首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To assess the effects of endurance training on plasma glucose kinetics during moderate-intensity exercise in men, seven men were studied before and after 12 wk of strenuous exercise training (3 days/wk running, 3 days/wk cycling). After priming of the glucose and bicarbonate pools, [U-13C] glucose was infused continuously during 2 h of cycle ergometer exercise at 60% of pretraining peak O2 uptake (VO2) to determine glucose turnover and oxidation. Training increased cycle ergometer peak VO2 by 23% and decreased the respiratory exchange ratio during the final 30 min of exercise from 0.89 +/- 0.01 to 0.85 +/- 0.01 (SE) (P less than 0.001). Plasma glucose turnover during exercise decreased from 44.6 +/- 3.5 mumol.kg fat-free mass (FFM)-1.min-1 before training to 31.5 +/- 4.3 after training (P less than 0.001), whereas plasma glucose clearance (i.e., rate of disappearance/plasma glucose concentration) fell from 9.5 +/- 0.6 to 6.4 +/- 0.8 ml.kg FFM-1.min-1 (P less than 0.001). Oxidation of plasma-derived glucose, which accounted for approximately 90% of plasma glucose disappearance in both the untrained and trained states, decreased from 41.1 +/- 3.4 mumol.kg FFM-1.min-1 before training to 27.7 +/- 4.8 after training (P less than 0.001). This decrease could account for roughly one-half of the total reduction in the amount of carbohydrate utilized during the final 30 min of exercise in the trained compared with the untrained state.  相似文献   

2.
Muscle triglyceride utilization during exercise: effect of training   总被引:10,自引:0,他引:10  
The respiratory exchange ratio (RER) is lower during exercise of the same intensity in the trained compared with the untrained state, even though plasma free fatty acids (FFA) and glycerol levels are lower, suggesting reduced availability of plasma FFA. In this context, we evaluated the possibility that lipolysis of muscle triglycerides might be higher in the trained state. Nine adult male subjects performed a prolonged bout of exercise of the same absolute intensity before and after adapting to a strenuous 12-wk program of endurance exercise. The exercise test required 64% of maximum O2 uptake before training. Plasma FFA and glycerol concentrations and RER during the exercise test were lower in the trained than in the untrained state. The proportion of the caloric expenditure derived from fat, calculated from the RER, during the exercise test increased from 35% before training to 57% after training. Muscle glycogen utilization was 41% lower, whereas the decrease in quadriceps muscle triglyceride concentration was roughly twice as great (12.7 +/- 5.5 vs. 26.1 +/- 9.3 mmol/kg dry wt, P less than 0.001) in the trained state. These results suggest that the greater utilization of FFA in the trained state is fueled by increased lipolysis of muscle triglyceride.  相似文献   

3.
This study compared the postprandial triacylglycerol (TAG) response to a high-fat meal in trained and untrained normolipidemic young adults after 2 days' abstinence from exercise. Fifty-three subjects (11 endurance-trained men, 9 endurance-trained women, 10 sprint/strength-trained men, 11 untrained men, 11 untrained women) consumed a meal (1.2 g fat, 1.1 g carbohydrate, 66 kJ per kg body mass) after a 12-h fast. Venous blood samples were obtained in the fasted state and at intervals until 6 h. Postprandial responses were the areas under the plasma or serum concentration-vs.-time curves. Neither fasting TAG concentrations nor the postprandial TAG response differed between trained and untrained subjects. The insulinemic response was 29% lower in endurance-trained men than in untrained men [mean difference -37.4 (95% confidence interval -62.9 to -22.9) microIU/ml x h, P = 0.01]. Responses of plasma glucose, serum insulin, and plasma nonesterified fatty acids were all lower for endurance-trained men than for untrained men. These findings suggest that, in young adults, no effect of training on postprandial lipemia can be detected after 60 h without exercise. The effect on postprandial insulinemia may persist for longer.  相似文献   

4.
The present study was undertaken to measure the effects of exercise training on pancreatic insulin secretion in response to glucose and nonglucose stimuli. Wistar female rats with an initial body weight of approximately 180 g were divided into trained and sedentary groups. After a period of 10 weeks of training, glucose-, tolbutamide-, and arginine-tolerance tests were performed in vivo in both trained and untrained animals. The tests were done in nonanesthetized animals 40 h after the last exercise bout. It was found that exercise training leads to a diminution of plasma insulin levels after either glucose, tolbutamide, or arginine administration. These results present direct evidence that exercise training reduces plasma insulin response not only to glucose but also to nonglucidic secretagogues.  相似文献   

