cells were used as a model for the study of the cytokine driven development of cytotoxicity. These cells are devoid of initial cytotoxic activity but upon culture in IL-2 they develop into cytotoxic effectors. The parameters of the response of thymocytes to IL-6 are similar to that of PBL in that IL-6, at concentrations as low as 1 mu/ml, increases cytotoxicity of thymocyte-LAK cells when generated in low doses (25-50 mu/ml) of IL-2. IL-6-enhanced thymocyte-LAK cytotoxicity is observed when tested against both NK-resistant and NK-sensitive tumor cell lines. IL-6 alone does not induce any cytotoxicity from thymocytes nor does IL-6 change the time course of thymocyte-LAK cell generation in IL-2 culture. IL-6 does not affect DNA synthesis, total cell number, proportion of CD56+ cells, or the expression of IL-2R (both P55 and P75 glycoproteins) in IL-2-cultured thymocytes. Instead, IL-6 used to treat mature thymocyte-LAK effector cells for as little as 1 hr prior to 51Cr-release assay increases LAK cytotoxicity. This enhancement is abrogated by pretreatment of effector cells with cycloheximide, suggesting that protein synthesis is required for IL-6 to enhance LAK cell activity. The precursor phenotypes of IL-6-responsive thymocyte-LAK cells are CD3-/CD5-. The effector phenotypes of IL-6-enhanced thymocyte-LAK cells are CD5-/CD56+. Thus, IL-6 depends on synthesis of rapid-turnover proteins to act on mature CD56+/CD5- LAK cells to increase their cytotoxic function.  相似文献   

11.
The C3a anaphylatoxin is a potent proinflammatory mediator derived from the complement system inducing biologic effects of human eosinophils like Ca2+ transients and the activation of the respiratory burst. These findings support an important role for C3a in diseases typically associated with a peripheral blood or tissue eosinophilia. Synthetic human C3a analogue peptides with variations at the C-terminal effector domain have been evaluated with respect to their binding affinity and signaling potency on human eosinophils. Flow cytometrical analysis and RT-PCR revealed that the C3a receptor is constitutively expressed on human eosinophils. Peptides bearing an N-terminal 9-fluorenylmethoxycarbonyl and the 6-aminohexanoyl motif were the most powerful peptides tested. Amino acid replacements in the conserved C-terminal pentapeptide decreased binding affinity and functional potency substantially. In addition, synthetic C3a analogue peptides induced C3aR internalization, led to transient changes of intracellular Ca2+ concentration, and did release reactive oxygen species in human eosinophils indicating the in vivo relevance of C3a-related sequences. The tripeptide LAR was found to be essential for C3a receptor binding on human eosinophils. Moreover, the putative binding motif of C3a anaphylatoxin is also crucial for the induction of biologic effects in the human system such as changes of intracellular Ca2+ concentration and the release of reactive oxygen species. This study demonstrates that the carboxyl terminus is important for the interaction with the C3aR and the biologic potency of C3a anaphylatoxin in the human system and plays a key role in the activation process of human eosinophils.  相似文献   

12.
C5a is an inflammatory mediator that evokes a variety of immune effector functions including chemotaxis, cell activation, spasmogenesis, and immune modulation. It is well established that the effector site in C5a is located in the C-terminal region, although other regions in C5a also contribute to receptor interaction. We have examined the N-terminal region (NTR) of human C5a by replacing selected residues in the NTR with glycine via site-directed mutagenesis. Mutants of rC5a were expressed as fusion proteins, and rC5a was isolated after factor Xa cleavage. The potency of the mutants was evaluated by measuring both neutrophil chemotaxis and degranulation (beta-glucuronidase release). Mutants that contained the single residue substitutions Ile-6-->Gly or Tyr-13-->Gly were reduced in potency to 4-30% compared with wild-type rC5a. Other single-site glycine substitutions at positions Leu-2, Ala-10, Lys-4, Lys-5, Glu-7, Glu-8, and Lys-14 showed little effect on C5a potency. The double mutant, Ile-6-->Gly/Tyr-13-->Gly, was reduced in potency to < 0.2%, which correlated with a correspondingly low binding affinity for neutrophil C5a receptors. Circular dichroism studies revealed a 40% reduction in alpha-helical content for the double mutant, suggesting that the NTR contributes stabilizing interactions that maintain local secondary or tertiary structure of C5a important for receptor interaction. We conclude that the N-terminal region in C5a is involved in receptor binding either through direct interaction with the receptor or by stabilizing a binding site elsewhere in the intact C5a molecule.  相似文献   

