首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolic diversity of heterotrophic bacterioplankton was tracked from early winter through spring with Biolog Ecoplates under the seasonally ice covered arctic shelf in the Canadian Arctic (Franklin Bay, Beaufort Sea). Samples were taken every 6 days from December 2003 to May 2004 at the surface, the halocline where a temperature inversion occurs, and at 200 m, close to the bottom. Despite the low nutrient levels and low chlorophyll a , suggesting oligotrophy in the winter surface waters, the number of substrates used (NSU) was greater than in spring, when chlorophyll a concentrations increased. Denaturing gradient gel electrophorisis analysis also indicated that the winter and spring bacterial communities were phylogenetically distinct, with several new bands appearing in spring. In spring, the bacterial community would have access to the freshly produced organic carbon from the early phytoplankton bloom and the growth of rapidly growing specialist phenotypes would be favoured. In contrast, in winter bacterioplankton consumed more complex organic matter originated during the previous year's phytoplankton production. At the other depths we tested the NSU was similar to that for the winter surface, with no seasonal pattern. Instead, bacterioplankton metabolism seemed to be influenced by resuspension, advection, and sedimentation events that contributed organic matter that enhanced bacterial metabolism.  相似文献   

2.
Viruses play a key role in all marine ecosystems, and yet little is known of their distribution in Antarctic waters, especially in bathypelagic waters (>1000 m). In this study, the abundance and distribution of viruses and their potential hosts from the surface to the bottom of Prydz Bay, Antarctic, was investigated using flow cytometry. Viruses and autotrophs were abundant in nearshore and continental shelf waters, while heterotrophic bacteria and picoeukaryotes were abundant in offshore waters. Virus and bacteria abundances generally decreased with increasing depth but increased slightly just above the seafloor. Within the water column, maximum virus numbers coincided with the maximum values of chlorophyll a (when greater than 0.1 μg l?1), in the surface and subsurface (25 m). In the open ocean, however, virus abundance usually correlated with bacterial abundance at greater depths (50, 300 and 500 m) where the surface chlorophyll a concentration was lower than 0.1 μg l?1. Viral abundance was correlated with the host cell abundance, and this was different in different pelagic zones (bacteria and autotrophs (i.e., chlorophyll a concentration) in the epipelagic waters, picoeukaryotes and bacteria in mesopelagic waters and bacteria in bathypelagic waters). Principle component analysis and Pearson correlation analysis indicated that there was a close relationship between virus abundance and chlorophyll a, bacteria and nutrients (NO2 + NO3, phosphate and silicate), and picoeukaryote abundance was mainly correlated with water depth and salinity.  相似文献   

3.
Although winter conditions play a major role in determining the productivity of the western Antarctic Peninsula (WAP) waters for the following spring and summer, a few studies have dealt with the seasonal variability of microorganisms in the WAP in winter. Moreover, because of regional warming, sea-ice retreat is happening earlier in spring, at the onset of the production season. In this context, this study describes the dynamics of the marine microbial community in the Melchior Archipelago (WAP) from fall to spring 2006. Samples were collected monthly to biweekly at four depths from the surface to the aphotic layer. The abundance and carbon content of bacteria, phytoplankton and microzooplankton were analyzed using flow cytometry and inverted microscopy, and bacterial richness was examined by PCR–DGGE. As expected, due to the extreme environmental conditions, the microbial community abundance and biomass were low in fall and winter. Bacterial abundance ranged from 1.2 to 2.8 × 105 cells ml?1 showing a slight increase in spring. Phytoplankton biomass was low and dominated by small cells (<2 μm) in fall and winter (average chlorophyll a concentration, Chl-a, of, respectively, 0.3 and 0.13 μg l?1). Phytoplankton biomass increased in spring (Chl-a up to 1.13 μg l?1), and, despite potentially adequate growth conditions, this rise was small and phytoplankton was still dominated by small cells (2–20 μm). In addition, the early disappearing of sea-ice in spring 2006 let the surface water exposed to ultraviolet B radiations (UVBR, 280–320 nm), which seemed to have a negative impact on the microbial community in surface waters.  相似文献   

