首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aims: To develop novel polypropylene composite materials with antimicrobial activity by adding different types of copper nanoparticles. Methods and Results: Copper metal (CuP) and copper oxide nanoparticles (CuOP) were embedded in a polypropylene (PP) matrix. These composites present strong antimicrobial behaviour against E. coli that depends on the contact time between the sample and the bacteria. After just 4 h of contact, these samples are able to kill more than 95% of the bacteria. CuOP fillers are much more effective eliminating bacteria than CuP fillers, showing that the antimicrobial property further depends on the type of copper particle. Cu2+ released from the bulk of the composite is responsible for this behaviour. Moreover, PP/CuOP composites present a higher release rate than PP/CuP composites in a short time, explaining the antimicrobial tendency. Conclusions: Polypropylene composites based on copper nanoparticles can kill E. coli bacteria depending on the release rate of Cu2+ from the bulk of the material. CuOP are more effective as antimicrobial filler than CuP. Significance and Impact of the Study: Our findings open up novel applications of these ion‐copper‐delivery plastic materials based on PP with embedded copper nanoparticles with great potential as antimicrobial agents.  相似文献   

2.
This review describes the antimicrobial properties of nitric oxide (NO) and its application as an antimicrobial agent in different formulations and medical devices. We depict the eukaryotic biosynthesis of NO and its physiologic functions as a cell messenger and as an antimicrobial agent of the cell-mediated immune response. We analyze the antimicrobial activity of NO and the eukaryotic protective mechanisms against NO for the purpose of delineating the therapeutic NO dosage range required for an efficacious and safe antimicrobial activity. We also examine the role of NO produced by virulent bacteria in lessening the efficacy of traditional antimicrobials. In addition, we discuss the efficacy of NO in the healing of infected wounds, describing different NO-producing devices by category, analyzing therapeutic levels, duration of NO production, as well as commercial considerations. Finally, we provide current and future prospects for the design and use of NO-producing devices.  相似文献   

3.
Nitric oxide (NO) is generated in biological systems and plays important roles as a regulatory molecule. Its ability to bind to haem iron is well known. Moreover, it may lose an electron, forming the nitrosonium ion, involved in the synthesis of S-nitrosothiols (SNOs). It has been suggested that S-nitrosohaemoglobin (-SNO Hb) and low molecular weight SNOs may act as reservoirs of NO. SNOs are formed in vitro, at strongly acidic pH values; however, the mechanism of their formation at neutral pH values is still debated. In this paper we report the anaerobic formation of SNOs (both high- and low-molecular weight) from low concentrations of NO at pH 7.4, provided Hb is also present. We propose a reaction mechanism entailing the participation of Fehaem in the formation of NO(+) and the transfer of NO(+) either to Cysbeta(93) of Hb or to glutathione; we show that this reaction also occurs in human RBCs.  相似文献   

4.
A water-soluble iron complex with N-dithiocarboxysarcosine (Fe-DTCS) has been developed as an ESR spin-trapping agent for NO and successfully applied to ESR imaging of endogenous NO production in mice. We attempted to measure NO produced by purified neuronal NO synthase (nNOS) by this method, but could not detect NO. We speculated that Fe-DTCS inhibits NOS activity. In fact, it markedly inhibited NOS activity with an IC50 value of 9.7 +/- 0.7 microM in the citrulline-formation assay. DTCS alone did not inhibit the activity. An iron complex with N-methyl-D-glucamine dithiocarbamate, a similar spin-trapping agent for NO, also inhibited the activity, with an IC50 value of 25.1 +/- 2.9 microM. Fe-DTCS suppressed cytochrome c and ferricyanide reductase activities of nNOS, and markedly increased nNOS-mediated NADPH oxidation. Concomitantly, it accelerated oxygen consumption caused by activated nNOS. These results suggest that the ESR spin-trapping agent Fe-DTCS inhibits NO synthesis by interfering with the physiological electron flow from NADPH to nNOS heme iron.  相似文献   

