首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
'Evolution Canyon' on Mount Carmel, Israel, displays highly contrasting physical and biotic environments on a micro-geographic scale, and is a natural laboratory for investigating genetic responses to variable and extreme environments across species. Samples of Drosophila melanogaster and D. simulans were collected from three sites each on the north- and south-facing slopes of the canyon along altitudinal transects, and one site on the valley floor. Numbers of abdominal and sternopleural sensory bristles were recorded for each of these subpopulations in three thermal environments. In D. simulans, sternopleural bristle number exhibited micro-geographic differentiation between the north- and south-facing slopes, while abdominal bristle number was stable across subpopulations. In D. melanogaster, the magnitudes of the difference in mean sternopleural bristle number between the north- and south-facing slopes and of mean abdominal bristle number along the altitudinal gradients were both conditional on rearing temperature. Thus, the pattern of genetic variation between sites was consistent with underlying heterogeneity of genetic mechanisms for response to the same environmental gradients between traits and sibling species. In contrast, the genetic architecture of bristle number at the level of variation within populations was very similar between species for the same bristle trait, although the two traits differed in the relative contribution of genotype by temperature and genotype by sex interaction.  相似文献   

2.
We evaluated the hypothesis that the Drosophila melanogaster second chromosome gene scabrous (sca), a candidate sensory bristle number quantitative trait locus (QTL), contributes to naturally occurring variation in bristle number. Variation in abdominal and sternopleural bristle number was quantified for wild-derived sca alleles in seven genetic backgrounds: as homozygous second chromosomes (C2) in an isogenic background, homozygous lines in which approximately 20 cM including the sca locus had been introgressed into the isogenic background (sca BC), as C2 and sca BC heterozygotes and hemizygotes against a P element insertional sca allele and a P-induced sca deficiency in the same isogenic background, and as sca BC heterozygotes against the wild-type sca allele of isogenic strain. Molecular restriction map variation was determined for a 45 kb region including the sca locus, and single-stranded conformational polymorphism (SSCP) was examined for the third intron and parts of the third and fourth exons. Associations between each of the 27 molecular polymorphisms and bristle number were evaluated within each genotype and on the first principal component score determined from all seven genotypes, separately for each sex and bristle trait. Permutation tests were used to assess the empirical significance thresholds, accounting for multiple, correlated tests, and correlated markers. Three sites in regulatory regions were associated with female-specific variation in abdominal bristle number, one of which was an SSCP site in the region of the gene associated with regulation of sca in embryonic abdominal segments.  相似文献   

3.
Long AD  Lyman RF  Morgan AH  Langley CH  Mackay TF 《Genetics》2000,154(3):1255-1269
A restriction enzyme survey of a 110-kb region including the achaete scute complex (ASC) examined 14 polymorphic molecular markers in a sample of 56 naturally occurring chromosomes. Large insertions as a class were associated with a reduction in both sternopleural and abdominal bristle number, supporting deleterious mutation-selection equilibrium models for the maintenance of quantitative genetic variation. Two polymorphic sites were independently associated with variation in bristle number measured in two genetic backgrounds as assessed by a permutation test. A 6-bp deletion near sc alpha is associated with sternopleural bristle number variation in both sexes and a 3.4-kb insertion between sc beta and sc gamma is associated with abdominal bristle number variation in females. Under an additive genetic model, the small deletion polymorphism near sc alpha accounts for 25% of the total X chromosome genetic variation in sternopleural bristle number, and the 3.4 kb insertion accounts for 22% of the total X chromosome variation in female abdominal bristle number. The observation of common polymorphisms associated with variation in bristle number is more parsimoniously explained by models that incorporate balancing selection or assume variants affecting bristle number are neutral, than mutation-selection equilibrium models.  相似文献   

