首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of transfusing a nonextravasating, zero-link polymer of cell-free hemoglobin on pial arteriolar diameter, cerebral blood flow (CBF), and O2 transport (CBF x arterial O2 content) was compared with that of transfusing an albumin solution at equivalent reductions in hematocrit (approximately 19%) in anesthetized cats. The influence of viscosity was assessed by coinfusion of a high-viscosity solution of polyvinylpyrrolidone (PVP), which increased plasma viscosity two- to threefold. Exchange transfusion of a 5% albumin solution resulted in pial arteriolar dilation, increased CBF, and unchanged O2 transport, whereas there were no significant changes over time in a control group. Exchange transfusion of a 12% polymeric hemoglobin solution resulted in pial arteriolar constriction and unchanged CBF and O2 transport. Coinfusion of PVP with albumin produced pial arteriolar dilation that was similar to that obtained with transfusion of albumin alone. In contrast, coinfusion of PVP with hemoglobin converted the constrictor response to a dilator response that prevented a decrease in CBF. Pial arteriolar dilation to hypercapnia was unimpaired in groups transfused with albumin or hemoglobin alone but was attenuated in the largest vessels in albumin and hemoglobin groups coinfused with PVP. Unexpectedly, hypocapnic vasoconstriction was blunted in all groups after transfusion of albumin or hemoglobin alone or with PVP. We conclude that 1) the increase in arteriolar diameter after albumin transfusion represents a compensatory response that prevents decreased O2 transport at reduced O2-carrying capacity, 2) the decrease in diameter associated with near-normal O2-carrying capacity after cell-free polymeric hemoglobin transfusion represents a compensatory mechanism that prevents increased O2 transport at reduced blood viscosity, 3) pial arterioles are capable of dilating to an increase in plasma viscosity when hemoglobin is present in the plasma, 4) decreasing hematocrit does not impair pial arteriolar dilation to hypercapnia unless plasma viscosity is increased, and 5) pial arteriolar constriction to hypocapnia is impaired at reduced hematocrit independently of O2-carrying capacity.  相似文献   

2.
The cerebrovascular effects of exchange transfusion of various cell-free hemoglobins that possess different oxygen affinities are reviewed. Reducing hematocrit by transfusion of a non-oxygen-carrying solution dilates pial arterioles on the brain surface and increases cerebral blood flow to maintain a constant bulk oxygen transport to the brain. In contrast, transfusion of hemoglobins with P50 of 4-34 Torr causes constriction of pial arterioles that offsets the decrease in blood viscosity to maintain cerebral blood flow and oxygen transport. The autoregulatory constriction is dependent on synthesis of 20-HETE from arachidonic acid. This oxygen-dependent reaction is apparently enhanced by facilitated oxygen diffusion from the red cell to the endothelium arising from increased plasma oxygen solubility in the presence of low or high-affinity hemoglobin. Exchange transfusion of recombinant hemoglobin polymers with P50 of 3 and 18 Torr reduces infarct volume from experimental stroke. Cell-free hemoglobins do not require a P50 as high as red blood cell hemoglobin to facilitate oxygen delivery.  相似文献   

3.
The beneficial effect of hemodilution on cerebral blood flow (CBF) during focal cerebral ischemia is mitigated by reduced arterial oxygen content (CaO2). In anesthetized cats subjected to permanent middle cerebral artery occlusion, the time course of regional CBF was evaluated after isovolemic exchange transfusion with either albumin or a tetrameric hemoglobin-based oxygen carrier. The transfusion started 30 min after arterial occlusion. We tested the hypothesis that bulk oxygen transport (CBF x CaO2) to ischemic tissue is increased by hemoglobin transfusion at a hematocrit of 18% compared with albumin-transfused cats at a hematocrit of 18% or control cats at a hematocrit of 30% and equivalent arterial pressure. In the nonischemic hemisphere, CBF increased selectively after albumin transfusion, and oxygen transport was similar among groups. In the ischemic cortex, albumin transfusion increased CBF, but oxygen transport was not increased above that of the control group. Hemoglobin transfusion increased both CBF and oxygen transport in the ischemic cortex above values in the control group, but the increase was delayed until 4 h of ischemia. Consequently, acute injury volume measured at 6 h of ischemia was not significantly attenuated. In contrast to the cortex, CBF in the ischemic caudate nucleus was not substantially increased by either albumin or hemoglobin transfusion. Therefore, in a large animal model of permanent focal ischemia in which transfusion starts 30 min after ischemia, tetrameric cross-linked hemoglobin transfusion can augment oxygen transport to the ischemic cortex, but the increase can be delayed and not necessarily provide protection. Moreover, an end-artery region such as the caudate nucleus is less likely to benefit from hemodilution.  相似文献   

