首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Epichloid fungal endophytes (Epichloë and Neotyphodium spp.) are excellent model systems for studying speciation processes because of their variable life history traits that are linked to host grass fitness. Presumed jumps to new hosts and subsequent somatic hybridizations appear to be common among epichloid endophytes resulting in increased genetic variation upon which selection can act and speciation be initiated. In this study, we explored the endophyte diversity of a rare European native woodland grass species, Hordelymus europaeus, along a latitudinal transect covering the entire distribution range of H. europaeus. From 28 populations in six countries, isolates were sampled and molecularly characterized. Based on the sequences of tubB and tefA, six distinct epichloid taxa (interspecific hybrid or cryptic haploid species) were found, of which four were novel and two have been previously reported from this host. Of the novel endophytes, two were presumed to be interspecific hybrids and two of nonhybrid origin. While previously known endophytes of H. europaeus are seed‐born and strictly asexual, one of the novel nonhybrid endophytes found in the glacial refugium of the Apennine peninsula reproduced sexually in cultured plants. This is the first case of a seed‐borne, but sexually reproducing endophyte of this host. We discuss the origin, and possible ancestral species, of the six epichloid taxa using phylogenetic analyses. Repeated host jumps and somatic hybridizations characterize the diversity of the endophytes. To date, no other grass species is known to host a larger diversity of endophytes than H. europaeus.  相似文献   

2.
The incidence of epichloid endophytes in populations of wild grasses is usually variable, and the knowledge about distribution patterns and how environmental factors affect such an incidence is limited. Here we performed a broad scale survey data to study whether the distribution patterns and the incidence of vertically-transmitted endophytes in populations of two native grasses from South-America, Poa lanuginosa Poir. and Poa bonariensis (Lam.) Kunth., are associated with environmental characteristics. We also characterized the endophytes from different populations to establish if the genotype of the endophytes is also correlated with environmental variables. The incidence of endophytes ranged from 0 to 100 % in both host species. In P. lanuginosa, endophytes were only found in populations on sandy coastal dunes and their incidence was positively associated with winter regime rainfall and soil water availability in the growing season. In P. bonariensis, endophytes were only found in populations in xerophytic forests and their incidence was highly associated with plant community. The distributions of infested populations suggested that the endophytes are not found in those areas with the most favorable or most stressing growth conditions accordingly to climatic or edaphical characteristics. Only the vertically transmitted hybrid endophyte species Neotyphodium tembladerae was detected in both host species. Under the hypothesis of vertical transmission, these results suggested that the endophyte should have been lost in endophyte free populations but is maintained in populations established in environments presenting moderate stress as salinity or short drought periods.  相似文献   

3.
Epichloid fungal endophytes (Epichloë spp., Ascomycota: Clavicipitaceae) inhabit aerial tissues of several cool-season grasses, and enhance host growth and defence against herbivores. The presence of these symbionts can also affect interactions between the host and other non-epichloid plants. The role of an epichloid endophyte on interspecific competition has been tested using perennial grasses with contrasting results, but it has been scarcely tested using annual species in agroecosystems. We evaluated the impact of Epichloë-grass symbiosis on the competitive interaction between a non-host cereal crop (Triticum aestivum, wheat) and a host weed (Lolium multiflorum, ryegrass), growing in the presence of invertebrate herbivores (aphids) under no resource limitation. We conducted an outdoor mesocosm experiment with wheat plants growing in monoculture or in mixture with low or high proportions of ryegrass plants. Ryegrass plants presented either low (E-) or high (E+) incidence of Epichloë occultans (i.e. frequency of epichloid endophytic plants). We measured wheat vegetative and reproductive yield and its natural aphid infestation. Although epichloid endophyte incidence did not affect ryegrass biomass, wheat reproductive yield in mixtures (relative to wheat monocultures) was 45% higher when grown with E+ ryegrass plants than E- conspecific plants. Aphids preferred wheat plants grown with E- plants rather than wheat plants grown with E+ plants, but only in mixtures with high proportion of ryegrass. Our results demonstrate that epichloid endophyte incidence can decrease host competitive ability and confers associational protection to the non-endophytic neighbouring plants. Thus, ryegrass-endophyte symbiosis can increase crop yield by positive neighbourhood effects through different mechanisms probably related to the density of the weed. The benefits of this endosymbiont cannot be considered host-exclusive since they can be disseminated to non-endophytic plants. Furthermore, our results suggest that the epichloid endophyte incidence on annual weeds can contribute to agroecosystem sustainability by influencing pest management and increasing crop yield.  相似文献   