4.
Numbers of Drosophila sensory bristles present an ideal model system to elucidate the genetic basis of variation for quantitative traits. Here, we review recent evidence that the genetic architecture of variation for bristle numbers is surprisingly complex. A substantial fraction of the Drosophila genome affects bristle number, indicating pervasive pleiotropy of genes that affect quantitative traits. Further, a large number of loci, often with sex- and environment-specific effects that are also conditional on background genotype, affect natural variation in bristle number. Despite this complexity, an understanding of the molecular basis of natural variation in bristle number is emerging from linkage disequilibrium mapping studies of individual candidate genes that affect the development of sensory bristles. We show that there is naturally segregating genetic variance for environmental plasticity of abdominal and sternopleural bristle number. For abdominal bristle number this variance can be attributed in part to an abnormal abdomen-like phenotype that resembles the phenotype of mutants defective in catecholamine biosynthesis. Dopa decarboxylase (Ddc) encodes the enzyme that catalyses the final step in the synthesis of dopamine, a major Drosophila catecholamine and neurotransmitter. We found that molecular polymorphisms at Ddc are indeed associated with variation in environmental plasticity of abdominal bristle number.  相似文献   

5.
Imasheva AG  Bubliy OA 《Hereditas》2003,138(3):193-199
Effects of three different larval densities (low, intermediate and high) on phenotypic and genetic variation of four morphological traits (thorax and wing length, sternopleural and abdominal bristle number) were studied in Drosophila melanogaster using the isofemale line technique. Phenotypic variation was found to increase at high larval density in all traits examined. Environmental variance for three traits (exception was sternopleural bristle number) and fluctuating asymmetry for both bilateral traits were also increased under high density conditions. For estimates of genetic variability (among isofemale lines variance, heritability and evolvability), no statistically significant differences among density regimes were detected. However, the trends in changes of these estimates across densities indicated a possibility for enhanced genetic variation under larval crowding for all traits except abdominal bristle number. For the latter trait, genetic variation seemed not to be dependent on density regime. Generally, two metric traits (thorax and wing length) were more affected by larval crowding than two meristic ones (sternopleural and abdominal bristle number). The Results are in complete agreement with those previously obtained for D. melanogaster using extreme temperatures as stress-factors.  相似文献   

6.
We have mapped quantitative trait loci (QTL) harboring naturally occurring allelic variation for Drosophila bristle number. Lines with high (H) and low (L) sternopleural bristle number were derived by artificial selection from a large base population. Isogenic H and L sublines were extracted from the selection lines, and populations of X and third chromosome H/L recombinant isogenic lines were constructed in the homozygous low line background. The polymorphic cytological locations of roo transposable elements provided a dense molecular marker map with an average intermarker distance of 4.5 cM. Two X chromosome and six chromosome 3 QTL affecting response to selection for sternopleural bristle number and three X chromosome and three chromosome 3 QTL affecting correlated response in abdominal bristle number were detected using a composite interval mapping method. The average effects of bristle number QTL were moderately large, and some had sex-specific effects. Epistasis between QTL affecting sternopleural bristle number was common, and interaction effects were large. Many of the intervals containing bristle number QTL coincided with those mapped in previous studies. However, resolution of bristle number QTL to the level of genetic loci is not trivial, because the genomic regions containing bristle number QTL often did not contain obvious candidate loci, and results of quantitative complementation tests to mutations at candidate loci affecting adult bristle number were ambiguous.  相似文献   

7.
S V Nuzhdin  C L Dilda  T F Mackay 《Genetics》1999,153(3):1317-1331
Quantitative trait loci (QTL) affecting responses and correlated responses to selection for abdominal and sternopleural bristle number have been mapped with high resolution to the X and third chromosomes. Advanced intercross recombinant isogenic chromosomes were constructed from high and low selection lines in an unselected inbred background, and QTL were detected using composite interval mapping and high density transposable element marker maps. We mapped a total of 26 bristle number QTL with large effects, which were in or immediately adjacent to intervals previously inferred to contain bristle number QTL on these chromosomes. The QTL contributing to response to selection for high bristle number were not the same as those contributing to response to selection for low bristle number, suggesting that distributions of allelic effects per locus may be asymmetrical. Correlated responses were more often attributable to loose linkage than pleiotropy or close linkage. Bristle number QTL mapping to the same locations have been inferred in studies with different parental strains. Of the 26 QTL, 20 mapped to locations consistent with candidate genes affecting peripheral nervous system development and/or bristle number. This facilitates determining the molecular basis of quantitative variation and allele frequencies by associating molecular variation at the candidate genes with phenotypic variation in bristle number in samples of alleles from nature.  相似文献   