5.
We used endurance training and acute anemia to assess the interactions among maximal oxygen consumption (VO2max), muscle oxidative capacity, and exercise endurance in rats. Animals were evaluated under four conditions: untrained and endurance-trained with each group subdivided into anemic (animals with reduced hemoglobin concentrations) and control (animals with unchanged hemoglobin concentrations). Anemia was induced by isovolemic plasma exchange transfusion. Hemoglobin concentration and hematocrit were decreased by 38 and 41%, respectively. Whole body VO2max was decreased by 18% by anemia regardless of training condition. Anemia significantly reduced endurance by 78% in untrained rats but only 39% in trained animals. Endurance training resulted in a 10% increase in VO2max, a 75% increase in the distance run to exhaustion, and 35, 45, and 58% increases in skeletal muscle pyruvate-malate, alpha-ketoglutarate, and palmitylcarnitine oxidase activities, respectively. We conclude that endurance is related to the interactive effects of whole body VO2max and muscle oxidative capacities for the following reasons: 1) anemic untrained and trained animals had similar VO2max but trained rats had higher muscle oxidative capacities and greater endurance; 2) regardless of training status, the effect of acute anemia was to decrease VO2max and endurance; and 3) trained anemic rats had lower VO2max but had greater muscle oxidative capacity and greater endurance than untrained controls.  相似文献   

6.
We investigated whether increased concentrations of circulating cytokines may be responsible for exercise-induced priming of blood neutrophils (J. A. Smith et al. Int. J. Sports Med. 11: 179-187, 1990). The plasma concentrations of tumor necrosis factor-alpha, interleukin- (IL) 1 beta, IL-6, granulocyte-macrophage colony-stimulating factor, and neopterin in trained and untrained human subjects were measured by immunoassay before and after 1 h of cycling at 60% of maximal oxygen uptake. C-reactive protein and creatine kinase (CK) were also measured before and 24 h after exercise as markers of the "acute-phase response" and muscle damage (C. Taylor et al. J. Appl. Physiol. 62: 464-469, 1987), respectively. The small changes in the plasma concentrations of cytokines or neopterin observed after exercise in both trained and untrained subjects were not significantly different to those found in a control group of nonexercised subjects. However, untrained subjects did exhibit an acute-phase response (P = 0.04) 24 h after exercise without additional release of CK into plasma. Baseline training differences were confined to a twofold elevation in CK activity (P = 0.04). The results show that circulating cytokines are unlikely to be responsible for the priming of neutrophil microbicidal activity observed after moderate endurance exercise (J. A. Smith et al. Int. J. Sports Med. 11: 179-187, 1990).  相似文献   

7.
Post-exercise ketosis is known to be suppressed by physical training and by a high carbohydrate diet. As a result it has often been presumed, but not proven, that the development of post-exercise ketosis is closely related to the glycogen content of the liver. We therefore studied the effect of 1 h of treadmill running on the blood 3-hydroxybutyrate and liver and muscle glycogen concentrations of carbohydrate-loaded trained (n = 72) and untrained rats (n = 72). Resting liver and muscle glycogen levels were 25%-30% higher in the trained than in the untrained animals. The resting 3-hydroxybutyrate concentrations of both groups of rats were very low: less than 0.08 mmol.l-1. Exercise did not significantly influence the blood 3-hydroxybutyrate concentrations of trained rats, but caused a marked post-exercise ketosis (1.40 +/- 0.40 mmol.l-1 h after exercise) in the untrained animals, the time-course of which was the approximate inverse of the changes in liver glycogen concentration. Interpreting the results in the light of similar data obtained after a normal and low carbohydrate diet it has been concluded that trained animals probably owe their relative resistance to post-exercise ketosis to their higher liver glycogen concentrations as well as to greater peripheral stores of mobilizable carbohydrate.  相似文献   

