首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellulose microporous membranes have been modified in order to obtain a stationary phase specific for the recovery of a class of fusion proteins containing the maltose binding protein domain, through affinity chromatography separations. The feasibility of a single step separation process for the recovery of large amounts of the desired product has been considered. To that purpose, a preparative scale module has been realized, suitable for flat sheet membranes. The affinity matrix used proved to be highly selective toward the fusion proteins examined. The binding capacity determined is comparable with the nominal binding capacity of commercially available supports. The influence of the relevant working parameters, such as flow rate, on the performances of the recovery process has been studied.  相似文献   

2.
Although chaperone‐assisted protein crystallization remains a comparatively rare undertaking, the number of crystal structures of polypeptides fused to maltose‐binding protein (MBP) that have been deposited in the Protein Data Bank (PDB) has grown dramatically during the past decade. Altogether, 102 fusion protein structures were detected by Basic Local Alignment Search Tool (BLAST) analysis. Collectively, these structures comprise a range of sizes, space groups, and resolutions that are typical of the PDB as a whole. While most of these MBP fusion proteins were equipped with short inter‐domain linkers to increase their rigidity, fusion proteins with long linkers have also been crystallized. In some cases, surface entropy reduction mutations in MBP appear to have facilitated the formation of crystals. A comparison of the structures of fused and unfused proteins, where both are available, reveals that MBP‐mediated structural distortions are very rare.  相似文献   

3.
Element-coded affinity tags for peptides and proteins   总被引:2,自引:0,他引:2  
Isotope-coded affinity tags (ICAT) represent an important new tool for the analysis of complex mixtures of proteins in living systems [Aebersold, R., and Mann, M. (2003) Nature, 422, 198-207]. We envisage an alternative protein-labeling technique based on tagging with different element-coded metal chelates, which affords affinity chromatography, quantification, and identification of a tagged peptide from a complex mixture. As proof of concept, a synthetic peptide was modified at a cysteine side chain with either a carboxymethyl group or acetamidobenzyl-1,4,7,10-tetraazacyclododecane-N,N',N' ',N' "-tetraacetic acid (AcBD) chelates of terbium or yttrium. A mixture of the three modified peptides in a mole ratio of 100:1.0:0.83 carboxymethyl:AcBD-Tb:AcBD-Y was trypsinized, purified on a new affinity column that binds rare-earth DOTA chelates, and analyzed by LC-MS/MS. Chelate-tagged tryptic peptides eluted cleanly from the affinity column; the tagged peptides chromatographically coeluted during LC-MS analysis, were present in the expected ratio as indicated by MS ion intensity, and were sequence-identified by tandem mass spectrometry. DOTA-rare earth chelates have exceptional properties for use as affinity tags. They are highly polar and water-soluble. Many of the rare earth elements are naturally monoisotopic, providing a variety of simple choices for preparing mass tags. Further, the rare earths are heavy elements, whose mass defects give the masses of tagged peptides exact values not normally shared by molecules that contain only light elements.  相似文献   

4.
Virtually all recombinant proteins are now prepared using fusion domains also known as “tags”. The use of tags helps to solve some serious problems: to simplify procedures of protein isolation, to increase expression and solubility of the desired protein, to simplify protein refolding and increase its efficiency, and to prevent proteolysis. In this review, advantages and disadvantages of such fusion tags are analyzed and data on both well-known and new tags are generalized. The authors own data are also presented.  相似文献   

5.
Crystal structures of fusion proteins with large-affinity tags   总被引:13,自引:0,他引:13       下载免费PDF全文
The fusion of a protein of interest to a large-affinity tag, such as the maltose-binding protein (MBP), thioredoxin (TRX), or glutathione-S-transferase (GST), can be advantageous in terms of increased expression, enhanced solubility, protection from proteolysis, improved folding, and protein purification via affinity chromatography. Unfortunately, crystal growth is hindered by the conformational heterogeneity induced by the fusion tag, requiring that the tag is removed by a potentially problematic cleavage step. The first three crystal structures of fusion proteins with large-affinity tags have been reported recently. All three structures used a novel strategy to rigidly fuse the protein of interest to MBP via a short three- to five-amino acid spacer. This strategy has the potential to aid structure determination of proteins that present particular experimental challenges and are not conducive to more conventional crystallization strategies (e.g., membrane proteins). Structural genomics initiatives may also benefit from this approach as a way to crystallize problematic proteins of significant interest.  相似文献   