8.
Ahuja A  De Vito S  Singh RS 《Genetica》2011,139(4):505-510
Genetic architecture of variation underlying male sex comb bristle number, a rapidly evolving secondary sexual character of Drosophila, was examined. First, in order to test for condition dependence, diet was manipulated in a set of ten Drosophila melanogaster full-sib families. We confirmed heightened condition dependent expression of sex comb bristle number and its female homologue (distal transverse row bristles) as compared to non-sex sternopleural bristles. Significant genotype by environment effects were detected for the sex traits indicating a genetic basis for condition dependence. Next we measured sex comb bristle number and sternopleural bristle number, as well as residual mass, a commonly used condition index, in a set of thirty half-sib families. Sire effect was not significant for sex comb and sternopleural bristle number, and we detected a strong dominance and/or maternal effect or X chromosome effect for both traits. A strong sire effect was detected for condition and its heritability was the highest as compared to sex comb and sternopleural bristles. We discuss our results in light of the rapid response to divergent artificial selection for sex comb bristle number reported previously. The nature of genetic variation for male sex traits continues to be an important unresolved issue in evolutionary biology.  相似文献   

9.
Most characters that distinguish one individual from another, like height or weight, vary continuously in populations. Continuous variation of these ‘quantitative’ traits is due to the simultaneous segregation of multiple quantitative trait loci (QTLs) as well as environmental influences. A major challenge in human medicine, animal and plant breeding and evolutionary genetics is to identify QTLs and determine their genetic properties. Studies of the classic quantitative traits, abdominal and sternopleural bristle numbers of Drosophila, have shown that: (1) many loci have small effects on bristle number, but a few have large effects and cause most of the genetic variation; (2) ‘candidate’ loci involved in bristle development often have large quantitative effects on bristle number; and (3) alleles at QTLs affecting bristle number have variable degrees of dominance, interact with each other, and affect other quantitative traits, including fitness. Lessons learned from this model system will be applicable to studies of the genetic basis of quantitative variation in other species.  相似文献   

10.
Replicated divergent artificial selection for abdominal and sternopleural bristle number from a highly inbred strain of Drosophila melanogaster resulted in an average divergence after 125 generations of selection of 12.0 abdominal and 8.2 sternopleural bristles from the accumulation of new mutations affecting bristle number. Responses to selection were highly asymmetrical, with greater responses for low abdominal and high sternopleural bristle numbers. Estimates of V(M), the mutational variance arising per generation, based on the infinitesimal model and averaged over the responses to the first 25 generations of selection, were 4.32 X 10(-3) V(E) for abdominal bristle number and 3.66 X 10(-3) V(E) for sternopleural bristle number, where V(E) is the environmental variance. Based on 10 generations of divergent selection within lines from generation 93, V(M) for abdominal bristle number was 6.75 X 10(-3) V(E) and for sternopleural bristle number was 5.31 X 10(-3) V(E). However, estimates of V(M) using the entire 125 generations of response to selection were lower and generally did not fit the infinitesimal model largely because the observed decelerating responses were not compatible with the predicted increasing genetic variance over time. These decelerating responses, periods of response in the opposite direction to artificial selection, and rapid responses to reverse selection all suggest new mutations affecting bristle number on average have deleterious effects on fitness. Commonly observed periods of accelerated responses followed by long periods of stasis suggest a leptokurtic distribution of mutational effects for bristles.  相似文献   