8.
The metabolic and hormonal response to short term fasting was studied after endurance exercise training. Rats were kept running on a motor driven rodent treadmill 5 days/wk for periods up to 1 h/day for 6 wk. Trained and untrained rats were then fasted for 24 h and 48 h. Liver and muscle glycogen, blood glucose, lactate, beta OH butyrate, glycerol, plasma insulin, testosterone and corticosterone were measured in fed and fasted trained and untrained rats. 48 h fasted trained rats show a lower level of blood lactate (1.08 +/- 0.05 vs 1.33 +/- 0.08 mmol/l-1 of blood glycerol (1 +/- 0.11 vs 0.84 +/- 0.08 mmol/l-1), and of muscle glycogen. There is a significant increase in plasma corticosterone in 48 h fasted trained rats from fed values. Plasma testosterone decreases during fasting, the values are higher in trained rats. Plasma insulin decreases during fasting without any difference between the two groups. These results show higher lipolysis, and decreased glycogenolysis in trained animals during 48 h fasting. The difference between the groups in steroid hormone response could reduce neoglucogenesis and muscle proteolysis in trained animals.  相似文献   

9.

[Purpose]

The purpose of this study was to investigate whether moderate exercise and quercetin intake with a low fat diet contribute to inflammatory cytokine production, mitochondrial biogenesis, and lipid metabolism in skeletal muscle after strenuous exercise by high-fat diet mice.

[Methods]

Male C57BL/6 mice were randomly divided into four groups: (1) High-fat for 12 weeks and low-fat diet control (C; n = 6); (2) high-fat diet for 12 weeks and low-fat diet with quercetin (Q; n = 4); (3) high-fat diet for 12 weeks and low-fat diet with exercise (E; n = 4); or (4) high-fat diet for 12 weeks and low-fat diet with exercise and quercetin (EQ; n = 5). Quercetin (10 mg/kg) was administered once per day, 5 day/week for 8 weeks. Exercise training was performed at moderate intensity for 8 weeks, 5 days/week for 30–60 min/day. Mice were subjected to a strenuous exercise bout of 60 min at a speed of 25 m/min (VO2 max 85%) conducted as an exercise-induced fatigue just before sacrifice.

[Results]

As results, body weights were significantly different among the groups. Exercise training significantly reduced inflammatory cytokines after strenuous exercise in skeletal muscle of high-fat diet mice. Exercise training increased Tfam mRNA in the soleus muscle after strenuous exercise. Exercise training significantly decreased lipogenesis markers in skeletal muscle of obese mice after strenuous exercise. Moderate exercise significantly increased lipolysis markers in the tibialis anterior muscle.

[Conclusion]

These findings suggest that exercise training reduced inflammatory cytokine levels and improved mitochondrial biogenesis and lipid metabolism. However quercetin supplementation did not affect these parameters. Thus, long-term moderate exercise training has positive effects on obesity.  相似文献   

10.
During and after strenuous prolonged exercise, sedentary individuals develop high blood levels of acetoacetate and beta-hydroxybutyrate whereas exercise-trained animals and human subjects do not. We have investigated the possibility that exercise training can increase the capacity of skeletal muscle to oxidize ketones. In this study we measured rates of D-beta[3-14-C]-hydroxybutyrate and [3-14-C]acetoacetate oxidation, and the levels of activity of the enzymes involved in the oxidation of ketones in homogenates of gastrocnemius muscles of exercise-trained and of untrained male rats. The trained animals had markedly lower blood ketone levels immediately and 60 min after a 90 min long bout of exercise than did the sedentary animals. The rates of D-beta-[13-14C]hydroxybutryate and [3-14-C]acetoacetate oxidation were twice as high in homogenates of muscles from the trained as compared to the sedentary rats. The increases in levels of activity in gastrocnemius muscle in response to the exercise program were: beta-hydroxybutyrate dehydrogenase threefold; 3-ketoacid CoA-transferase twofold; and acetoacetyl-CoA thiolase 55%. This exercise-induced increase in the capacity of skeletal muscle to oxidize ketones could play a role in preventing development of ketosis in the physically trained animal during and following prolonged strenuous exercise.  相似文献   