5.
We previously found that one of the pharmacological effects of N-tert-butyl-alpha-phenylnitrone (PBN) is the release of nitric oxide (NO) under oxidative conditions. However, to confirm this hypothesis in vivo, NO released from PBN must be distinguished from NO produced in biological systems, and therefore we undertook the synthesis of PBN using labeled 15N to identify its corresponding 15NO in vivo. The properties were examined with an ESR spectrometer. To synthesize 15N-PBN, the starting material, ammonium-15N chloride, was converted to 2-amino-15N-2-methylpropane, oxidized to 2-methyl-2-nitropropane-15N, and finally reacted with benzaldehyde to give 15N-PBN. The final product was purified by repeated sublimation. With ferrous sulfate-methyl glucamine dithiocarbamate complex, Fe (MGD)2, as a trapping agent to measure the NO levels of 15N-PBN or 14N-PBN in vitro, the peak intensity of 15NO[Fe(MGD)2] was over 50% stronger than that of 14NO[Fe(MGD)2], and that 15NO and 14NO had the corresponding two-and three line hyperfine structures due to their nuclear spin quantum numbers. Subsequently, the ESR spectrum of 15NO derived from 15N-PBN was significantly different than that of lipopolysaccharide (LPS)-induced NO, which was derived from biological cells, and therefore we have demonstrated the possibility to distinguish 15NO from PBN and 14NO generated from cells. These results suggested that 15N-PBN is a useful molecule, not only as a spin-trapping agent, but also as an NO donor to explore the pharmacological mechanisms of PBN in vivo.  相似文献   

6.
7.
Doxorubicin, a well characterized anticancer drug, was tested in vitro and in vivo for activity against Leishmania donovani. Activity in vitro was very high against both the promastigote and amastigote forms of this parasite with 50% effective dose (ED50) values on the order of 0.43 microM and 0.86 microM, respectively. An in vivo inhibition of spleen parasite burden up to 95% in an infected mouse model was achieved when a dosage of 625 micrograms doxorubicin/kg body weight/day was given in 4 consecutive doses, which is far less than the toxic dose. These results suggest that doxorubicin is highly active against visceral leishmaniasis and may be considered with second-line therapeutic agents such as amphotericin B and pentamidine.  相似文献   

8.
Procyanidin B-2 is a polyphenol compound we have identified in apple which acts as a hair-growing factor in the murine model both in vitro and in vivo. This report describes our investigation of the effects of 1% procyanidin B-2 tonic on human hair growth after sequential use for 6 months. A double-blind clinical test involving a total of 29 subjects was performed. Nineteen men in the procyanidin B-2 group and 10 men in the placebo control group were subjected to analyses. No adverse side effects were observed in either group. The hair-growing effect was evaluated using a macrophotography technique combined with measurements of the hair diameter of clipped hairs. The increase in number of total hairs in the designated scalp area (0.5 cm square = 0.25 cm2 area) of procyanidin B-2 group subjects after the 6-month trial was significantly greater than that of the placebo control group subjects (procyanidin B-2, 6.68 +/- 5.53 (mean +/- SD)/0.25 cm2; placebo, 0.08 +/- 4.56 (mean +/- SD)/0.25 cm2; P < 0.005, two-sample t test). The increase in number of terminal hairs, which are defined as hairs more than 60 microm in diameter, in the designated area (0.5 cm square = 0.25 cm2 area) of the procyanidin B-2 group subjects after the 6-month trial was significantly greater than that of the placebo control group subjects (procyanidin B-2, 1.99 +/- 2.58 (mean +/- SD)/0.25 cm2; placebo, -0.82 +/- 3.40 (mean +/- SD)/0.25 cm2; P < 0.02, two-sample t test). Procyanidin B-2 therapy shows potential as a safe and promising cure for male pattern baldness.  相似文献   

9.
Nitric oxide (NO) regulates neutrophil migration and alveolar macrophage functions such as cytokine synthesis and bacterial killing, both of which are impaired in immune paralysis associated with critical illness. The aim of this study was to determine whether NO is involved in immune paralysis and whether exhaled NO measurement could help to monitor pulmonary defenses. NO production (protein expression, enzyme activity, end products, and exhaled NO measurements) was assessed in rats after cecal ligation and puncture to induce a mild peritonitis (leading to approximately 20% mortality rate). An early and sustained decrease in exhaled NO was found after peritonitis (from 1 to 72 h) compared with healthy rats [median (25th-75th percentile), 1.5 parts per billion (ppb) (1.2-1.7) vs. 4.0 ppb (3.6-4.3), P < 0.05], despite increased NO synthase-2 and unchanged NO synthase-3 protein expression in lung tissue. NO synthase-2 activity was decreased in lung tissue. Nitrites and nitrates in supernatants of isolated alveolar macrophages decreased after peritonitis compared with healthy rats, and an inhibitory experiment suggested arginase overactivity in alveolar macrophages bypassing the NO substrate. Administration of the NO synthase-2 inhibitor aminoguanidine to healthy animals reproduced the decreased neutrophil migration toward alveolar spaces that was observed after peritonitis, but L-arginine administration after peritonitis failed to correct the defect of neutrophil emigration despite increasing exhaled NO compared with D-arginine administration [4.8 (3.9-5.7) vs. 1.6 (1.3-1.7) ppb, respectively, P < 0.05]. In conclusion, the decrease in exhaled NO observed after mild peritonitis could serve as a marker for lung immunodepression.  相似文献   