4.
Symbiotic interactions between plants and microorganisms have recently become the focus of research on biological invasions. However, the interaction between different symbionts and their consequences in host-plant invasion have been seldom explored. Here, we propose that vertically transmitted fungal endophytes could reduce the dependency of invasive grasses on mycorrhizal fungi allowing host establishment in those environments where the specific mutualist may be not present. Through analyzing published studies on nine grass species, we evaluated the effect of seed-borne Epichloë endophytes on the relationship of invasive and non-invasive grasses with arbuscular mycorrhizal fungi (AMF), a symbiosis known to be fundamental for plant fitness and invasion success. The endophyte effect on AMF colonization differed between invasive and non-invasive grasses, reducing mycorrhization only on invasive species but with no impact on their biomass. These results allowed us to propose that Epichloë endophytes could reduce the dependency of host plants on the mutualism with AMF, promoting host grass establishment and subsequent invasion. Simultaneous interactions with different types of mutualists may have profound effects on the host-plant fitness facilitating its range expansion. Our findings suggest that some specific mutualistic fungi such as epichloid endophytes facilitate host invasion by reducing the requirements of the benefits derived from other mutualisms.  相似文献   

5.
Plants are colonized by fungal endophytes. In this study we tested the hypothesis that endophyte communities in mountain plants changes along the elevation gradient. We identified fungal endophytes in aboveground parts and seeds of five plant species at altitudes of 1000–1750 m in the Tatra National Park. Endophytes isolated from them were grouped into morphotypes on the basis of macroscopic features, such as mycelium shape and colour. Isolates representing individual morphotypes were identified using molecular markers ITS1 and ITS2. When comparing species composition, we used Bray-Curtis distance matrices, calculated on the basis of frequency of the given fungal species. We identified 16 species of fungal endophytes. Five taxa were absent from seeds in spite of their occurrence in mother plant leaves. Differences in altitude were not significantly correlated with fungal species composition observed at a given sampling site. There was also no significant correlation between the species composition of leaf and seed mycobiota. This suggests imperfect vertical transmission in the studied plant species.  相似文献   

6.
Epichloë species are systemic fungal endophytes that usually specialize in a certain group of related grass species. We examined the infection frequency of Epichloë festucae in populations of two fine fescue species (Festuca rubra and F. ovina) in natural and seminatural habitats at 86 study sites (total = 2514 plants) across Finland and northern Norway. Infection incidence varied significantly among grass species and populations. A substantial number of the F. rubra and F. ovina populations (53 out of 77 and 25 out of 30, respectively) were either endophyte-free or had very low (<20%) infection frequencies. The highest infection frequencies were found in subarctic areas. Moreover, infection incidence differed between habitats. In the area with the highest infection frequencies, we used microsatellite markers to study genetic diversity and the rates of gene flow of E. festucae among 12 F. rubra populations. Twenty out of the 25 fungal genotypes detected with four microsatellite markers were carrying multiple alleles in at least one locus, indicating multiple infections or vegetative hybridization of the fungus. One dominant genotype occurred in all 12 populations, representing 63.5% of all isolates. We found a moderate level of average genotypic variation and a low level of genetic differentiation (F st = 0.0814). There was no correlation between infection frequency and genotypic diversity. Although the existence of a dominant genotype and the detected linkage disequilibrium suggest that the fungus is mainly asexual and vertically transmitted, the multiallelic loci and variation of genetic diversity among populations indicate occasional contagious spread and sexual or parasexual recombination of the fungus in some populations. Furthermore, the genotypes carrying multiallelic loci suggest the possibility of multiple infections or hybridization of the endophyte.  相似文献   