4.
We assessed the composition of the bacterioplankton in the Atlantic sector of the Southern Ocean in austral fall and winter and in New Zealand coastal waters in summer. The various water masses between the subtropics/Agulhas–Benguela boundary region and the Antarctic coastal current exhibited distinct bacterioplankton communities with the highest richness in the polar frontal region, as shown by denaturing gradient gel electrophoresis of 16S rRNA gene fragments. The SAR11 clade and the Roseobacter clade‐affiliated (RCA) cluster were quantified by real‐time quantitative PCR. SAR11 was detected in all samples analysed from subtropical waters to the coastal current and to depths of > 1000 m. In fall and winter, this clade constituted < 3% to 48% and 4–28% of total bacterial 16S rRNA genes respectively, with highest fractions in subtropical to polar frontal regions. The RCA cluster was only present in New Zealand coastal surface waters not exceeding 17°C, in the Agulhas–Benguela boundary region (visited only during the winter cruise), in subantarctic waters and in the Southern Ocean. In fall, this cluster constituted up to 36% of total bacterial 16S rRNA genes with highest fractions in the Antarctic coastal current and outnumbered the SAR11 clade at most stations in the polar frontal region and further south. In winter, the RCA cluster constituted lower proportions than the SAR11 clade and did not exceed 8% of total bacterial 16S rRNA genes. In fall, the RCA cluster exhibited significant positive correlations with latitude and ammonium concentrations and negative correlations with concentrations of nitrate, phosphate, and for near‐surface samples also with chlorophyll a, biomass production of heterotrophic prokaryotes and glucose turnover rates. The findings show that the various water masses between the subtropics and the Antarctic coastal current harbour distinct bacterioplankton communities. They further indicate that the RCA cluster, despite the narrow sequence similarity of > 98% of its 16S rRNA gene, is an abundant component of the heterotrophic bacterioplankton in the Southern Ocean, in particular in its coldest regions.  相似文献   

5.
Dissolved DNA and microbial biomass and activity parameters were measured over a 15-month period at three stations along a salinity gradient in Tampa Bay, Fla. Dissolved DNA showed seasonal variation, with minimal values in December and January and maximal values in summer months (July and August). This pattern of seasonal variation followed that of particulate DNA and water temperature and did not correlate with bacterioplankton (direct counts and [3H]thymidine incorporation) or phytoplankton (chlorophyll a and 14CO2 fixation) biomass and activity. Microautotrophic populations showed maxima in the spring and fall, whereas microheterotrophic activity was greatest in late summer (September). Both autotrophic and heterotrophic microbial activity was greatest at the high estuarine (low salinity) station and lowest at the mouth of the bay (high salinity station), irrespective of season. Dissolved DNA carbon and phosphorus constituted 0.11 ± 0.05% of the dissolved organic carbon and 6.6 ± 6.5% of the dissolved organic phosphorus, respectively. Strong diel periodicity was noted in dissolved DNA and in microbial activity in Bayboro Harbor during the dry season. A noon maximum in primary productivity was followed by an 8 p.m. maximum in heterotrophic activity and a midnight maximum in dissolved DNA. This diel periodicity was less pronounced in the wet season, when microbial parameters were strongly influenced by episodic inputs of freshwater. These results suggest that seasonal and diel production of dissolved DNA is driven by primary production, either through direct DNA release by phytoplankton, or more likely, through growth of bacterioplankton on phytoplankton exudates, followed by excretion and lysis.  相似文献   

6.
The dependence of the heterotrophic activity of bacterioplankton (V, μg C L–1 h–1) on the concentration of chlorophyll a (Chl, μg L–1) and the water temperature (T) was examined for lakes (37°29′–80°36′ N) and marine polar waters (69°16′–80°36′ N). It was shown that ~76% of the V variations was related to changes in Chl and T.  相似文献   