4.
The cerebrovascular response to decreases in hematocrit and viscosity depends on accompanying changes in arterial O2 content. This study examines whether 1) the arteriolar dilation seen after exchange transfusion with a 5% albumin solution can be reduced by the K(ATP) channel antagonist glibenclamide (known to inhibit hypoxic dilation), and 2) the arteriolar constriction seen after exchange transfusion with a cell-free hemoglobin polymer to improve O2-carrying capacity can be blocked by inhibitors of the synthesis or vasoconstrictor actions of 20-HETE. In anesthetized rats, decreasing hematocrit by one-third with albumin exchange transfusion dilated pial arterioles (14 +/- 2%; SD), whereas superfusion of the surface of the brain with 10 muM glibenclamide blocked this response (-10 +/- 7%). Exchange transfusion with polymeric hemoglobin decreased the diameter of pial arterioles by 20 +/- 3% without altering arterial pressure. This constrictor response was attenuated by superfusing the surface of the brain with a 20-HETE antagonist, WIT-002 (10 microM; -5 +/- 1%), and was blocked by two chemically dissimilar selective inhibitors of the synthesis of 20-HETE, DDMS (50 microM; 0 +/- 4%) and HET-0016 (1 microM; +6 +/- 4%). The constrictor response to hemoglobin transfusion was not blocked by an inhibitor of nitric oxide (NO) synthase, and the inhibition of the constrictor response by DDMS was not altered by coadministration of the NO synthase inhibitor. We conclude 1) that activation of K(ATP) channels contributes to pial arteriolar dilation during anemia, whereas 2) constriction to polymeric hemoglobin transfusion at reduced hematocrit represents a regulatory response that limits increased O2 transport and that is mediated by increased formation of 20-HETE, rather than by NO scavenging.  相似文献   

5.
Modified Hb solutions have been developed as O(2) carrier transfusion fluids, but of concern is the possibility that increased scavenging of nitric oxide (NO) within the plasma will alter vascular reactivity even if the Hb does not readily extravasate. The effect of decreasing hematocrit from approximately 30% to 18% by an exchange transfusion of a 6% sebacyl cross-linked tetrameric Hb solution on the diameter of pial arterioles possessing tight endothelial junctions was examined through a cranial window in anesthetized cats with and without a NO synthase (NOS) inhibitor. Superfusion of a NOS inhibitor decreased diameter, and subsequent Hb transfusion produced additional constriction that was not different from Hb transfusion alone but was different from the dilation observed by exchange transfusion of an albumin solution after NOS inhibition. In contrast, abluminal application of the cross-linked Hb produced constriction that was attenuated by the NOS inhibitor. Neither abluminal nor intraluminal cross-linked Hb interfered with pial arteriolar dilation to cromakalim, an activator of ATP-sensitive potassium channels. Pial vascular reactivity to hypocapnia and hypercapnia was unaffected by Hb transfusion. Microsphere-determined regional blood flow indicated selective decreases in perfusion after Hb transfusion in the kidney, small intestine, and neurohypophysis, which does not have tight endothelial junctions. Administration of a NOS inhibitor to reduce the basal level of NO available for scavenging before Hb transfusion prevented further decreases in blood flow to these regions compared with NOS inhibition alone. In contrast, blood flow to skeletal and left ventricular muscle increased, and cerebral blood flow was unchanged after Hb transfusion. This cross-linked Hb tetramer is known to appear in renal lymph but not in urine. We conclude that cell-free tetrameric Hb does not scavenge sufficient NO in the plasma space to significantly affect baseline tone in vascular beds with tight endothelial junctions but does produce substantial constriction in beds with porous endothelium. The data support increasing the molecular size of Hb by polymerization or conjugation to limit extravasation in all vascular beds to preserve normal vascular reactivity.  相似文献   