7.
《Fungal Biology Reviews》2020,34(3):115-125
Plants harbor a wide diversity of microorganisms in their tissues. Some of them have a long co-evolutionary history with their hosts, likely playing a pivotal role in regulating the plant interaction with other microbes such as pathogens. Some cool-season grasses are symbiotic with Epichloë fungal endophytes that grow symptomless and systemically in aboveground tissues. Among the many benefits that have been ascribed to endophytes, their role in mediating plant interactions with pathogens has been scarcely developed. Here, we explored the effects of Epichloë fungal endophytes on the interaction of host grasses with fungal pathogens. We made a meta-analysis that covered a total of 18 host grass species, 11 fungal endophyte species, and 22 fungal pathogen species. We observed endophyte-mediated negative effects on pathogens in vitro and in planta. Endophyte negative effects on pathogens were apparent not only in laboratory but also in greenhouse and field experiments. Epichloë fungal endophytes had negative effects on pathogen growth and spores' germination. On living plants, endophytes reduced both severity and incidence of the disease as well as colonization and subsequent infection of seeds. Symbiosis with endophytes showed an inhibitory effect on debilitator and killer pathogens, but not on castrators, and this effect did not differ among biotrophic or necrotrophic lifestyles. We found that this protection can be direct through the production of fungistatic compounds, the competition for a common resource, or the induction of plant defenses, and indirect associated with endophyte-generated changes in the abiotic or the biotic environment. Several mechanisms operate simultaneously and contribute differentially to the reduction of disease within grass populations.  相似文献   

8.
Diverse fungal assemblages colonize the fine feeder roots of woody plants, including mycorrhizal fungi, fungal root endophytes and soil saprotrophs. The fungi co-inhabiting Cenococcum geophilum ectomycorrhizae (ECM) of Abies balsamea, Betula papyrifera and Picea glauca were studied at two boreal forest sites in Eastern Canada by direct PCR of ITS rDNA. 50 non-Cenococcum fungal sequence types were detected, including several potentially mycorrhizal species as well as fungal root endophytes. Non-melanized ascomycetes dominated, in contrast to the dark septate endophytes (DSE) reported in most culture dependent studies. The results demonstrate significant differences in root associated fungal assemblages among the host species studied. Fungal diversity was also host dependent, with P. glauca roots supporting a more diverse community than A. balsamea. Differences in root associated fungal communities may well influence ecological interactions among host plant species.  相似文献   

9.
Polyploidy in combination with parthenogenesis offers advantages for plasticity and the evolution of a broad ecological tolerance of species. Therefore, a positive correlation between the level of ploidy and increasing latitude as a surrogate for environmental harshness has been suggested. Such a positive correlation is well documented for plants, but examples for animals are still rare. Species of flatworms (Platyhelminthes) are widely distributed, show a remarkably wide range of chromosome numbers, and offer therefore good model systems to study the geographical distribution of chromosome numbers. We analyzed published data on counts of chromosome numbers and geographical information of three flatworm “species” (Phagocata vitta, Polycelis felina and Crenobia alpina) sampled across Europe (220 populations). We used the mean chromosome number across individuals of a population as a proxy for the level of ploidy within populations, and we tested for relationships of this variable with latitude, mode of reproduction (sexual, asexual or both) and environmental variables (annual mean temperature, mean diurnal temperature range, mean precipitation and net primary production). The mean chromosome numbers of all three species increased with latitude and decreased with mean annual temperature. For two species, chromosome number also decreased with mean precipitation and net primary production. Furthermore, high chromosome numbers within species were accompanied with a loss of sexual reproduction. The variation of chromosome numbers within individuals of two of the three species increased with latitude. Our results support the hypothesis that polyploid lineages are able to cope with harsh climatic conditions at high latitudes. Furthermore, we propose that asexual reproduction in populations with high levels of polyploidization stabilizes hybridization events. Chromosomal irregularities within individuals tend to become more frequent at the extreme environments of high latitudes, presumably because of mitotic errors and downsizing of the genome.  相似文献   