13.
14.
Acute-phase reactants are liver proteins whose synthesis is positively or negatively regulated during inflammation. The main mediators of this phenomenon are glucocorticoids and interleukin-6 (IL-6), a pleiotropic cytokine that also controls hematopoiesis. Functional analysis of several acute-phase reactant promoter regions has identified two major DNA motifs used by IL-6-regulated genes. The first one corresponds to a CTGG(G/A)AA sequence, and the other is a binding site for members of the C/EBP family of nuclear proteins. We have previously shown that the human beta fibrinogen (beta Fg) promoter contains an IL-6-responsive region, located between bp -150 and -67 (P. Huber, M. Laurent, and J. Dalmon, J. Biol. Chem. 265:5695-5701, 1990). In this study, using DNase I footprinting, mobility shift assays, and mutagenesis, we demonstrate that at least three subdomains of this region are necessary to observe a full response to IL-6. The most distal contains a CTGGGAA motif, and its mutation inhibits IL-6 stimulation. Another, which is able to interact with several distinct nuclear proteins, among them members of the C/EBP family, is dispensable for IL-6 induction but plays an important role in the constitutive expression of beta Fg. Finally, a proximal hepatocyte nuclear factor 1 binding site, already described as the major determinant of beta Fg tissue-specific expression, is also required for IL-6 stimulation. These results indicate a complex interplay between nuclear proteins within the beta Fg IL-6-responsive region and suggest a tight functional coupling between the tissue-specific and inducible elements.  相似文献   

15.
A variety of adjuvants fostering humoral immunity are known as of today. However, there is a lack of adjuvants or adjuvant strategies, which directly target T cellular effector functions and memory. We here determined whether systemically toxic cytokines such as IL-2 can be restricted to the site of antigen presentation and used as ‘natural adjuvants’. Therefore, we devised antigen-presenting virus-like nanoparticles (VNP) co-expressing IL-2 attached to different membrane-anchors and assessed their potency to modulate CD8+ T cell responses in vitro and in vivo. Efficient targeting of IL-2 to lipid rafts and ultimately VNP was achieved by fusing IL-2 at its C-terminus to a minimal glycosylphosphatidylinositol (GPI)-anchor acceptor sequence. To identify optimal membrane-anchor dimensions we inserted one (1Ig), two (2Ig) or four (4Ig) immunoglobulin(Ig)-like domains of CD16b between IL-2 and the minimal GPI-anchor acceptor sequence of CD16b (GPI). We found that the 2IgGPI version was superior to all other evaluated IL-2 variants (IL-2v) in terms of its i) degree of targeting to lipid rafts and to the VNP surface, ii) biological activity, iii) co-stimulation of cognate T cells in the absence of bystander activation and iv) potency to induce differentiation and acquisition of CD8+ T cell effector functions in vitro and in vivo. In contrast, the GPI version rather favored memory precursor cell formation. These results exemplify novel beneficial features of membrane-bound IL-2, which in addition to its mere T cell stimulatory capacity include the induction of differential effector and memory functions in CD8+ T lymphocytes.  相似文献   

16.
We have recently reported the synthesis and the conformational properties of some Gonadotropin-releasing hormone (GnRH) analogues in which the tyrosine residue at position 5 is substituted with tyrosine-O-methyl (Keramida et al., Let. Pept. Sci., 3 (1996) 257/Matsoukas et al., Eur. J. Med. Chem., 32 (1997) 927). The analogue [Tyr-(OMe)5]-GnRH was found to exert a lower degree of desensitization than the native GnRH peptides in terms of pituitary gonadotropin (GTH) release in goldfish. Compared to GnRH, however, [Tyr-(OMe)5]-GnRH exerted a lower GTH-release potency in cultured goldfish pituitary fragments, and was bound with a lower binding affinity to the rat pituitary GnRH receptors. In order to increase the potency of [Tyr-(OMe)5]-GnRH, we have synthesized a group of GnRH peptides containing Tyr-(OMe)5 in combination with other substitutions at positions 6, 9 and 10 and we have estimated their binding affinity for the rat pituitary receptors and gonadotropin (GTH) release potency in the goldfish pituitary. A selected number of these analogues was also tested for their ability to induce ovulation in seabass. The important structural modifications that increased the binding and gonadotropic activity of [Tyr(OMe)5]-GnRH in vitro and in vivo were found to include the replacement of the proline at position 9 with azetidine, glycine amide terminus with an alkyl amide group and Gly6 residue with hydrophilic D-amino acids such as D-Arg6. Overall, the findings provide SAR information on a group of novel GnRH peptides that can be also used to induce ovulation in teleosts.  相似文献   