6.
Polymers of cell-free hemoglobin have been designed for clinical use as oxygen carriers, but limited information is available regarding their effects on vascular regulation. We tested the hypothesis that the contribution of heme oxygenase (HO) to acetylcholine-evoked dilation of pial arterioles is upregulated 2 days after polymeric hemoglobin transfusion. Dilator responses to acetylcholine measured by intravital microscopy in anesthetized cats were blocked by superfusion of the HO inhibitor tin protoporphyrin-IX (SnPPIX) in a group that had undergone exchange transfusion with hemoglobin 2 days earlier but not in surgical sham and albumin-transfused groups. However, immunoblots from cortical brain homogenates did not reveal changes in expression of the inducible isoform HO1 or the constitutive isoform HO2 in the hemoglobin-transfused group. To test whether the inhibitory effect of SnPPIX was present acutely after hemoglobin transfusion, responses were measured within an hour of completion of the exchange transfusion. In control and albumin-transfused groups, acetylcholine responses were unaffected by SnPPIX but were blocked by addition of the nitric oxide synthase inhibitor N(omega)-nitro-l-arginine (l-NNA) to the superfusate. In hemoglobin-transfused groups, the acetylcholine response was blocked by either SnPPIX or l-NNA alone. The effect of another HO inhibitor, chromium mesoporphyrin (CrMP), was tested on ADP, another endothelial-dependent dilator, in anesthetized rats. Pial arteriolar dilation to ADP was unaffected by CrMP in controls but was attenuated 62% by CrMP in rats transfused with hemoglobin. It is concluded that 1) polymeric hemoglobin transfusion acutely upregulates the contribution of HO to acetylcholine-induced dilation of pial arterioles in cats, 2) this upregulation persists 2 days after transfusion when 95% of the hemoglobin is cleared from the circulation, and 3) this acute upregulation of HO signaling is ubiquitous in that similar effects were observed with a different endothelial-dependent agonist (i.e., ADP) in a another species (rat).  相似文献   

7.
Carbon monoxide (CO) is an endogenous dilator in the newborn cerebral circulation. The present study addressed the hypothesis that endogenous CO attenuates pial arteriolar vasoconstriction caused by hypocapnia, platelet activating factor, and elevated blood pressure. Experiments used anesthetized piglets with implanted, closed cranial windows. Topical application of a metal porphyrin inhibitor of heme oxygenase was used to inhibit production of CO. Chromium mesopophyrin increased vasoconstriction in response to hypocapnia. The constrictor response to a topical stimulus, platelet activating factor, was also increased by application of chromium mesoporphyrin. Inhibition of heme oxygenase did not constrict pial arterioles in normotensive newborn pigs (mean arterial pressure of about 70 mmHg), but did constrict pial arterioles of piglets with experimentally induced increases in arterial pressure (mean arterial pressure greater than 90 mmHg). In fact, pial arterioles of normotensive piglets transiently dilated to chromium mesoporphyrin, whereas those of hypertensive piglets progressively constricted during 10 min of chromium mesoporphyrin treatment. Therefore, inhibition of heme oxygenase augments cerebral vasoconstriction in response to several very different constrictor stimuli. These data suggest endogenous CO attenuates vasoconstrictor responses in the newborn cerebral circulation.  相似文献   