6.
The maltose binding protein (MBP) fusion protein system is a versatile tool to express and isolate recombinant proteins inE. coli. In this system, MBP fusion proteins are efficiently isolated from whole cell lysate using amylose conjugated agarose beads and then eluted by competition with free maltose. Since MBP is a rather large molecule (∼42 kDa), for further experiments, the MBP part is usually proteolytically cleaved from the fusion protein and subsequently removed by ion-exchange chromatography or rebinding to amylose columns after washing out excess and MBP-bound maltose. In the present study, we have developed an improved method for the removal of cleaved MBP, which is advantageous over conventional methods. In this method, factor Xa cleaved MBP fusion proteins were incubated with Sepharose beads conjugated with MBP specific monoclonal antibodies and then precipitated by centrifugation, resulting in highly purified proteins in the supernatant.  相似文献   

7.
Making the most of affinity tags   总被引:2,自引:0,他引:2  
Proteins do not naturally lend themselves to high-throughput analysis because of their diverse physiochemical properties. Consequently, affinity tags have become indispensable tools for structural and functional proteomics initiatives. Although originally developed to facilitate the detection and purification of recombinant proteins, in recent years it has become clear that affinity tags can have a positive impact on the yield, solubility and even the folding of their fusion partners. However, no single affinity tag is optimal with respect to all of these parameters; each has its strengths and weaknesses. Therefore, combinatorial tagging might be the only way to harness the full potential of affinity tags in a high-throughput setting.  相似文献   

8.
9.
The effectiveness of proteome-wide protein identification and quantitative expression profiling is dependent on the ability of the analytical methodologies employed to routinely obtain information on low-abundance proteins, as these are frequently of great biological importance. Two-dimensional gel electrophoresis, the traditional method for proteome analysis, has proven to be biased toward highly expressed proteins. Recently, two-dimensional chromatography of the complex peptide mixtures generated by the digestion of unseparated protein samples has been introduced for the identification of their components, and isotope-coded affinity tags (ICAT) have been introduced to allow for accurate quantification of the components of protein mixtures by mass spectrometry. Here, we demonstrate that the combination of isotope coded affinity protein tags and multidimensional chromatography/mass spectrometry of tryptic peptide mixtures is capable of detecting and quantifying proteins of low abundance in complex samples.  相似文献   

10.
11.
Cytotactin/tenascin is a multidomain extracellular matrix protein that inhibits both cell spreading and intracellular alkalinization. The protein has multiple different domains which are homologous to regions in epidermal growth factor, fibronectin, and fibrinogen. In previous studies, we produced nonoverlapping fusion proteins corresponding to these domains and examined their effects on cell attachment and spreading. Based on their ability either to promote or to inhibit cell attachment, two of these fusion proteins were shown to be adhesive and two were shown to be counteradhesive. To determine how the adhesive and counteradhesive activities of different cytotactin/tenascin domains alter intracellular pH (designated pHi), we have measured pHi in NIH3T3 and U251MG cells in the presence of the cytotactin/tenascin fusion proteins and intact cytototactin/tenascin, as well as fibronectin. Cells incubated in the presence of intact cytotactin/tenascin or of the counteradhesive fusion proteins had a pHi lower than control cells. In contrast, the presence of the adhesive fusion proteins or of fibronectin caused cells to have higher pHi values than control cells. When two fragments were simultaneously presented, one of which alone increased pHi and the other of which alone decreased pHi, the predominant effect was that of lowered pHi. Incubation with an RGD-containing peptide derived from the cytotactin/tenascin sequence inhibited alkalinization promoted by the adhesive fragment containing the second through sixth fibronectin type III repeats that was known to bind to integrins. Incubation of the cells with heparinase I or III inhibited the intracellular alkalinization of cells plated in the presence of the other adhesive fusion protein containing the fibrinogen domain, suggesting that heparan sulfate proteoglycans were involved in these pHi changes. The activity of protein kinase C appeared to be important for the changes in pHi mediated by all of the proteins. The protein kinase C inhibitor Calphostin C blocked the rise in pHi elicited by the adhesive fusion proteins and by fibronectin. Moreover, activation of protein kinase C by the addition of phorbol esters increased the pHi in cells plated on cytotactin/tenascin or counteradhesive fusion proteins and reversed their effects. The results of this study support the hypothesis that cytotactin/tenascin can bind to multiple cell surface receptors and thereby elicit different physiological responses. Decreases in pHi are correlated with the phenomenon of counteradhesion whereas the ability to increase pHi is associated with cell attachment via at least two different types of cell surface receptors. The data raise the possibility that binding of cytotactin/tenascin may influence primary cellular processes such as migration and proliferation through the differential regulation of pHi. © 1994 Wiley-Liss, Inc.  相似文献   