11.
The genetic architecture of Drosophila sensory bristle number   总被引:2,自引:0,他引:2  
Dilda CL  Mackay TF 《Genetics》2002,162(4):1655-1674
We have mapped quantitative trait loci (QTL) for Drosophila mechanosensory bristle number in six recombinant isogenic line (RIL) mapping populations, each of which was derived from an isogenic chromosome extracted from a line selected for high or low, sternopleural or abdominal bristle number and an isogenic wild-type chromosome. All RILs were evaluated as male and female F(1) progeny of crosses to both the selected and the wild-type parental chromosomes at three developmental temperatures (18 degrees, 25 degrees, and 28 degrees ). QTL for bristle number were mapped separately for each chromosome, trait, and environment by linkage to roo transposable element marker loci, using composite interval mapping. A total of 53 QTL were detected, of which 33 affected sternopleural bristle number, 31 affected abdominal bristle number, and 11 affected both traits. The effects of most QTL were conditional on sex (27%), temperature (14%), or both sex and temperature (30%). Epistatic interactions between QTL were also common. While many QTL mapped to the same location as candidate bristle development loci, several QTL regions did not encompass obvious candidate genes. These features are germane to evolutionary models for the maintenance of genetic variation for quantitative traits, but complicate efforts to understand the molecular genetic basis of variation for complex traits.  相似文献   

12.
Factors responsible for selection response for abdominal bristle number and correlated responses in sternopleural bristle number were mapped to the X and third chromosome of Drosophila melanogaster. Lines divergent for high and low abdominal bristle number were created by 25 generations of artificial selection from a large base population, with an intensity of 25 individuals of each sex selected from 100 individuals of each sex scored per generation. Isogenic chromosome substitution lines in which the high (H) X or third chromosome were placed in an isogenic low (L) background were derived from the selection lines and from the 93 recombinant isogenic (RI) HL X and 67 RI chromosome 3 lines constructed from them. Highly polymorphic neutral r00 transposable elements were hybridized in situ to the polytene chromosomes of the RI lines to create a set of cytogenetic markers. These techniques yielded a dense map with an average spacing of 4 cM between informative markers. Factors affecting bristle number, and relative viability of the chromosome 3 RI lines, were mapped using a multiple regression interval mapping approach, conditioning on all markers >/=10 cM from the tested interval. Two factors with large effects on abdominal bristle number were mapped on the X chromosome and five factors on the third chromosome. One factor with a large effect on sternopleural bristle number was mapped to the X and two were mapped to the third chromosome; all factors with sternopleural effects corresponded to those with effects on abdominal bristle number. Two of the chromosome 3 factors with large effects on abdominal bristle number were also associated with reduced viability. Significant sex-specific effects and epistatic interactions between mapped factors of the same order of magnitude as the additive effects were observed. All factors mapped to the approximate positions of likely candidate loci (ASC, bb, emc, h, mab, Dl and E(spl)), previously characterized by mutations with large effects on bristle number.  相似文献   

13.
We test the hypothesis that naturally occurring nonsynonymous variants in the Delta ligand of the Notch signaling pathway contribute to standing variation in sternopleural and/or abdominal bristle number in Drosophila melanogaster, for both a large cohort of wild-caught flies and previously described laboratory lines. We sequenced the transcribed region of Delta for 16 naturally occurring chromosomes and 65 SNPs, including 7 nonsynonymous SNPs (nsSNPs), were observed. Identified nsSNPs and 6 additional common SNPs, all located in exon 6 and the 3' UTR, were genotyped in 2060 wild-caught flies using an OLA-based methodology and genotyped in 38 additional natural chromosomes via DNA sequencing. None of the genotyped nsSNPs were significantly associated with natural variation in bristle number as assessed by a permutation test. A 95% upper bound on the additive genetic variance attributable to each genotyped SNP in the large natural cohort is <2% of the total phenotypic variation. Results suggest that two previously detected genotype/phenotype associations between bristle number and variants in the introns of Delta cannot be explained by linkage disequilibrium between these variants and nearby nonsynonymous variants. Unidentified regulatory variants more parsimoniously explain previous observations.  相似文献   