8.
With the objective of developing a recombinant oxygen carrier suitable for therapeutic applications, we have employed an Escherichia coli expression system to synthesize in high-yield hemoglobin (Hb) Minotaur, containing alpha-human and beta-bovine chains. Polymerization of Hb Minotaur through S-S intermolecular cross-linking was obtained by introducing a Cys at position beta9 and substituting the naturally occurring Cys. This homogeneous polymer, Hb Polytaur, has a molecular mass of approximately 500 kDa and was resistant toward reducing agents present in blood. In mice, the circulating half-time (3 h) was fivefold greater than adult human Hb (HbA). The half-time of autooxidation measured in blood (46 h) exceeded the circulating retention time. Hypervolemic exchange transfusion resulted in increased arterial blood pressure similar to that with albumin. The increase in pressure was less than that obtained by transfusion of cross-linked tetrameric Hb known to undergo renovascular extravasation. The nitric oxide reactivity of Hb Polytaur was similar to HbA, suggesting that the diminished pressor response to Hb Polytaur was probably related to diminished extravasation. Transfusion of 3% Hb Polytaur during focal cerebral ischemia reduced infarct volume by 22%. Therefore, site-specific Cys insertion on the Hb surface results in uniform size polymers that do not produce the large pressor response seen with tetrameric Hb. Polymerization maintains physiologically relevant oxygen and heme affinity, stability toward denaturation and oxidation, and effective oxygen delivery as indicated by reduced cerebral ischemic damage.  相似文献   

9.
Effects of prior exposure of pial arterioles to endothelin-1 (ET-1) (10(-9) M) on the constriction induced by the by-products of hemolyzed blood (5-HT, LTC4, LPA, and thromboxane analog U-46619) were examined. Piglets (age: 1-3 d) anesthetized with a mixture of ketamine hydrochloride and acepromazine were implanted with cranial windows, and anesthesia was maintained with alpha-chloralose. Topical applications of the by-products of hemolyzed blood mildly constricted pial arterioles. Following prior exposure of the microvessels to ET-1, application of the by-products of hemolyzed blood produced significantly potentiated and long-lasting constrictions compared to the controls. In another experiment, pretreatment of pial arterioles with U-46619 (10(-8) M) also potentiated the constriction induced by ET-1. The constriction produced was fast and longer-lasting. Thus, these data show that by-products of hemolyzed blood, though not potent vasoconstrictors per se, potently constricted pial arterioles in the presence of ET-1. The same agents in the CSF can also potentiate constriction induced by ET-1. Hence, by-products of hemolyzed blood may play a significant role in the initiation and maintenance of cerebral arterial narrowing observed following intracranial bleeding.  相似文献   

10.
The gaseous compound carbon monoxide (CO) has been identified as an important endogenous biological messenger in brain and is a major component in regulation of cerebrovascular circulation in newborns. CO is produced endogenously by catabolism of heme to CO, free iron, and biliverdin during enzymatic degradation of heme by heme oxygenase (HO). The present study was designed to test the hypothesis that endogenously produced CO contributes to hypotension-induced vasodilation of cerebral arterioles. Experiments used anesthetized piglets with implanted, closed cranial windows. Topical application of the HO substrate heme-l-lysinate caused dilation of pial arterioles that was blocked by a metal porphyrin inhibitor of HO, chromium mesoporphyrin (CrMP). In normotensive piglets (arterial pressure 64 +/- 4 mmHg), CrMP did not cause vasoconstriction of pial arterioles but rather a transient dilation. Hypotension (50% of basal blood pressure) increased cerebral CO production and dilated pial arterioles from 66 +/- 2 to 92 +/- 7 microm. In hypotensive piglets, topical CrMP or intravenous tin protoporphyrin decreased cerebral CO production and produced pial arteriolar constriction to normotensive diameters. In additional experiments, because prostacyclin and nitric oxide (NO) are also key dilators that can contribute to cerebrovascular dilation, we held their levels constant. NO/prostacyclin clamp was accomplished with continuous, simultaneous application of indomethacin, N(omega)-nitro-l-arginine, and minimal dilatory concentrations of iloprost and sodium nitroprusside. With constant NO and prostacyclin, the transient dilator and prolonged constrictor responses to CrMP of normotensive and hypotensive piglets, respectively, were the same as when NO and prostaglandins were not held constant. These data suggest that endogenously produced CO contributes to cerebrovascular dilation in response to reduced perfusion pressure.  相似文献   