11.
To evaluate the effects of endurance training on gluconeogenesis and blood glucose homeostasis, trained as well as untrained short-term-fasted rats were injected with mercaptopicolinic acid (MPA), a gluconeogenic inhibitor, or the injection vehicle. Glucose kinetics were assessed by primed-continuous venous infusion of [U-14C]- and [6-3H]glucose at rest and during submaximal exercise at 13.4 m/min on level grade. Arterial blood was sampled for the determination of blood glucose and lactate concentrations and specific activities. In resting untrained sham-injected rats, blood glucose and lactate were 7.6 +/- 0.2 and 1.3 +/- 0.1 mM, respectively; glucose rate of appearance (Ra) was 71.1 +/- 12.1 mumol.kg-1.min-1. MPA treatment lowered blood glucose, raised lactate, and decreased glucose Ra. Trained animals had significantly higher glucose Ra at rest and during exercise. At rest, trained MPA-treated rats had lower blood glucose, higher blood lactate, and similar glucose Ra and disappearance rates (Rd) than trained sham-injected animals. Exercising sham-injected untrained animals had increased blood glucose and glucose Ra compared with rest. Exercising trained sham-injected rats had increased blood glucose and glucose Ra and Rd but no change in blood lactate compared with untrained sham-injected animals. In the trained animals during exercise, MPA treatment increased blood lactate and decreased blood glucose and glucose Ra and Rd. There was no measurable glucose recycling in trained or untrained MPA-treated animals either at rest or during submaximal exercise. There was no difference in running time to exhaustion between trained and untrained MPA-treated rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Several studies have recently demonstrated that exercise training improves glucose tolerance in mildly diabetic rats. To test whether some minimal levels of circulating insulin are required to observe the beneficial effects of exercise training, severe diabetes was induced by injecting female Wistar rats with streptozotocin. Half of diabetic and control rats were submitted to a strenuous program of swimming exercise. After 4 wks of training, intravenous glucose tolerance tests (IVGTT) were performed in precannulated, unrestrained and unanesthetized animals. In non-diabetic rats, exercise training significantly reduced both basal and glucose-stimulated levels of insulin (P less than 0.01) without altering glucose tolerance. On the other hand, the same training program applied to severely diabetic animals (basal plasma insulin levels less than 8 microU/ml) failed to reduce the marked hyperglycemia in the resting state (400 mg% range) as well as during the entire IVGTT (400-500 mg%). The results indicate that exercise training effectively increased the sensitivity of peripheral tissues to insulin in non-diabetic but not in diabetic animals. The data also suggest that a minimal amount of circulating insulin is required in order to observe the beneficial effects of exercise training.  相似文献   

13.
Glycogen utilization during exercise appears to be related to muscle respiratory capacity. Since the decline in hindlimb muscle respiratory capacity that occurs in rats during old age is eliminated when young and old rats undergo an identical exercise training protocol, liver and gastrocnemius glycogen concentrations were determined in identically trained young and old Fischer 344 rats at rest and immediately after a 30-min run requiring approximately 75% of maximal O2 consumption. These values were also compared with untrained age-matched control animals. The animals, which were 10 or 24 mo old after 6 mo of training, were fasted for 24 h before they were killed. Resting gastrocnemius glycogen did not differ among the groups. After 30 min of running, gastrocnemius glycogen was lower in the untrained than the trained groups and was not different between the trained groups. Resting liver glycogen was lower in the old trained group than the untrained groups but not statistically different from the young trained group. The postrun liver glycogen did not differ among the groups. Estimated gastrocnemius and liver glycogen utilization during exercise was decreased in both trained groups compared with untrained age-matched controls. These results indicate that the training-induced glycogen sparing during exercise of the same relative intensity was not diminished with age in identically trained young and old rats.  相似文献   

14.
The effects of sprint training on muscle metabolism and ion regulation during intense exercise remain controversial. We employed a rigorous methodological approach, contrasting these responses during exercise to exhaustion and during identical work before and after training. Seven untrained men undertook 7 wk of sprint training. Subjects cycled to exhaustion at 130% pretraining peak oxygen uptake before (PreExh) and after training (PostExh), as well as performing another posttraining test identical to PreExh (PostMatch). Biopsies were taken at rest and immediately postexercise. After training in PostMatch, muscle and plasma lactate (Lac(-)) and H(+) concentrations, anaerobic ATP production rate, glycogen and ATP degradation, IMP accumulation, and peak plasma K(+) and norepinephrine concentrations were reduced (P<0.05). In PostExh, time to exhaustion was 21% greater than PreExh (P<0.001); however, muscle Lac(-) accumulation was unchanged; muscle H(+) concentration, ATP degradation, IMP accumulation, and anaerobic ATP production rate were reduced; and plasma Lac(-), norepinephrine, and H(+) concentrations were higher (P<0.05). Sprint training resulted in reduced anaerobic ATP generation during intense exercise, suggesting that aerobic metabolism was enhanced, which may allow increased time to fatigue.  相似文献   

