首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
The synthesis and SAR studies of a series of structurally novel inhibitors of PDE7 are discussed. The best compounds from the series display low nanomolar inhibitory activity and are selective versus other PDE isoenzymes.  相似文献   

2.
A series of potent chiral PDE5 inhibitors are described that are based on the sildenafil architecture but exhibit much greater selectivity over PDE6. Eudismic analysis of the SAR in this series provided a clear illustration of Pfeiffer's rule and indicated that the chiral motif was involved in a highly-stereoselective interaction with PDE5. This PDE5 specificity translated to levels of selectivity over PDE6 that were hitherto unprecedented in the sildenafil scaffold. UK-371,800 (compound 8) was identified as a development candidate from this series that married sildenafil-like molecular properties with high selectivity over PDE6. Clinical data confirm that UK-371,800 has markedly superior human pharmacokinetics to a previously-described higher molecular weight achiral analogue in this template (compound 1).  相似文献   

3.
In an effort to minimize side effects associated with low selectivity against PDE isozymes, we have successfully identified a series of 6,7,8-substituted quinzaolines as potent inhibitors of PDE5 with high level of isozyme selectivity, especially against PDE6 and PDE11. PDE5 potency and isozyme selectivity of quinazolines were greatly improved with substitutions both at 6- and 8-position. The synthesis, structure-activity relationships and in vivo efficacy of this novel series of potent PDE5 inhibitors are described.  相似文献   

4.
In a continuing effort to discover novel chemotypes as potent and selective PDE5 inhibitors for the treatment of male erectile dysfunction (ED), we have found that 4-benzylaminoquinoline derivatives are very potent and selective PDE5 inhibitors. Some compounds in this series had PDE5 IC(50)'s as low as 50 pM. While an electron withdrawing group at the C6-position of the quinoline substantially improved PDE5 potency, an ethyl group at the C8-position not only improved the PDE5 potency but also the isozyme selectivity. Substitutents at the C3-position can incorporate a variety of different groups. The synthesis and primary structure-activity relationship of this new series of potent PDE5 inhibitors are described.  相似文献   

5.
Inhibitors of PDE5 are useful therapeutic agents for treatment of erectile dysfunction. A series of novel xanthine derivatives has been identified as potent inhibitors of PDE5, with good levels of selectivity against other PDE isoforms, including PDE6. Studies in the dog indicate excellent oral bioavailability for compound 21.  相似文献   

6.
The SAR of a series of beta-carboline derived type 5 phosphodiesterase inhibitors has been explored and we have discovered compounds with excellent levels of PDE5 potency and selectivity over PDE6. However, the series exhibits low levels of selectivity over PDE11, a phosphodiesterase with unknown function.  相似文献   

7.
A series of pyrimidine based inhibitors of PDE7 are discussed. The synthesis, structure–activity relationships (SAR) and selectivity against several other PDE family members as well as activity in T cells are presented. These compounds were found to have effects on T cell proliferation, however it is not clear whether the mechanism is related to PDE7 inhibition.  相似文献   

8.
The synthesis and SAR studies of spiroquinazolinones as novel PDE7 inhibitors are discussed. The best compounds from the series displayed nanomolar inhibitory affinity and were selective versus other PDE isoenzymes.  相似文献   

9.
A series of fused pyrimidine based inhibitors of PDE7 have been derived from an earlier screening lead 1. The synthesis, structure-activity relationships (SAR) and selectivity against several other PDE family members are described.  相似文献   

10.
Our previous discovery of series of pyrazolopyrimidinone based PDE5 inhibitors led to find potent leads but with low aqueous solubility and poor bioavailability, and low selectivity. Now, a new series of same pyrazolopyrimidinone scaffold is designed, synthesized and evaluated for its PDE5 inhibitory potential. In this study, some of the molecules are found more potent and selective PDE5 inhibitors in vitro than sildenafil. The studies revealed that compound 5 is 20 fold selective to PDE5 against PDE6. As PDE6 enzyme is involved in the phototransduction pathway in the retina and creates distortion problem, the selectivity for PDE5 specifically against PDE6 enzyme is preferred for any development candidate and in present study, compound 5 has been found to be devoid of this liability of selectivity issue. Moreover, compound 5 has shown excellent in vivo efficacy in conscious rabbit model, it's almost comparable to sildenafil. The preclinical pharmacology including pharmacokinetic and physicochemical parameter studies were also performed for compound 5, it was found to have good PK properties and other physicochemical parameters. The development of these selective PDE5 inhibitors can further lead to draw strategies for the novel preclinical and/or clinical candidates based on pyrazolopyrimidinone scaffold.  相似文献   

11.
In this study we report a series of triazine derivatives that are potent inhibitors of PDE4B. We also provide a series of structure activity relationships that demonstrate the triazine core can be used to generate subtype selective inhibitors of PDE4B versus PDE4D. A high resolution co-crystal structure shows that the inhibitors interact with a C-terminal regulatory helix (CR3) locking the enzyme in an inactive ‘closed’ conformation. The results show that the compounds interact with both catalytic domain and CR3 residues. This provides the first structure-based approach to engineer PDE4B-selective inhibitors.  相似文献   