11.
Pikamilon was shown to increase blood supply in cerebral cortex in conscious rats and rabbits. The increase in blood flow has been revealed under intravenous, intraperitoneal and systemic administration of the drug. There is a pronounced dilatation of pial arterioles under pikamilon action while applied locally. Most dilation occurs in arterioles with the initial diameter of 10-20 microns. With the increase of pial arterioles diameter, dilatory effect of pikamilon, is reduced.  相似文献   

12.
The purpose of this study was to test the hypothesis that exchange transfusion with liposomal hemoglobin (LH) reduces the microheterogeneity of regional myocardial flows while sustaining cardiac function. Neo Red Cell mixed with albumin was used as the LH solution, in which the LH volume fraction was 17 approximately 18% and hemoglobin density was nearly two-thirds smaller than in rat blood. Regional myocardial flows in left ventricular free walls were measured by tracer digitalradiography (100-mum resolution) in anesthetized rats with or without 50% blood-LH exchange transfusion. Within-layer flow distributions showed lower heterogeneity with (n = 8) than without (n = 8) LH transfusion. No extravasation of hemoglobin was confirmed by 3,3-diaminobenzidin staining (n = 2). Carotid flow increased by 68% due to LH transfusion, whereas arterial pressure and heart rate remained unchanged. On the other hand, cross-circulated rat hearts (n = 7) were used to evaluate the effects of 50% blood-LH exchange on coronary flow and tone preservation under 300-beats/min pacing and 100-mmHg perfusion pressure. Blood-LH exchange caused a 71% increase of coronary flow and 10% decrease of percent flow increase during hyperemia after 30-s flow interruption. Myocardial O(2) supply and consumption increased by 9% and 10%, respectively, whereas myocardial O(2) extraction remained unchanged. The large increases of in vivo carotid flow and coronary flow in cross-circulated hearts due to LH coperfusion could be explained by the reduction of apparent flow viscosity. These results suggest that under LH coperfusion, the microheterogeneity of myocardial flows decreases with increased coronary flow while fairly preserving coronary tone and cardiac function.  相似文献   

13.
Cell-free hemoglobin solutions with high oxygen affinity might be beneficial for selectively delivering oxygen to ischemic tissue. A recombinant hybrid hemoglobin molecule was designed using the human alpha-subunit and the bovine beta-subunit, with placement of surface cysteines to permit disulfide bond polymerization of the tetramers. The resulting protein generated from an Escherichia coli expression system had a molecular mass >1 MDa, a P50 of approximately 3 Torr, and a cooperativity of n = 1.0. Anesthetized mice were transfused during 2-h occlusion of the middle cerebral artery. Compared with transfusion with 5% albumin, cerebral infarct volume was reduced by 41% with transfusion of a 3% solution of the high oxygen-affinity hemoglobin polymer and by 50% with transfusion of a 6% solution of the polymer. Transfusion of a 6% solution of a 500-kDa polymer possessing a P50 of 17 Torr and a cooperativity of n = 2.0 resulted in a 66% reduction of infarct volume. These results indicate that cell-free Hb polymers with P50 values much lower than that of red blood cell hemoglobin are highly capable of salvaging ischemic brain. The assumption that the P50 of blood substitutes should be similar to that of blood might not be warranted when used during ischemic conditions.  相似文献   

14.
Astrocytes can act as intermediaries between neurons and cerebral arterioles to regulate vascular tone in response to neuronal activity. Release of glutamate from presynaptic neurons increases blood flow to match metabolic demands. CO is a gasotransmitter that can be related to neural function and blood flow regulation in the brain. The present study addresses the hypothesis that glutamatergic stimulation promotes perivascular astrocyte CO production and pial arteriolar dilation in the newborn brain. Experiments used anesthetized newborn pigs with closed cranial windows, piglet astrocytes, and cerebrovascular endothelial cells in primary culture and immunocytochemical visualization of astrocytic markers. Pial arterioles and arteries of newborn pigs are ensheathed by astrocytes visualized by glial fibrillary acidic protein staining. Treatment (2 h) of astrocytes in culture with L-2-alpha-aminoadipic acid (L-AAA), followed by 14 h in toxin free medium, dose-dependently increased cell detachment, suggesting injury. Conversely, 16 h of continuous exposure to L-AAA caused no decrease in endothelial cell attachment. In vivo, topical L-AAA (2 mM, 5 h) disrupted the cortical glia limitans histologically. Such treatment also eliminated pial arteriolar dilation to the astrocyte-dependent dilator ADP and to glutamate but not to isoproterenol or CO. Glutamate stimulated CO production by the brain surface that also was abolished following L-AAA. In contrast, tetrodotoxin blocked dilation to N-methyl-D-aspartate but not to glutamate, isoproterenol, or CO or the glutamate-induced increase in CO. The concurrent loss of CO production and pial arteriolar dilation to glutamate following astrocyte injury suggests astrocytes may employ CO as a gasotransmitter for glutamatergic cerebrovascular dilation.  相似文献   