10.
Intermittent daily exposures (60 s) to NO-containing gas flow (NO dose of 500 ppm) generated by air-plasma unit "Plason" improves healing of skin wounds in rats. The gas flow treatment shortened the recovery time of both aseptic and purulent wounds (300 mm2 area) by nearly a third. The treatment allows to achieve a marked improvement in the histological, histochemical, and electron-microscopic characteristics of the affected tissue. The mechanism of this phenomenon was studied by spin trapping method. The NO status of the wound tissue was investigated with EPR by following the formation of paramagnetic mononitrosyl complexes with iron-diethyldithiocarbamate, or with the heme groups in hemoglobin or myoglobin. For the first 5 min after a gas treatment with the exposure of 60s, detectable NO levels in the affected tissue were slightly lowered with respect to untreated controls. At subsequent times, treated tissues showed the formation of large quantities of nitroso-iron complexes: At 30-40 min after gas exposure, their levels were nearly two orders of magnitude higher than soon after (15 s-5 min) the exposure. The data demonstrate that the accumulation of nitrosyl-iron complexes reflects a sharp rise in endogenous NO production inside the affected tissue. Paradoxically, the beneficial effect of gaseous NO treatment can be mediated by the formation of limited quantities of peroxynitrite due to the reaction between exogenous NO and superoxide anions generated in high amount in wound tissue. This peroxynitrite has a strong prooxidant effect and can activate various antioxidant systems which diminish the amount of superoxide anions in wound tissue. The reduced superoxide levels allow to increase the contents of endogenous NO in gas-treated tissues. Therefore, the beneficial action of the treatment is attributed to enhanced NO bioavailability.  相似文献   

11.
Four compounds named L-BTrpPA, L-Trp-o-PA, L-Trp-m-PA and L-Trp-p-PA, pseudopeptides constructed from pyridine and tryptophan units, were synthesized and tested against the Gram-positive, Gram-negative strains of bacteria and human pathogenic fungi. L-Trp-o-PA proved to be a broad-spectrum antimicrobial agent, showing a significant inhibition of the growth of Gram-positive bacteria (Staphylococcus aureus, methicillin-resistant S. aureus, Bacillus subtilis, Micrococcus luteus), and pathogenic fungi (Candida spp., Cryptococcus neoformans, Rhodotorula glutinis, Saccharomyces cerevisiae, Aspergillus spp., Rhizopus nigricans) tested and activity against Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa and Proteus vulgaris, Enterobacter aerogenes) tested. The in vitro cell cytotoxicity of L-Trp-o-PA was evaluated using haemolytic assay, in which the compound was found to have low lytic property, even up to the concentration of 4000 microg/mL, it only lysed 6-7% of erythrocytes, which was 100-fold greater than the MICs (minimum inhibitory concentration).  相似文献   

12.
The objective of this study was to elucidate the nitric oxide-forming reactions of the iron-N-methyl-D-glucamine dithiocarbamate (Fe-MGD) complex from the nitrogen-containing compound hydroxyurea. The Fe2+(MGD)2 complex is commonly used in electron paramagnetic resonance (EPR) spectroscopic detection of NO both in vivo and in vitro. The reaction of Fe2+(MGD)2 with NO yields the resultant NO-Fe2+(DETC)2 complex, which has a characteristic triplet EPR signal. It is widely believed that only NO reacts with Fe2+(MGD)2 to form the NO-Fe2+(MGD)2 complex. In this report, the mechanism leading to the formation of NO-Fe2+(MGD)2 was investigated using oxygen-uptake studies in conjunction with the EPR spin-trapping technique. We found that the air oxidation of Fe2+(MGD)2 complex results in the formation of the Fe3+(MGD)3 complex, presumably concomitantly with superoxide (O3*-). Dismutation of superoxide forms hydrogen peroxide, which can subsequently reduce Fe3+(MGD)3 back to Fe2+(MGD)2. The addition of NO to the Fe3+(MGD)3 complex resulted in the formation of the NO-Fe2+(MGD)2 complex. Hydroxyurea is not considered to be a spontaneous NO donor, but has to be oxidized in order to form NO. We present data showing that in the presence of oxygen, Fe2+(MGD)2 can oxidize hydroxyurea to yield the stable NO-Fe2+(MGD)2 complex. These results imply that hydroxyurea can be oxidized by reactive oxygen species that are formed from the air oxidation of the Fe2+(MGD)2 complex. Formation of the NO-Fe2+(MGD)2 complex in this case could erroneously be interpreted as spontaneous formation of NO from hydroxyurea. The chemistry of the Fe2+(MGD)2 complexes in aerobic conditions must be taken into account in order to avoid erroneous conclusions. In addition, the use of these complexes may contribute to the overall oxidative stress of the system under investigation.  相似文献   