17.
Bombesin-related peptides have a large number of physiological functions as well as having an autocrine growth mechanism for the regulation of small cell lung cancer cells. In the present study we have synthesized 21 des-Met amide or alkylamide analogues of bombesin and compared their abilities to function as bombesin receptor antagonists in guinea pig pancreatic acini and Swiss 3T3 cells with those of the previously most potent antagonist described, [Leu13 psi(CH2NH)Leu14]bombesin (analogue I). All des-Met analogues functioned as antagonists. Bn(1-13)NH2 was approximately equipotent to I (Ki = 60-80 nM) whereas Bn(6-13)NH2 was 30-fold less potent (Ki = 1800 nM). Formation of an ethylamide, Bn(6-13)ethylamide, increased the potency 30-fold such that this octapeptide was equipotent to I. The addition of a D-Phe6 moiety to I did not change potency but caused a 30-fold increase in potency of Bn(6-13)NH2 and a 8-fold increase in the potency of Bn(6-13)ethylamide (Ki = 16 nM). Additional studies of both NH2- and COOH-terminal alterations in Bn(6-13)NH2 demonstrated that the most potent antagonist was [D-Phe6]Bn(6-13)propylamide (PA), having IC50's of 1.6 nM and 0.8 nM for bombesin-stimulated amylase release and Swiss 3T3 cell growth, respectively. Detailed studies of the most potent amide analogue, [D-Phe6]Bn(6-13)NH2, and alkylamide analogue, [D-Phe6]Bn(6-13)PA, demonstrated that these analogues functioned as competitive antagonists and that their action was selective for the bombesin receptor. These results demonstrate that, as with CCK- and gastrin-related peptides, the C-terminal amino acid is important for initiating a biologic response but not essential for determining receptor affinity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Fluorine-19 magnetization transfer experiments have been used to determine the rates of cis/trans isomerization about the X-Pro7 peptide bond in [p-fluoro-Phe8]bradykinin (cis/trans ratio approximately 0.1) and its Gly6 analogue (cis/trans ratio approximately 0.4). The measurements were carried out both prior to and after the addition of cyclophilin, which has recently been shown to have peptidyl-proline cis/trans isomerase activity and is the apparent target enzyme of the immunosuppressive agent cyclosporin A. Magnetization transfer measurements over the temperature range 40-75 degrees C in the absence of enzyme give activation energies of 22.8 and 23.0 kcal/mol for [p-fluoro-Phe8]bradykinin and its Gly6 analogue, respectively. The values for the uncatalyzed cis----trans rate constant, kc, are determined by extrapolation to be 4.8 x 10(-2) and 2.1 x 10(-2) s-1 for the two peptides at 25 degrees C. The enzyme-catalyzed enhancement of the cis/trans interconversion rate was proportional to added cyclophilin concentration and was strongly sequence specific, with bradykinin a much better substrate than [Gly6]bradykinin. At a peptide concentration of 2.2 mM, the catalytic activity expressed as kc per micromolar cyclophilin was determined to be 1.2 s-1/microM for [p-fluoro-Phe8]bradykinin and 0.13 s-1/microM for the Gly6 analogue. The increased cis----trans interconversion rates were strongly inhibited by cyclosporin A and the 6-(methylalanine) derivative, which bind to cyclophilin, but not by the 1-(tetrahydrofurfuryl) derivative of cyclosporin that binds weakly.  相似文献   

19.
Modelling studies with beta-endorphin have clearly demonstrated that an amphiphilic secondary structural segment is a salient feature of the biologically active conformation of this 31-residue opioid peptide hormone. Here, we have initiated the synthesis of peptide models using unnatural building blocks by designing a beta-endorphin analogue (peptide 6) in which the hydrophilic linker region between the NH2-terminal enkephalin (residues 1-5) and the COOH-terminal helix (residues 10-28, sequence identical to that of peptide 3 in region 13-31, Fig. 1) consists of four units of gamma-amino-gamma-hydroxymethylbutyric acid connected by isopeptidic linkages. Peptide 6 has physical properties similar to that of peptide 3, as shown by surface monolayer and circular dichroism studies. The binding affinities of the two peptides to delta- and mu-receptors are also similar. In rat vas deferens assays, the present model is equipotent to peptide 3. The most striking result of all is the potent analgesic activity displayed by peptide 6 when injected intracerebroventricularly into mice. The potencies of peptides 6 and 3 are comparable in these assays. These studies clearly illustrate that one can use unusual building blocks to construct structural regions of synthetic analogues and still preserve the biological activity of peptide hormones.  相似文献   

20.
Allergen-specific CD4+ Th2 cells play an important role in the immunological processes of allergic asthma. Previously we have shown that, by using the immunodominant epitope OVA323-339, peptide immunotherapy in a murine model of OVA induced allergic asthma, stimulated OVA-specific Th2 cells, and deteriorated airway hyperresponsiveness and eosinophilia. In the present study, we defined four modulatory peptide analogues of OVA323-339 with comparable MHC class II binding affinity. These peptide analogues were used for immunotherapy by s.c. injection in OVA-sensitized mice before OVA challenge. Compared with vehicle-treated mice, treatment with the Th2-skewing wild-type peptide and a Th2-skewing partial agonistic peptide (335N-A) dramatically increased airway eosinophilia upon OVA challenge. In contrast, treatment with a Th1-skewing peptide analogue (336E-A) resulted in a significant decrease in airway eosinophilia and OVA-specific IL-4 and IL-5 production. Our data show for the first time that a Th1-skewing peptide analogue of a dominant allergen epitope can modulate allergen-specific Th2 effector cells in an allergic response in vivo. Furthermore, these data suggest that the use of Th1-skewing peptides instead of wild-type peptide may improve peptide immunotherapy and may contribute to the development of a successful and safe immunotherapy for allergic patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号