10.
Plant–herbivore interactions are often mediated by plant microorganisms, and the “defensive mutualism” of epichloid fungal endophytes of grasses is an example. These endophytes synthesize bioactive alkaloids that generally have detrimental effects on the performance of insect herbivores, but the underlying mechanisms are not well understood. Our objective was to determine whether changes in the physiology and/or behavior of aphids explain the changes in performance of insects feeding on endophytic plants. We studied the interaction between the aphid Rhopalosiphum padi and the annual ryegrass Lolium multiflorum symbiotic (E+) or not symbiotic (E?) with the fungus Epichloë occultans that can synthesize loline alkaloids. We hypothesized that aphids feeding on E+ plants have higher energetic demands for detoxification of fungal alkaloids, thereby negatively impacting the individual performance, population growth, and structure. Aphids growing on E+ plants had lower values in morphometric and functional variables of individual performance, displayed lower birth rate, smaller population size, and dramatic structural changes. However, aphids exhibited lower values of standard metabolic rate (SMR) on E+ plants, which suggests no high costs of detoxification. Behavioral variables during the first 8 h of feeding showed that aphids did not change the phloem sap ingestion with the presence of fungal endophytes. We hypothesize that aphids may maintain phloem sap ingestion according to their fungal alkaloid tolerance capacity. In other words, when alkaloid concentrations overcome tolerance threshold, ingestion of phloem should decrease, which may explain the observed lower values of SMR in E+ feeding aphids.  相似文献   

11.
Fungal endophytes on citrus plants have been little studied, and the effects of citrus diseases on their incidence and diversity have not been addressed. In this study, we examined the foliar fungal endophytes of Citrus limon in the vicinity of Yaoundé, Cameroon, with emphasis on the differences between endophyte communities in healthy and yellowing leaves. From 82.3 % of the 480 leaf fragments, a total of 482 isolates were recovered and analysis of ITS sequences revealed 20 phylotypes. All fungal endophytes were ascomycetes and, except for one species, were common plant pathogens. Mycosphaerella and its anamorphs (34.2 % of all isolates), and Colletotrichum gloeosporioides (50.4 % of all isolates), were isolated most frequently. Mycosphaerellaceous species dominated in healthy leaves, and were absent from yellowing leaves. C. gloeosporioides was isolated significantly more frequently from yellowing than healthy leaves. Yellowing leaves had a significantly higher overall infection frequency but, in contrast, the least species diversity. Difference in the endophyte assemblages of healthy and yellowing leaves suggests that yellowing of leaves may facilitate the incidence of certain endophytes and impose growth inhibition on others.  相似文献   

12.
The interaction between two species often depends on the presence or absence of a third species. One widespread three-species interaction involves fungal endophytes infecting grasses and the herbivores that feed upon them. The endophytes are allied with the fungal family Clavicipitaceae and grow systemically in intercellular spaces in above-ground plant tissues including seeds. Like relatedClaviceps species, the endophytes produce a variety of alkaloids that make the host plants toxic or distasteful to herbivores. A large number of grass species are infected, especially cool-season grasses in temperate areas. Field and laboratory studies have shown that herbivores avoid infected plants in choice trials and suffer increased mortality and decreased growth on infected grasses in feeding experiments. Resistance to herbivores may provide a selective advantage to infected plants in competitive interactions with noninfected plants. Recent studies have shown that differential herbivory can reverse competitive hierarchies among plant species. Both endophyte-infected and noninfected tall fescue grass (Festuca arundinacea) are outcompeted by orchardgrass (Dactylis glomerata) in the absence of insect herbivory. However, when herbivores are present infected tall fescue outcompetes orchardgrass. These results suggest that the frequency of infection in grass species and grassland communities will increase over time. Several studies are reviewed illustrating increases in infection frequency within grass populations subject to herbivore pressure. Endophytic fungi may be important regulators of plant-herbivore interactions and so indirectly affect the structure and dynamics of plant communities.  相似文献   