13.
Nitric oxide (NO) plays a vital role in mammalian host defense through a variety of mechanisms. In particular, NO can oxidize to form reactive nitrogen species or interact with protein thiols and metal centers, blocking essential microbial processes. S-nitrosoglutathione (GSNO), a potent NO donor formed by the interaction of NO with intracellular glutathione (GSH), is a major factor in this pathway and is considered one of the strongest naturally occurring nitrosating agent. We previously described the broad-spectrum antimicrobial activity of a nanoparticulate platform capable of controlled and sustained release of NO (NO-np). Interestingly, in vivo efficacy of the NO-np surpassed in vitro data generated. We hypothesized that the enhanced activity was in part achieved via the interaction between the generated NO and available GSH, forming GSNO. In the current study, we investigated the efficiency of NO-np to form GSNO in the presence of GSH was evaluated, and assessed the antimicrobial activity of the formed GSNO against methicillin resistant Staphylococcus aureus (MRSA), Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. When GSH was combined with NO-np, GSNO was rapidly produced and significant concentrations of GSNO were maintained for >24h. The GSNO generated was more effective compared to NO-np alone against all bacterial strains examined, with P. aeruginosa being the most sensitive and K. pneumoniae the most resistant. We conclude that the combination of NO-np with GSH is an effective means of generating GSNO, and presents a novel approach to potent antimicrobial therapy.  相似文献   

14.
2-Dichloroamino-2-methyl-propane-1-sulfonic acid sodium salt (2a), a stable derivative of endogenous N,N-dichlorotaurine (1), has been identified and is under development as a topical antimicrobial agent. Structure–activity relationships of analogs were explored to achieve optimal antimicrobial activity with minimal mammalian toxicity while maintaining the desired stability. All the analogs synthesized showed antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans in the range of 1–128 μg/mL and cytotoxicity against mammalian L929 cells in the range 80–1900 μg/mL.  相似文献   

15.
The synthesis of nitric oxide (.NO) from L-arginine has been demonstrated in a number of cell types and functions either as a cell signaling agent or as a key component of the cell-mediated immune response. Both constitutive and inducible activities have been described. Herein we report the purification of inducible .NO synthase (EC 1.14.23) from activated murine macrophages using a two-column procedure. Crude 100,000 x g supernatant was passed through a 2'-5'-ADP-Sepharose 4B affinity column followed by a DEAE-Bio-Gel A anion exchange column. The .NO synthase ran as a band of Mr = 130,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Gel filtration experiments using a Superose 6 HR 10/30 column estimated the native molecular weight to be 260 +/- 30 kDa, indicating that the native enzyme exists as a dimer. Activity was dependent upon L-arginine (Km = 16 +/- 1 microM at 37 degrees C and pH 7.5) and NADPH. Both (6R)-tetrahydro-L-biopterin and FAD enhanced activity, whereas Mg2+ and FMN had no effect on activity. Fluorescence studies demonstrated the presence of one bound FAD and one bound FMN per subunit.  相似文献   

16.

Background

The fractional exhaled nitric oxide (FeNO) is a quantitative, noninvasive and safe measure of airways inflammation that may complement the assessment of asthma. Elevations of FeNO have recently been found to correlate with allergic sensitization. Therefore, FeNO may be a useful predictor of atopy in the general population. We sought to determine the diagnostic accuracy of FeNO in predicting atopy in a population-based study.