15.
Forty-seven bighorn sheep (Ovis canadensis nelsoni) were captured within a 3-day period in December, 1989 as part of a California Department of Fish and Game effort to repopulate historic ranges in California. They were captured on the Mojave Desert in the Kelso Mountains near Old Dad Peak, San Bernardino County, California. Venous blood gases measured at the site of capture demonstrated a severe metabolic acidosis (base deficit, 23 mEq/liter), with no evidence of respiratory acidosis. There were moderately elevated plasma epinephrine (1.25 ng/ml), norepinephrine (2.60 ng/ml), and dopamine (114 pg/ml) levels. These data appear to reflect animals that have been moderately stressed. These acid-base-catecholamine values differ from values in resting domestic sheep, and are similar to those reported in greyhounds after brief strenuous exercise.  相似文献   

16.
This study examined the question of whether increases in plasma volume (hypervolemia) induced through exercise affect muscle substrate utilization and muscle bioenergetics during prolonged heavy effort. Six untrained males (19-24 yr) were studied before and after 3 consecutive days of cycling (2 h/day at 65% of peak O2 consumption) performed in a cool environment (22-23 degrees C, 25-35% relative humidity). This protocol resulted in a 21.2% increase in plasma volume (P less than 0.05). During exercise no difference was found in the blood concentrations of glucose, lactate, and plasma free fatty acids at either 30, 60, 90, or 120 min of exercise before and after the hypervolemia. In contrast, blood alanine was higher (P less than 0.05) during both rest and exercise with hypervolemia. Measurement of muscle samples extracted by biopsy from the vastus lateralis muscle at rest and at 60 and 120 min of exercise indicated no effect of training on high-energy phosphate metabolism (ATP, ADP, creatine phosphate, creatine) or on selected glycolytic intermediate concentrations (glucose 1-phosphate, glucose 6-phosphate, fructose 6-phosphate, lactate). In contrast, training resulted in higher (P less than 0.05) muscle glucose and muscle glycogen concentrations. These changes were accompanied by blunting of the exercise-induced increase (P less than 0.05) in both blood epinephrine and norepinephrine concentrations. Plasma glucagon and serum insulin were not affected by the training. The results indicate that exercise-induced hypervolemia did not alter muscle energy homeostasis. The reduction in muscle glycogen utilization appears to be an early adaptive response to training mediated either by an increase in blood glucose utilization or a decrease in anaerobic glycolysis.  相似文献   

17.
Tsai YL  Hou CW  Liao YH  Chen CY  Lin FC  Lee WC  Chou SW  Kuo CH 《Life sciences》2006,78(25):2953-2959
The current study determined the interactive effects of ischemia and exercise training on glycogen storage and GLUT4 expression in skeletal muscle. For the first experiment, an acute 1-h tourniquet ischemia was applied to one hindlimb of both the 1-week exercise-trained and untrained rats. The contralateral hindlimb served as control. For the second experiment, 1-h ischemia was applied daily for 1 week to both trained (5 h post-exercise) and untrained rats. GLUT4 mRNA was not affected by acute ischemia, but exercise training lowered GLUT4 mRNA in the acute ischemic muscle. GLUT4 protein levels were elevated by exercise training, but not in the acute ischemic muscle. Exercise training elevated muscle glycogen above untrained levels, but this increase was reversed by chronic ischemia. GLUT4 mRNA and protein levels were dramatically reduced by chronic ischemia, regardless of whether the animals were exercise-trained or not. Chronic ischemia significantly reduced plantaris muscle mass, with a greater decrease found in the exercise-trained rats. In conclusion, the exercise training effect on muscle GLUT4 protein expression was prevented by acute ischemia. Furthermore, chronic ischemia-induced muscle atrophy was exacerbated by exercise training. This result implicates that exercise training could be detrimental to skeletal muscle with severely impaired microcirculation.  相似文献   