14.
A highly inbred line of Drosophila melanogaster was subdivided into 25 replicate sublines, which were independently maintained for 100 generations with 10 pairs of unselected flies per generation. The polygenic mutation rate (VM) for two quantitative traits, abdominal and sternopleural bristle number, was estimated from divergence among sublines at 10 generation intervals from generations 30-100, and from response of each line to divergent selection after more than 65 generations of mutation accumulation. Estimates of VM averaged over males and females both from divergence among lines and from response to selection within lines were 3.3 × 10-3 VE for abdominal bristles and 1.5 × 10-3 VE for sternopleural bristles, where VE is the environmental variance. The actual rate of production of mutations affecting these traits may be considerably higher if the traits are under stabilizing selection, and if mutations affecting bristle number have deleterious effects on fitness. There was a substantial component of variance for sex × mutant effect interaction and the sublines evolved highly significant mutational variation in sex dimorphism of abdominal bristle number. Pleiotropic effects on sex dimorphism may be a general property of mutations at loci determining bristle number.  相似文献   

15.
In Tribolium flour beetles and other organisms, individuals migrate between heterogeneous environments where they often encounter markedly different nutritional conditions. Under these circumstances, theory suggests that genotype-by-environment interactions (GEI) may be important in facilitating adaptation to new environments and maintaining genetic variation for male traits subject to directional selection. Here, we used a nested half-sib breeding design with Tribolium castaneum to partition the separate and joint effects of male genotype and nutritional environment on phenotypic variation in a comprehensive suite of life-history traits, reproductive performance measures across three sequential sexual selection episodes, and fitness. When male genotypes were tested across three nutritional environments, considerable phenotypic plasticity was found for male mating and insemination success, longevity and traits related to larval development. Our results also revealed significant additive genetic variation for male mating rate, sperm offence ability (P(2)), longevity and total fitness and for several traits reflecting both larval and adult resource use. In addition, we found evidence supporting GEI for sperm defence ability (P(1)), adult longevity and larval development; thus, no single male genotype outperforms others in every nutritional environment. These results provide insight into the potential roles of phenotypic plasticity and GEI in facilitating Tribolium adaptation to new environments in ecological and evolutionary time.  相似文献   

16.
Bubliy OA  Loeschcke V 《Heredity》2002,89(1):70-75
A half-sib analysis was used to investigate genetic variation for three morphological traits (thorax length, wing length and sternopleural bristle number) and two life-history traits (developmental time and larva-to-adult viability) in Drosophila melanogaster reared at a standard (25 degrees C) and a low stressful (13 degrees C) temperature. Both phenotypic and environmental variation showed a significant increase under stressful conditions in all traits. For estimates of genetic variation, no statistically significant differences were found between the two environments. Narrow heritabilities tended to be higher at 13 degrees C for sternopleural bristle number and viability and at 25 degrees C for wing length and developmental time, whereas thorax length did not show any trend. However, the pattern of genetic variances and evolvability indices (coefficient of genetic variation and evolvability), considered in the context of literature evidence, indicated the possibility of an increase in additive genetic variation for the morphological traits and viability and in nonadditive genetic variation for developmental time. The data suggest that the effect of stressful temperature may be trait-specific and this warns against generalizations about the behaviour of genetic variation under extreme conditions.  相似文献   

17.
C. Lai  TFC. Mackay 《Genetics》1990,124(3):627-636
To determine the ability of the P-M hybrid dysgenesis system of Drosophila melanogaster to generate mutations affecting quantitative traits, X chromosome lines were constructed in which replicates of isogenic M and P strain X chromosomes were exposed to a dysgenic cross, a nondysgenic cross, or a control cross, and recovered in common autosomal backgrounds. Mutational heritabilities of abdominal and sternopleural bristle score were in general exceptionally high-of the same magnitude as heritabilities of these traits in natural populations. P strain chromosomes were eight times more mutable than M strain chromosomes, and dysgenic crosses three times more effective than nondysgenic crosses in inducing polygenic variation. However, mutational heritabilities of the bristle traits were appreciable for P strain chromosomes passed through one nondysgenic cross, and for M strain chromosomes backcrossed for seven generations to inbred P strain females, a result consistent with previous observations on mutations affecting quantitative traits arising from nondysgenic crosses. The new variation resulting from one generation of mutagenesis was caused by a few lines with large effects on bristle score, and all mutations reduced bristle number.  相似文献   