15.
In the present study we have extended our previous findings about the effects of 10 minutes of passive mandibular extension in anesthetized Wistar rats. By prolonging the observation time to 3 hours, we showed that 10 minutes mandibular extension caused a significant reduction of the mean arterial blood pressure and heart rate respect to baseline values, which persisted up to 160 minutes after mandibular extension. These effects were accompanied by a characteristic biphasic response of pial arterioles: during mandibular extension, pial arterioles constricted and after mandibular extension dilated for the whole observation period. Interestingly, the administration of the opioid receptor antagonist naloxone abolished the vasoconstriction observed during mandibular extension, while the administration of Nω-Nitro-L-arginine methyl ester, a nitric oxide synthase inhibitor, abolished the vasodilation observed after mandibular extension. Either drug did not affect the reduction of mean arterial blood pressure and heart rate induced by mandibular extension. By qRT-PCR, we also showed that neuronal nitric oxide synthase gene expression was significantly increased compared with baseline conditions during and after mandibular extension and endothelial nitric oxide synthase gene expression markedly increased at 2 hours after mandibular extension. Finally, western blotting detected a significant increase in neuronal and endothelial nitric oxide synthase protein expression. In conclusion mandibular extension caused complex effects on pial microcirculation involving opioid receptor activation and nitric oxide release by both neurons and endothelial vascular cells at different times.  相似文献   

16.
In acute experiments on anesthetized cats intravenous injection of chloromazine (2--3 mg/kg) caused a reduction in the tone of the cerebral vessels and decreased the general arterial pressure. The cerebral blood circulation increased with the stable arterial pressure or its moderate decrease. With a significant fall of arterial pressure the cerebral blood flow proved to decrease.  相似文献   

17.
A compartmental model is developed for oxygen (O(2)) transport in brain microcirculation in the presence of blood substitutes (hemoglobin-based oxygen carriers). The cerebrovascular bed is represented as a series of vascular compartments, on the basis of diameters, surrounded by a tissue compartment. A mixture of red blood cells (RBC) and plasma/extracellular hemoglobin solution flows through the vascular bed from the arterioles through the capillaries to the venules. Oxygen is transported by convection in the vascular compartments and by diffusion in the surrounding tissue where it is utilized. Intravascular resistance and the diffusive loss of oxygen from the arterioles to the tissue are incorporated in the model. The model predicts that most of the O(2) transport occurs at the level of capillaries. Results computed from the present model in the presence of hemoglobin-based oxygen carriers are consistent with those obtained from the earlier validated model (Sharan et al., 1989, 1998a) on oxygen transport in brain circulation in the absence of extracellular hemoglobin. We have found that: (a) precapillary PO(2) gradients increase as PO(2) in the arterial blood increases, P(50 p) (oxygen tension at 50% saturation of hemoglobin with O(2) in plasma) decreases, i.e. O(2) affinity of the extracellular hemoglobin is increased, the flow rate of the mixture decreases, hematocrit decreases at constant flow, metabolic rate increases, and intravascular transport resistance in the arterioles is neglected; (b) precapillary PO(2) gradients are not sensitive to (i) intracapillary transport resistance, (ii) cooperativity (n(p)) of hemoglobin with oxygen in plasma, (iii) hemoglobin concentration in the plasma and (iv) hematocrit when accounting for viscosity variation in the flow; (c) tissue PO(2) is not sensitive to the variation of intravascular transport resistance in the arterioles. We also found that tissue PO(2) is a non-monotonic function of the Hill coefficient n(p) for the extracellular hemoglobin with a maximum occurring when n(p) equals the blood Hill coefficient. The results of the computations give estimates of the magnitudes of the increases in tissue PO(2) as arterial PO(2) increases,P(50 p) increases, flow rate increases, hematocrit increases, hemoglobin concentration in the plasma increases, metabolic rate decreases, the capillary mass transfer coefficient increases or the intracapillary transport resistance decreases.  相似文献   