Methods

We conducted a cross-sectional study in an age- and sex- stratified random sample of 13 to 15 year-olds in two communities in Peru. We asked participants about asthma symptoms, environmental exposures and sociodemographics, and underwent spirometry, assessment of FeNO and an allergy skin test. We used multivariable logistic regression to model the odds of atopy as a function of FeNO, and calculated area-under-the-curves (AUC) to determine the diagnostic accuracy of FeNO as a predictor of atopy.

Results

Of 1441 recruited participants, 1119 (83%) completed all evaluations. Mean FeNO was 17.6 ppb (SD=0.6) in atopics and 11.6 ppb (SD=0.8) in non-atopics (p<0.001). In multivariable analyses, a FeNO>20 ppb was associated with an increase in the odds of atopy in non-asthmatics (OR=5.3, 95% CI 3.3 to 8.5) and asthmatics (OR=16.2, 95% CI 3.4 to 77.5). A FeNO>20 ppb was the best predictor for atopy with an AUC of 68% (95% CI 64% to 69%). Stratified by asthma, the AUC was 65% (95% CI 61% to 69%) in non-asthmatics and 82% (95% CI 71% to 91%) in asthmatics.

Conclusions

FeNO had limited accuracy to identify atopy among the general population; however, it may be a useful indicator of atopic phenotype among asthmatics.  相似文献   

17.
In the skin, wounding initiates a complex array of physiological processes mediated by growth factors and inflammatory mediators which stimulate tissue repair and protect against infection. We report that primary cultures of human keratinocytes and a mouse keratinocyte cell line respond to the inflammatory stimuli gamma-interferon and lipopolysaccharide or tumor necrosis factor-alpha by producing nitric oxide and hydrogen peroxide, two reactive mediators that are important in nonspecific host defense. Nitric oxide is produced by the l-arginine- and NADPH-dependent enzyme, nitric oxide synthase. In murine keratinocytes, optimal enzymatic activity was found to be dependent on Ca2+ and calmodulin as well as on glutathione. Inflammatory mediators were also found to inhibit the growth of keratinocytes, an effect that could be reversed by a nitric oxide synthase inhibitor. Epidermal growth factor (EGF), which promotes wound healing by stimulating cellular proliferation, was found to be a potent antagonist of reactive nitrogen and reactive oxygen intermediate production by keratinocytes. EGF also reversed the growth inhibitory actions of the inflammatory mediators. These data suggest that nitric oxide produced by keratinocytes is important in the control of cellular proliferation during wound healing. Our findings that EGF effectively regulates the production of free radicals by keratinocytes may represent an important pathway by which this growth factor not only stimulates epidermal cell proliferation but also facilitates the resolution of inflammation following wounding.  相似文献   

18.
The preparation and characterization of nitric oxide (NO)-releasing chitosan-folate conjugates were reported. The secondary amine chitosan-folate conjugates exhibited a high storage capacity for NO (up to 84.3 nmol NO/mg) (when the graft rate of folate was 12.5%), greatly increasing the "payload" of released NO with the graft rate of folate increasing. The NO release durations (12h) observed for secondary amine the chitosan-folate conjugates with the high graft rate (12.5%) were largerly shorter compared to O2-protected diazeniumliolates with BrCH2CH3 (24 h), thus illustrating a macromolecular effect on NO release kinetics.  相似文献   

19.
20.
The gaseous mediators hydrogen sulphide (H2S) and nitric oxide (*NO) are synthesised in the body from L-cysteine and L-arginine, respectively. In the cardiovascular system, *NO is an important regulator of vascular tone and its over- or under-production has been linked to a variety of diseases. The physiological significance of H2S is not yet clear but, like *NO, it exhibits vasodilator activity and may play a part in septic and haemorrhagic shock, hypertension, regulation of cardiac contractility, and in inflammation. To date, there have been no reports of a chemical interaction between H2S and *NO. Here we show that incubation of the H2S donor, sodium hydrosulphide, with a range of *NO donors and *NO gas in vitro leads to the formation of a nitrosothiol molecule as determined by a combination of techniques; electron paramagnetic resonance, amperometry, and measurement of nitrite. We further show that this nitrosothiol did not induce cGMP accumulation in cultured RAW264.7 cells unless *NO was released with Cu2+. Finally, using liver homogenates from LPS treated rats we present evidence for the endogenous formation of this nitrosothiol. These findings provide the first evidence for the formation of a novel nitrosothiol generated by reaction between H2S and *NO. We propose that generation of this nitrosothiol in the body may regulate the physiological effects of both *NO and H2S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号