7.
We collected surface samples in Franklin Bay (Western Arctic) from ice-covered to ice-free conditions, to determine seasonal changes in the identity and in situ activity of the prokaryotic assemblages. Catalysed reported fluorescence in situ hybridization was used to quantify the abundance of different groups, and combined with microautoradiography to determine the fraction of active cells taking up three substrates: glucose, amino acids and ATP. In surface waters, Archaea accounted for 16% of the total cell count in winter, but decreased to almost undetectable levels in summer, when Bacteria made up 97% of the total cell count. Alphaproteobacteria were the most abundant group followed by Bacteroidetes (average of 34% and 14% of total cell counts respectively). Some bacterial groups appearing in low abundances (< 10% of total cell counts), such as Betaproteobacteria , Roseobacter and Gammaproteobacteria , showed a high percentage of active cells. By contrast, more abundant groups, such as SAR11 or Bacteroidetes , had a lower percentage of active cells in the uptake of the substrates tested. Archaea showed low heterotrophic activity throughout the year. In comparison with temperate oceans, the percentage of active Bacteria in the uptake of the substrates was relatively high, even during the winter season.  相似文献   

8.
Microbial community dynamics within the fast sea ice of Prydz Bay (68°S?78°E) were investigated over an annual cycle at two sites (1 and 3?km offshore) between April and November 2008. There are few long-term sea ice studies, and few that cover the phase of winter darkness when autotrophic processes are curtailed. Mean chlorophyll a concentrations in the ice column ranged between 0.76 and 44.8?μg?L?1 at the 1-km site (Site 1) and 3.11–144.6?μg?L?1 at the 3-km site (Site 2). Highest chlorophyll a usually occurred at the base of the ice. Bacterial concentrations ranged between 0.30 and 2.08?×?108?cells?L?1, heterotrophic nanoflagellates (HNAN) between 0.21?×?105 and 2.98?×?105?cells?L?1 and phototrophic nanoflagellates (PNAN) 0–1.06?×?105?cells?L?1. While HNAN occurred throughout the year, PNAN were largely absent in winter. Dinoflagellates were a conspicuous and occasionally an abundant element of the community (maximum 17,460?cells?L?1), while ciliates were sparse. The bacterial community showed considerable morphological diversity with a dominance of filamentous forms. Bacterial production continued throughout the year ranging between 0 and 22.92?μg?C?L?1?day?1 throughout the ice column. Lowest rates occurred between late June and early August. The sea ice sustained an active and diverse microbial community through its annual extent. The data suggest that during winter darkness the microbial community is dominated by heterotrophic processes, sustained by a pool of dissolved organic carbon.  相似文献   

9.
We investigate the carbon dynamics in Guanabara Bay, an eutrophic tropical coastal embayment surrounded by the megacity of Rio de Janeiro (southeast coast of Brazil). Nine sampling campaigns were conducted for dissolved, particulate and total organic carbon (DOC, POC and TOC), dissolved inorganic carbon (DIC), partial pressure of CO2 (pCO2), chlorophyll a (Chl a), pheo-pigments and ancillary parameters. Highest DOC, POC and Chl a concentrations were found in confined-shallow regions of the bay during the summer period with strong pCO2 undersaturation, and DOC reached 82 mg L?1, POC 152 mg L?1, and Chl a 800 μg L?1. Spatially and temporally, POC and DOC concentrations varied positively with total pigments, and negatively with DIC. Strong linear correlations between these parameters indicate that the production of TOC translates to an equivalent uptake in DIC, with 85% of the POC and about 50% of the DOC being of phytoplanktonic origin. Despite the shallow depths of the bay, surface waters were enriched in POC and DOC relative to bottom waters in periods of high thermohaline stratification. The seasonal accumulation of phytoplankton-derived TOC in the surface waters reached about 105 g C m?2 year?1, representing between 8 and 40% of the net primary production. The calculated turnover time of organic carbon was 117 and 34 days during winter and summer, respectively. Our results indicate that eutrophication of coastal bays in the tropics can generate large stocks of planktonic biomass and detrital organic carbon which are permanently being produced and partially degraded and buried in sediments.  相似文献   