12.
Careful analysis of sub-visible amorphous aggregates, where proteins associate non-covalently in either native or denatured states without forming a specific quaternary structure, may shed insight into the mechanisms of protein aggregation and solubility. Here we report a biophysical and biochemical analysis of our model protein, a bovine pancreatic trypsin inhibitor variant (BPTI-19A), whose oligomerization were controlled by attaching solubility controlling peptide tags (SCP tags) to its C terminus, which are short peptides composed of a single type of amino acid that modulate protein solubility. The dynamic light scattering and static light scattering at 25 °C indicated that 11 out of 15 SCP tags merely affected the hydrodynamic radius and light scattering intensity of our reference variants BPTI-19A and BPTI-C2G. On the other hand, hydrophobic SCP tags composed of 5 Ile (C5I) or 5 Leu (C5L) were associated into sub-visible aggregates. Circular dichroism indicated that all tagged BPTI variants had the same secondary structure contents as the reference BPTI-19A at 25 °C, suggesting that BPTI-C5I and C5L kept their native structure upon association. Furthermore, the thermal denaturation of all of the BPTI variants was fully reversible and typical of natively folded small globular proteins, as monitored by CD at 222 nm. However, the thermal stability of BPTI-19A tagged with hydrophobic residues decreased with increasing protein concentration and tag's hydrophobicity, and BPTI-C5I and C5L were partially denatured at 37 °C. Biochemical stability assessed by limited proteolysis with pepsin correlated with the extent of the variants' aggregation, and the large sub-visible aggregates formed by BPTI-C5I and C5L significantly increased their resistance to pepsin proteolysis. Altogether, these observations indicated that hydrophobic SCP tags led to the reversible association of native-like proteins into sub-visible soluble amorphous aggregates resistant to pepsin digestion.  相似文献   

13.
An approach to the systematic identification and quantification of the proteins contained in the microsomal fraction of cells is described. It consists of three steps: (1) preparation of microsomal fractions from cells or tissues representing different states; (2) covalent tagging of the proteins with isotope-coded affinity tag (ICAT) reagents followed by proteolysis of the combined labeled protein samples; and (3) isolation, identification, and quantification of the tagged peptides by multidimensional chromatography, automated tandem mass spectrometry, and computational analysis of the obtained data. The method was used to identify and determine the ratios of abundance of each of 491 proteins contained in the microsomal fractions of na?ve and in vitro- differentiated human myeloid leukemia (HL-60) cells. The method and the new software tools to support it are well suited to the large-scale, quantitative analysis of membrane proteins and other classes of proteins that have been refractory to standard proteomics technology.  相似文献   

14.
It is well established that certain highly soluble proteins have the ability to enhance the solubility of their fusion partners. However, very little is known about how different solubility enhancers compare in terms of their ability to promote the proper folding of their passenger proteins. We compared the ability of two well-known solubility enhancers, Escherichia coli maltose-binding protein (MBP) and N utilization substance A (NusA), to improve the solubility and promote the proper folding of a variety of passenger proteins that are difficult to solubilize. We used an intracellular processing system to monitor the solubility of these passenger proteins after they were cleaved from MBP and NusA by tobacco etch virus protease. In addition, the biological activity of some fusion proteins was compared to serve as a more quantitative indicator of native structure. The results indicate that MBP and NusA have comparable solubility-enhancing properties. Little or no difference was observed either in the solubility of passenger proteins after intracellular processing of the MBP and NusA fusion proteins or in the biological activity of solubilized passenger proteins, suggesting that the underlying mechanism of solubility enhancement is likely to be similar for both the proteins, and that they play a passive role rather than an active one in the folding of their fusion partners.  相似文献   

15.
We have studied the effect of solubilising N-terminal fusion proteins on the yield of target protein after removal of the fusion partner and subsequent purification using immobilised metal ion affinity chromatography. We compared the yield of 45 human proteins produced from four different expression vectors: three having an N-terminal solubilising fusion protein (the GB1-domain, thioredoxin, or glutathione S-transferase) followed by a protease cleavage site and a His tag, and one vector having only an N-terminal His tag. We have previously observed a positive effect on solubility for proteins produced as fusion proteins compared to proteins produced with only a His tag in Escherichia coli. We find this effect to be less pronounced when we compare the yields of purified target protein after removal of the solubilising fusion although large target-dependent variations are seen. On average, the GB1+His fusion gives significantly higher final yields of protein than the thioredoxin+His fusion or the His tag, whereas GST+His gives lower yields. We also note a strong correlation between solubility and target protein size, and a correlation between solubility and the presence of peptide fragments that are predicted to be natively disordered.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