12.
The synthesis, preliminary evaluation and structure–activity relationship (SAR) of a series of 1-aryl-4-methyl[1,2,4]triazolo[4,3-a]quinoxalines as dual phosphodiesterase 2/phosphodiesterase 10 (PDE2/PDE10) inhibitors are described. From this investigation compound 31 was identified, showing good combined potency, acceptable brain uptake and high selectivity for both PDE2 and PDE10 enzymes. Compound 31 was subjected to a microdosing experiment in rats, showing preferential distribution in brain areas where both PDE2 and PDE10 are highly expressed. These promising results may drive the further development of highly potent combined PDE2/PDE10 inhibitors, or even of selective inhibitors of PDE2 and/or PDE10.  相似文献   

13.
A series of purine based inhibitors of PDE7 has been derived from screening lead 1a. The synthesis, structure-activity relationships (SAR), and selectivity against several other PDE family members are described.  相似文献   

14.
The synthesis and structure-activity relationship studies of a series of compounds from imidazopyridazinone scaffold as PDE7 inhibitors are disclosed. Potent analogs such as compounds 7 (31nM), 8 (27nM), and 9 (12nM) were identified. The PDE selectivity and pharmacokinetic profile of compounds 7, 8 and 9 are also disclosed. The adequate CNS penetration of compound 7 in mice allowed it to be tested in the MPTP induced PD model and haloperidol induced catalepsy model to probe the differential pharmacology of PDE7 in the striatal pathway.  相似文献   

15.
Inhibitors of phosphodiesterase 4 (PDE4) are an important class of anti-inflammatory drug that act by inhibiting the production of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α). We have synthesized and evaluated a series of 2-substituted phthalazinone derivatives as PDE4 inhibitors. Structure–activity relationship studies led to the identification of benzylamine-substituted phthalazinones as potent PDE4 inhibitors that also suppressed TNF-α production by whole rat blood cells. The most potent of these, when topically administered, were effective in a mouse model of dermatitis.  相似文献   

16.
In search of a PDE5 inhibitor for erectile dysfunction, an SAR was developed from a PDE1/PDE5 purine series of leads, which had modest PDE5 potency and poor isozyme selectivity. A compound (41) with PDE5 inhibition and in vivo activity similar to sildenafil was discovered from this effort. In addition, purine 41 demonstrated superior overall PDE isozyme selectivity when compared to the approved PDE5 inhibitors sildenafil, vardenafil, and tadalafil, which may result in a more favorable side-effect profile.  相似文献   

17.
The latest scientific findings concerning PDE7 and PDE4 inhibition suggest that selective small-molecule inhibitors of both enzymes could provide a novel approach to treat a variety of immunological diseases. In this context, we describe a new series of quinazoline derivatives from quinazolin-4-thiones which include a substituted biphenyl fragment. Some of these compounds show inhibitory potencies at sub-micromolar levels against the catalytic domain of PDE7.  相似文献   

18.
The syntheses and in vitro evaluation of a new series of pyrido[2,3-d]pyrimidine-2,4-diones bearing substituents at C-3 and/or C-4 positions on the pyridine ring are described. Some of these compounds, especially 51 and 6f, were found to be potent phosphodiesterase 4 (PDE 4) inhibitors exhibiting improved ratio of PDE 4 inhibitory activity:rolipram binding assay (RBA).  相似文献   

19.
The cAMP-specific phosphodiesterase family 4, subfamily D, isoform 3 (PDE4D3) is shown to have FQF and KIM docking sites for extracellular signal-regulated kinase 2 (ERK2) (p42(MAPK)). These straddle the target residue, Ser(579), for ERK2 phosphorylation of PDE4D3. Mutation of either or both of these docking sites prevented ERK2 from being co-immunoprecipitated with PDE4D3, ablated the ability of epidermal growth factor to inhibit PDE4D3 through ERK2 action in transfected COS cells, and attenuated the ability of ERK2 to phosphorylate PDE4D3 in vitro. The two conserved NH(2)-terminal blocks of sequence, called upstream conserved regions 1 and 2 (UCR1 and UCR2), that characterize PDE4 long isoforms, are proposed to amplify the small, inherent inhibitory effect that ERK2 phosphorylation exerts on the PDE4D catalytic unit. In contrast to this, the lone intact UCR2 region found in PDE4D1 directs COOH-terminal ERK2 phosphorylation to cause the activation of this short isoform. From the analysis of PDE4D3 truncates, it is suggested that UCR1 and UCR2 provide a regulatory signal integration module that serves to orchestrate the functional consequences of ERK2 phosphorylation. The PDE4D gene thus encodes a series of isoenzymes that are either inhibited or activated by ERK2 phosphorylation and thereby offers the potential for ERK2 activation either to increase or decrease cAMP levels in cellular compartments.  相似文献   

20.
A series of pyrazoles and pyrazolo[3,4-d]pyridazinones were synthesized and evaluated for their PDE4 inhibitory activity. All the pyrazoles were found devoid of activity, whereas some of the novel pyrazolo[3,4-d]pyridazinones showed good activity as PDE4 inhibitors. The most potent compounds in this series showed an IC50 in the nanomolar range. The ability to inhibit TNF-α release in human PBMCs was determined for two representative compounds, finding values in the sub-micromolar range. SARs studies demonstrated that the best arranged groups around the heterocyclic core are 2-chloro-, 2-methyl- and 3-nitrophenyl at position 2, an ethyl ester at position 4 and a small alkyl group at position 6. Molecular modeling studies performed on a representative compound allowed to define its binding mode to the PDE4B isoform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号