10.
During the Circumpolar Flaw Lead System Study (CFL, 2007–2008), large aggregations of polar cod were detected in winter in the Amundsen Gulf (Western Canadian Arctic) using the EK60 echosounder of the CCGS Amundsen research icebreaker. Biomass estimated over 10 months reached a maximum of 0.732 kg m−2 in February. Aggregations were encountered only in the presence of an ice cover from December to April. The vertical extent of the aggregations was dictated by temperature and zooplankton prey distribution. In winter, polar cod generally occupied the relatively warm deep Atlantic Layer (>0°C), but a fraction of the densest aggregations occasionally followed zooplankton prey up into the cold Pacific Halocline (−1.6 to 0°C). The diel vertical migration of polar cod was precisely synchronized with the seasonally increasing photoperiod. Throughout winter, polar cod aggregations migrated to progressively deeper regions (from 220 to 550 m bottom depths) in response to increasing light intensity, presumably to avoid predation by visual predators such as the ringed seal. Comparing Amundsen Gulf and Franklin Bay indicates that the entrapment of polar cod in embayments during winter is an important mechanism to provide marine mammal predators with dense concentrations of their main prey within their diving range.  相似文献   

11.
Liu Z L  Chen J F  Zhang T  Chen Z Y  Zhang H S 《农业工程》2007,27(12):4953-4962
Investigations on chlorophyll a and primary productivity were carried out in the Chukchi Sea and its northern Chukchi Plateau during the 2nd Chinese National Arctic Research Expedition in the summer of 2003. The results showed that chlorophyll a concentrations were 0.009–30.390 μg/dm3 at the surveyed waters; the surface chlorophyll a concentrations were 0.050–4.644 μg/dm3 and the average value was (0.875±0.981) μg/dm3 in the surveyed area. In the Chukchi Sea Shelf, chlorophyll a concentrations at the depth from 10 m to bottom were higher than that in the surface water, and the concentrations were lower at the depth below 75 m in the Chukchi Plateau. Chlorophyll a concentrations descended in 3 sequential samplings on Transect R, with average values of (2.564±1.496) μg/dm3, (1.329±0.882) μg/dm3 and (0.965±0.623) μg/dm3, respectively. The potential primary productivity ((2.305± 1.493) mgC/(m3·h)) in the Chukchi Sea was higher than that ((0.527±0.374) mgC/(m3·h)) in the Chukchi Plateau. The results of the size-fractionated chlorophyll a and primary productivity showed that microplankton accounted for the majority of the total chlorophyll a (63.13%) and primary productivity (65.16%) at the survey stations. The contributions of the nanoplankton and picoplankton to the total chlorophyll a and primary productivity were roughly the same.  相似文献   

12.
There has been renewed interest in the combined use of high-rate algal ponds (HRAP) for wastewater treatment and biofuel production. Successful wastewater treatment requires year-round efficient nutrient removal while high microalgal biomass yields are required to make biofuel production cost-effective. This paper investigates the year-round performance of microalgae in a 5-ha demonstration HRAP system treating primary settled wastewater in Christchurch, New Zealand. Microalgal performance was measured in terms of biomass production, nutrient removal efficiency, light absorption and photosynthetic potential on seasonal timescales. Retention time-corrected microalgal biomass (chlorophyll a) varied seasonally, being lowest in autumn and winter (287 and 364 mg m?3day?1, respectively) and highest in summer (703 mg m?3day?1), while the conversion efficiency of light to biomass was greatest in winter (0.39 mg Chl- a per μmol) and lowest in early summer (0.08 mg Chl- a per μmol). The percentage of ammonium (NH4–N) removed was highest in spring (79 %) and summer (77 %) and lowest in autumn (47 %) and winter (53 %), while the efficiency of NH4–N removal per unit biomass was highest in autumn and summer and lowest in winter and spring. Chlorophyll-specific light absorption per unit biomass decreased as total chlorophyll increased, partially due to the package effect, particularly in summer. The proportional increase in the maximum electron transport rate from winter to summer was significantly lower than the proportional increase in the mean light intensity of the water column. We concluded that microalgal growth and nutrient assimilation was constrained in spring and summer and carbon limitation may be the likely cause.  相似文献   