16.
Shimada K  Nagano M  Kawai M  Koga H 《Proteomics》2005,5(15):3859-3863
We have previously described our strategy for high-throughput (HT) production of recombinant antigens for anti-mKIAA antibody generation, which involves using shotgun fragments generated during entire sequencing of mKIAA cDNAs. We applied this strategy to 1628 mouse KIAA (mKIAA) cDNA fragments, and 84.2% of the GST-mKIAA fusion proteins were successfully purified. The solubility of the proteins was predicted by a small-scale bacterial culture, and a large-scale culture was then performed according to the expected results. Among them, 43.8% of the proteins were purified as a soluble form and 56.2% as an insoluble form. The average yield of the soluble proteins was 0.15 nmol/mL of bacterial culture, and that of the insoluble proteins was 0.55 nmol/mL Statistical analysis of the data revealed a significant correlation between amino acid features of the recombinant proteins and their solubility. To achieve the most effective and feasible protein expression, we constructed a decision tree in which the analyzed data were reflected. The information described here may provide practical guidelines for HT production of recombinant proteins.  相似文献   

17.
18.
For proteins of higher eukaryotes, such as plants, which have large genomes, recombinant protein expression and purification are often difficult. Expression levels tend to be low and the expressed proteins tend to misfold and aggregate. We tested seven different expression vectors in Escherichia coli for rapid subcloning of rice genes and for protein expression and solubility levels. Each expressed gene product has an N-terminal fusion protein and/or tag, and an engineered protease site upstream of the mature rice protein. Several different fusion proteins/tags and protease sites were tested. We found that the fusion proteins and the protease sites have significant and varying effects on expression and solubility levels. The expression vector with the most favorable characteristics is pDEST-trx. The vector, which is a modified version of the commercially available expression vector, pET-32a, contains an N-terminal thioredoxin fusion protein and a hexahistidine tag, and is adapted to the Gateway expression system. However, addition of an engineered protease site could drastically change the expression and solubility properties. We selected 135 genes corresponding to potentially interesting rice proteins, transferred the genes from cDNAs to expression vectors, and engineered in suitable protease sites N-terminal to the mature proteins. Of 135 genes, 131 (97.0%) could be expressed and 72 (53.3%) were soluble when the fusion proteins/tags were present. Thirty-eight mature-length rice proteins and domains (28.1%) are suitable for NMR solution structure studies and/or X-ray crystallography. Our expression systems are useful for the production of soluble plant proteins in E. coli to be used for structural genomics studies.  相似文献   

19.
The complete enzymatic removal of affinity tags from tagged recombinant proteins is often required but can be challenging when slow points for cleavage exist. This study documents a general approach to remove N‐terminal tags from recombinant proteins specifically designed to be efficiently captured by IMAC resins. In particular, site‐directed mutagenesis procedures have been used to modify the amino acid sequence of metal binding tags useful in IMAC purifications of recombinant proteins with the objective to increase cleavage efficiency with the exopeptidase, dipeptidyl aminopeptidase 1. These tags were specifically developed for application with borderline metal ions, such as Ni2+ or Cu2+ ions, chelated to the immobilized ligands, 1,4,7‐triazacyclononane (tacn) and its analogs. Due to the ability to control cleavage site structure and accessibility via site directed mutagenesis methods, these procedures offer considerable scope to obtain recombinant proteins with authentic native N‐termini, thus avoiding any impact on structural stability, humoral and cellular immune responses, or other biological functions. Collectively, these IMAC‐based methods provide a practical alternative to other procedures for the purification of recombinant proteins with tag removal. Overall, this approach is essentially operating as an integrated down‐stream purification capability.  相似文献   

20.
Affinity tags are highly efficient tools for protein purification. They allow the purification of virtually any protein without any prior knowledge of its biochemical properties. The use of affinity tags has therefore become widespread in several areas of research e.g., high throughput expression studies aimed at finding a biological function to large numbers of yet uncharacterized proteins. In some cases, the presence of the affinity tag in the recombinant protein is unwanted or may represent a disadvantage for the projected application of the protein, like for clinical use. Therefore, an increasing number of approaches are available at present that are designed for the removal of the affinity tag from the recombinant protein. Most of these methods employ recombinant endoproteases that recognize a specific sequence. These process enzymes can subsequently be removed from the process by affinity purification, since they also include a tag. Here, a survey of the most common affinity tags and the current methods for tag removal is presented, with special emphasis on the removal of N-terminal histidine tags using TAGZyme, a system based on exopeptidase cleavage. In the quest to reduce the significant costs associated with protein purification at large scale, relevant aspects involved in the development of downstream processes for pharmaceutical protein production that incorporate a tag removal step are also discussed. A comparison of the yield of standard vs. affinity purification together with an example of tag removal using TAGZyme is also included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号