18.
We compared the effect of topical application of PGF2 alpha on cerebral arterioles in cats and rats equipped with an acutely implanted cranial window. Arterial diameter was measured using a microscope and image splitting device. PGF2 alpha in a concentration ranging from 10(-7) to 10(-5) M had no effect on large (greater than or equal to 100 microns) or small (less than 100 microns) cat pial arterioles, but induced a dose dependent constriction of rat pial arterioles with a maximum constriction to 76% of control diameter. Dilation of cat large cerebral arterioles by topically applied PGE2 was not affected by simultaneous application of PGF2 alpha and PGE2 induced dilation of small arterioles was decreased 3% by PGF2 alpha. While we and others have previously shown that both cat and rat brain can synthesize PGF2 alpha, it appears that PGF2 alpha is not likely to normally be a major modulator of cerebral arteriolar resistance in all species.  相似文献   

19.
The study aimed to investigate the involvement of cerebral microcirculation turbulence after subarachnoid hemorrhage (SAH). Wistar rats were divided into non-SAH and SAH groups. Autologous arterial hemolysate was injected into rat’s cisterna magna to induce SAH. Changes of pial microcirculation within 2 h were observed. It was found that there were no obvious changes of the diameters, flow velocity, and fluid state of microvessels in non-SAH group. With the exception of rare linear-granular flow in A4 arteriole, linear flow was observed in most of the arterioles. There was no blood agglutination in any of the arterioles. After SAH, abnormal cerebral pial microcirculation was found. Spasm of microvessels, decreased blood flow, and agglutination of red blood cells occurred. Five minutes following the induction of SAH, the diameters of the arterioles and venules significantly decreased. The decreased diameters persisted for 2 h after cisternal injection. Decreased flow velocity of venules was found from 5 to 90 min after induction of SAH. Spasm of the basilar artery and increased brain malondialdehyde were also found after SAH. We concluded that cerebral microcirculation turbulence plays an important role in the development of secondary cerebral ischemia following SAH.  相似文献   

20.
We tested the hypothesis that constriction of cerebral arterioles during acute increases in blood pressure is attenuated by activation of potassium (K(+)) channels. We tested the effects of inhibitors of calcium-dependent K(+) channels [iberiotoxin (50 nM) and tetraethylammonium (TEA, 1 mM)] on changes in arteriolar diameter during acute hypertension. Diameter of cerebral arterioles (baseline diameter = 46 +/- 2 microm, mean +/- SE) was measured using a cranial window in anesthetized rats. Arterial pressure was increased from a control value of 96 +/- 1 mmHg to 130, 150, 170, and 200 mmHg by intravenous infusion of phenylephrine. Increases in arterial pressure from baseline to 130 and 150 mmHg decreased the diameter of cerebral arterioles by 5-10%. Greater increases in arterial pressure produced large increases in arteriolar diameter (i.e., "breakthrough of autoregulation"). Iberiotoxin or TEA inhibited increases in arteriolar diameter when arterial pressure was increased to 170 and 200 mmHg. The change in arteriolar diameter at 200 mmHg was 20 +/- 3% and -1 +/- 4% in the absence and presence of iberiotoxin, respectively. These findings suggest that calcium-dependent K(+) channels attenuate cerebral microvascular constriction during acute increases in arterial pressure, and that increases in arteriolar diameter at high levels of arterial pressure are not simply a passive phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号