13.
Flow regulation in lowland rivers has reduced the amount of allochthonous dissolved organic carbon (DOC) entering main channels through less frequent wetting of benches, flood runners and floodplains. The hypothesis tested was that lowland riverine bacterioplankton are DOC limited when flow events are absent and simulating an increase in assimilable DOC similar to that expected during an environmental flow will lead to heterotrophic dominance. Experiments took place in the Namoi River, a highly regulated lowland river in Australia. Specifically, in situ microcosms were used to examine the responses of bacterioplankton and phytoplankton to various additions of DOC as glucose or leaf leachate, with and without additions of inorganic nutrients. The results indicated that ambient DOC availability limited the bacterioplankton for the three seasons over which we conducted the experiments. When DOC was added alone, dissolved oxygen concentrations decreased primarily because of increased bacterial respiration and bacterioplankton growth generally increased relative to controls. Additions of DOC alone led to a pattern of decreased chlorophyll a concentration relative to controls, except for willow leachate. Additions of inorganic nutrients alone increased chlorophyll a concentrations above controls, indicating limitation of phytoplankton. These findings support our hypothesis. Based on the present results, environmental flows should increase the duration of allochthonously driven heterotrophic dominance, thus shifting regulated lowland rivers to more natural (pre-regulation) conditions for greater periods.  相似文献   

14.
Arctic Cod (Boreogadus saida) occur throughout the circumpolar north; however, their distributions at localized scales are not well understood. The seasonal habitat associations and diet preferences across life-history stages of this keystone species are also poorly known, thereby impeding effective regulatory efforts in support of conservation objectives. The distribution of Arctic Cod in the Canadian Beaufort Sea was assessed using bottom trawling in shelf and slope habitats between 20 and 1000 m depths. Highest catch biomasses occurred at 350 and 500 m depth slope stations, coinciding with >0 °C temperatures in the Pacific–Atlantic thermohalocline and Atlantic water mass. Calanus glacialis, Calanus hyperboreus, Themisto libellula, and Themisto abyssorum were identified as key prey species in the diet of Arctic Cod, comprising approximately 86 % of total biomass in guts. Hierarchical cluster analysis with a SIMPROF test identified five statistically significant (p < 0.05) diet groups among gut samples. Arctic Cod shifted from a primarily Calanus diet at shelf stations (<200 m depth) to a Themisto diet in slope habitats (>200 m depth) coinciding with an associated increase in fish standard length with depth. Smaller Arctic Cod fed primarily on Calanus copepods and larger Arctic Cod fed primarily on the larger Themisto species. The habitat and diet associations presented here will inform knowledge of structural and functional relationships in Arctic marine ecosystems, aid in mitigation and conservation efforts, and will enhance our ability to predict the effects of climate change on the local spatial and depth associations of this pivotal marine fish.  相似文献   

15.
The abundance and composition of bacterioplankton of the Northern South China Sea (NSCS) were investigated using flow cytometry and high-throughput sequencing. The results showed that the absolute abundance of bacterioplankton retained high values in surface waters at both continental shelf and oceanic sites and Proteobacteria, Cyanobacteria, and Bacteroidetes represented the three typical dominant phyla in NSCS. The average bacterioplankton abundances at 5 m, 75 m, and 200 m were 9.55, 5.04, and 1.32?×?105 cells mL?1, respectively, and there was a significantly positive correlation between bacterioplankton abundance and Chl a content (r?=?0.84, p?<?0.01). Drastic changes of the bacterioplankton community occurred in different water layers. Three operational taxonomic units (OTUs), whose distribution were significantly different between 5-m and 75-m water layers, all belonged to Flavobacteriales of the Bacteroidetes (p?<?0.05). In addition, bacterioplankton community richness and diversity at the continental shelf (CS) was generally higher than at oceanic stations (SB and KI). Five OTUs, which favored the habitat of continental shelf, belonged to Alphaproteobacteria including the orders of the SAR11 cluster, Rhodospirillales, Rhodobacterales and other unclassified orders (p?<?0.05). Two OTUs, which favored the habitat of oceanic stations, were assigned to the orders of Flavobacteriales and Alteromonadales. Furthermore, the abundances of two OTUs belonging to the Cyanobacteria phylum and Verrucomicrobiales order were significantly different between the sea basin (SB) and Kuroshio influenced area (KI) stations (p?<?0.05).  相似文献   