18.
Pituitary and gonadal function during physical exercise in the male rat   总被引:16,自引:0,他引:16  
The effects of training and acute exercise on serum testosterone, luteinizing hormone (LH) and corticosterone levels and on testicular endocrine function in male rats were studied. In the first part of the study, the rats were trained progressively on a treadmill, over 8 weeks. Training did not change the basal levels of serum testosterone, LH and corticosterone, or the testicular concentrations of testosterone and its precursors progesterone and androstenedione. The levels of testicular LH (30.3 +/- 2.6 ng/g wet wt, mean +/- SEM) and lactogen (150 +/- 14 pg/g) receptors were unchanged after training. However, the capacity of testicular interstitial cell suspensions to produce cAMP and testosterone increased by 20-30% during in vitro gonadotropin stimulation. In the second part, the trained and untrained control animals underwent acute exhaustive exercise. Serum testosterone levels decreased by 74 and 42% in trained and untrained rats, respectively (P less than 0.02), and corticosterone rose by 182% in trained and 146% in untrained rats (P less than 0.01), whereas the LH level was unchanged. Testicular levels of testosterone and its precursors decreased, with the exception of unchanged androstenedione, in trained rats; the cAMP concentration was unchanged. In both trained and untrained rats, acute exercise decreased the capacity of interstitial cell suspensions to produce cAMP, whereas there were no consistent effects on testosterone production. Acute exercise had no effect on LH or lactogen receptors in testis tissue. In conclusion, training had no effect on serum or testicular androgen concentrations, but increased Leydig cell capacity to produce testosterone and cAMP. Acute exercise decreased serum and testicular testosterone concentrations without affecting serum LH. A direct inhibitory effect of the increased serum corticosterone level on the hypothalamic-pituitary level and/or testis may be the explanation for this finding.  相似文献   

19.
Leptin, an ob gene product of adipocytes, plays a key role in the control of food intake and energy expenditure but little is known about leptin response to strenuous exercise in fasted and fed subjects or before and after blood donation. This study was designed to determine the immediate effects of strenuous exercise in healthy volunteers under fasting or fed conditions and before and one day after blood donation (450 ml) on plasma levels of leptin and gut hormones [gastrin, cholecystokinin (CCK), pancreatic polypeptide (PP) and insulin], as well as on "stress" hormones (cortisol, catecholamines and growth hormone. Two groups (A and B) of healthy non-smoking male volunteers were studied. All subjects performed incremental exercise tests until exhaustion (up to maximal oxygen uptake--VO2max), followed by 2 h of rest session. Group A perfomed the tests on a treadmill, while group B on a cycloergometer. In group A, one exercise was performed under fasting conditions and the second following ingestion of a standard liquid meal. In group B, one exercise test was performed as a control test and the second 24 h after blood donation (450 ml). Blood samples were withdrawn 5 min before the start of the test, at the VO2max, and 2 h after finishing the exercise. No significant change in plasma teptin were observed both immediately and 2 h after the exercise in fasted subjects, but after the meal the plasma leptin at VO2max and 2 h after the test was significantly higher, while after blood donation was significantly reduced. The postprandial rise in plasma leptin was accompanied by a marked increment in gut hormones; gastrin, CCK and PP and stress hormones such as norepinephrine, cortisol and GH. These hormonal changes could contribute to the postprandial rise in plasma leptin concentrations, while the fall of leptin after blood donation could be attributed to the inadequate response of stress hormones and autonomic nervous system to exhausting exercise. We conclude that strenuous physical exercise; 1) fails to affect plasma leptin level but when performed after meal but not after blood withdrawal it results in an increase and fall in plasma leptin, and 2) the release of gut hormones (gastrin, CCK and PP) and stress hormones (norepinephrine, cortisol, GH) increase immediately after exercise independently of feeding or blood donation and 3) following blood donation the strenuous exercise resulted in a marked reduction in the plasma leptin, cortisol and GH concentrations, possibly due to the impairment in the autonomic nervous control of these hormones.  相似文献   

20.
The purpose of this study was to determine the effect of endurance exercise training on the time course of the increase in VO2 toward steady state in response to submaximal constant load work. Seven men participated in a strenuous program of endurance exercise for 40 min/day, 6 days/wk for 10 wk. Their average VO2max increased from 3.29 liters before training to 4.53 liters at the end of the training program. VO2 was measured continuously on a breath-by-breath basis at work rates requiring 40%, 50%, 60%, or 70% of VO2max before training. After training the subjects were retested both at the same absolute and the same relative work rates. The increases in VO2 toward steady state occurred more rapidly in the trained than in the untrained state both at the same absolute and at the same relative work rates. The finding that O2 uptake rises to meet O2 demand more rapidly in the trained than in the untrained state provides evidence that the working muscles become less hypoxic at the onset of exercise of the same intensity after training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号