18.
J. D. Fry  K. A. deRonde    TFC. Mackay 《Genetics》1995,139(3):1293-1307
We have conducted genetic analyses of 12 long-term selection lines of Drosophila melanogaster derived from a highly inbred base population, containing new mutations affecting abdominal and sternopleural bristle number. Biometric analysis of the number of effective factors differentiating the selected lines from the base inbred indicated that with the exception of the three lines selected for increased number of abdominal bristles, three or more mutations contributed to the responses of the selection lines. Analysis of the chromosomal distribution of effects revealed that mutations affecting abdominal bristle number occurred on all three major chromosomes. In addition, Y-linked mutations with effects ranging from one to three bristles occurred in all three lines selected for decreased number of abdominal bristles, as well as in one line selected for increased abdominal bristle number. Mutations affecting sternopleural bristle number were mainly on the X and third chromosomes. One abdominal and one sternopleural selection line showed evidence of a segregating lethal with large effects on bristle number. As an indirect test for allelism of mutations occurring in different selection lines, the three lines selected in the same direction for the same trait were crossed in all possible combinations, and selection continued from the F(2) hybrids. Responses of the hybrid lines usually did not exceed those of the most extreme parental lines, indicating that the responses of the parental lines may have been partly due to mutations at the same loci, although other interpretations are possible.  相似文献   

19.
TFC. Mackay  J. D. Fry 《Genetics》1996,144(2):671-688
We have investigated genetic interactions between spontaneous mutations affecting abdominal and sternopleural bristle number that have accumulated in 12 long-term selection lines derived from an inbred strain, and mutations at 14 candidate bristle number quantitative trait loci. The quantitative test for complementation was to cross the selection lines to an inbred wild-type strain (the control cross) and to a derivative of the control strain into which the mutant allele at the candidate locus to be tested was substituted (the tester strain). Genetic interactions between spontaneous mutations affecting bristle number and the candidate locus mutations were common, and in several cases the interaction effects were different in males and females. Analyses of variance of the (tester - control) differences among and within groups of replicate lines selected in the same direction for the same trait showed significant group effects for several candidate loci. Genetically, the interactions could be caused by allelism of, and/or epistasis between, spontaneous mutations in the selection lines and the candidate locus mutations. It is possible that much of the response to selection was from new mutations at candidate bristle number quantitative trait loci, and that for some of these loci, mutation rates were high.  相似文献   

20.
Previously, we mapped quantitative trait loci (QTL) affecting response to short-term selection for abdominal bristle number to seven suggestive regions that contain loci involved in bristle development and/or that have adult bristle number mutant phenotypes, and are thus candidates for bristle number QTL in natural populations. To test the hypothesis that the factors contributing to selection response genetically interact with these candidate loci, high and low chromosomes from selection lines were crossed to chromosomes containing wild-type or mutant alleles at the candidate loci, and the numbers of bristles were recorded in trans heterozygotes. Quantitative failure to complement, detected as a significant selection line*cross effect by analysis of variance, can be interpreted as evidence for allelism or epistasis between the factors on selected chromosomes and the candidate loci. Mutations at some candidate loci (bb, emc, h, Dl, Hairless) showed strong interactions with selected chromosomes, whereas others interacted weakly (ASC, abd, Scr) or not at all (N, mab, E(spl)). These results support the hypothesis that some candidate loci, initially identified through mutations of large effect on bristle number, either harbor or are close members in the same genetic pathway as variants that contribute to standing variation in bristle number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号