16.
17.
The seasonal variations of limnological (water temperature, light availability, turbidity, and chlorophyll a concentration) parameters were recorded continuously from January 2004 to February 2005 at two freshwater lakes: Oyako-ike and Hotoke-ike, Sôya Coast, East Antarctica. Water was in a liquid phase throughout the year, with temperatures ranging from 0 to 10°C. The maximum photosynthetically active radiation in Lake Oyako-ike was 23.16 mol m?2 day?1 (at 3.8 m) and Hotoke-ike was 53.01 mol m?2 day?1 (at 2.2 m) in summer, and chlorophyll a concentration ranged from ca. 0.5 to 2.5 μg L?1 (Oyako-ike) and from ca. 0.1 to 0.8 μg L?1 (Hotoke-ike) during the study period. Increase in chlorophyll a fluorescence occurred under dim-light conditions when the lakes were covered with ice in spring and autumn, but the signals were minimum in ice-free summer in both the lakes. During spring and summer, as a result of decreasing snow cover, the chlorophyll a concentration similarly decreased when PAR was relatively high, following periods of heavy winds. The autumnal and spring increase occurred under different PAR levels (ca. 20-fold and 90-fold stronger, respectively, in autumn in both the lakes). Differences in the autumn and spring increases suggest that the spring algal community is more shade-adapted than the autumn algal community. Antarctic phytoplankton appears especially adapted to low-light levels and inhibited by strong light regimes.  相似文献   

18.
Asterias amurensis is a starfish native to the northern Pacific that was introduced into southern Australia in the 1980s. It is widely viewed as one of Australia’s most serious invasive marine pests, but there are few methods available to control new or established populations. The role of Coscinasterias muricata in controlling the distribution of Asterias in Port Phillip Bay, and its potential to eliminate new infestations of Asterias were investigated. Laboratory feeding trials, where alternative mussel prey were available, showed Coscinasterias consumed Asterias at the rate of ~45/year. Field surveys in Port Phillip Bay showed that most Coscinasterias occurred at depths shallower than 15 m, while most Asterias occurred at depths greater than 15 m, and the ratio of Asterias/Coscinasterias only exceeded 45 at depths greater than 15 m. Consequently, if laboratory and field feeding rates are similar, Coscinasterias would be expected to exert significant control over Asterias populations at depths shallower than 15 m, and augmenting Coscinasterias populations at sites of new Asterias infestations may help eliminate newly-established populations.  相似文献   

19.
A new method is described that uses the fluorochrome primulin and epifluorescence microscopy for the enumeration of heterotrophic and phototrophic nanoplankton (2 to 20 μm). Phototrophic microorganisms are distinguished from heterotrophs by the red autofluorescence of chlorophyll a. Separate filter sets are used which allow visualization of the primulin-stained nanoplankton without masking chlorophyll a fluorescence, thus allowing easy recognition of phototrophic cells. Comparison with existing epifluorescence techniques for counting heterotrophic and phototrophic nanoplankton shows that primulin provides more accurate counts of these populations than the fluorescein isothiocyanate or proflavine techniques. Accuracy is comparable to that with the acridine orange technique, but this method requires only one filter preparation for the enumeration of both phototrophic and heterotrophic populations.  相似文献   

20.
Classification of waters using biological quality elements and determination of the degree of deviation from reference levels is a key issue in the Water Framework Directive of EU. Lakes in reference conditions with sufficient biological data are available for several boreal lake types with the exception of naturally eutrophic lakes. An empirical approach is one alternative for estimating the reference conditions of such lakes. We used the water transparency of the naturally eutrophic Lake Tuusulanjärvi recorded in August in the early 1910s to estimate reference values for phytoplankton biomass and chlorophyll a concentrations. Three phytoplankton samples during August 2000–2001 corresponded to the estimated reference values for total biomass (<5.6 mg l?1) and chlorophyll a (<28 μg l?1), as did the simultaneous Secchi depths. The phytoplankton assemblage in these samples with 24 eutrophy indicators (17% of the total taxa number) corresponded in general the species list from the early 1900s, which as such could be regarded as reference assemblage. Furthermore, in August 2000, 3 years after intensive fish removal a prominent decrease in cyanobacterial biomass and toxin concentration was observed. The costs of the measures and studies in Lake Tuusulanjärvi during 1989–2003 have been approximately 2.5 million euros.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号