13.
Endophytic fungi in wild and cultivated grasses in Finland   总被引:7,自引:0,他引:7  
We examined the occurrence of vertically via host seeds transmitted endophyte infections of 14 grass species in natural populations in Finland and totally 97 agricultural cultivars of 13 grass species. Although endophyte infections were widespread in native grass species, overall endophyte occurrence and frequencies were lower than published reports have suggested. In natural populations, 10 out of 14 grass species examined harbor fungal endophytes in their seeds. The highest species-specific mean incidences of endophyte infected plants in infected populations were found in Agrostis capillaris. Festuca arundinacea. F. ovina. F. Pratensis. F. rubra and Phleum pratense (67%, 98%, 29%., 42%. 32% and 33%, respectively). Mean incidences were < 20% in Dactylis glomerata. Deschampsia flexuosa. D. cespitosa and Elymus repens. and no infections were detected in Calamagrostis lapponica. C. epigejos. Alopecurus pratensis and Phalaris arundinacea. However, we detected a very high variation in infection incidences among natural populations and a large proportion of populations was, indeed, endophyte-free. This supports the ideas that 1) endophytic fungi provide selective advantage of infected grasses to their uninfected eonspecifics in some habitats, and/or 2) fungi are occasionally transmitted horizontally by spores. In grass cultivars, endophyte infected seeds were detected only in F. Pratensis and Lolium perenne. and endophyte frequencies were either very high or very low. Cultivars of 11 other grass species were endophyte-free.  相似文献   

14.
We studied the relationship between genome size and ploidy level variation and plant traits for the reed grass Phragmites australis. Using a common garden approach on a global collection of populations in Aarhus, Denmark, we investigated the influence of monoploid genome size and ploidy level on the expression of P. australis growth, nutrition and herbivore-defense traits and whether monoploid genome size and ploidy level play different roles in plant trait expression. We found that both monoploid genome size and latitude of origin contributed to variation in traits that we studied for P. australis, with latitude of origin being generally a better predictor of trait values and that ploidy level and its interaction with monoploid genome size and latitude of origin also contributed to trait variation. We also found that for four traits, tetraploids and octoploids had different relationships with the monoploid genome size. While for tetraploids stem height and leaf water content showed a positive relationship with monoploid genome size, octoploids had a negative relationship with monoploid genome size for stem height and no relationship for leaf water content. As genome size within octoploids increased, the number of aphids colonizing leaves decreased, whereas for tetraploids there was a quadratic, though non-significant, relationship. Generally we found that tetraploids were taller, chemically better defended, had a greater number of stems, higher leaf water content, and supported more aphids than octoploids. Our results suggest trade-offs among plant traits mediated by genome size and ploidy with respect to fitness and defense. We also found that the latitude of plant origin is a significant determinant of trait expression suggesting local adaptation. Global climate change may favor some genome size and ploidy variants that can tolerate stressful environments due to greater phenotypic plasticity and to fitness traits that vary with cytotype which may lead to changes in population genome sizes and/or ploidy structure, particularly at species’ range limits.  相似文献   

15.
The extent of genetic differentiation among 17 Ethiopian populations (249 individuals) of Phytolacca dodecandra (Endod) sampled along altitudinal gradients that varied from 1600 to 3000 m was investigated using random amplified polymorphic DNA (RAPD). The populations were classified into three altitude groups: lowland (1600–2100 m), central-highland (2101–2500 m) and highland (2500–3000 m). Seventy polymorphic loci scored from 12 RAPD primers, singly or in combination with ecogeographical variables (altitude, longitude, latitude, temperature and rainfall), were used for principal component, discriminant, correlation, and stepwise multiple regression analyses. Principal component analysis (PCA) clearly differentiated lowland and the central-highland populations from those of the highlands independent of their geographical regions. Canonical discriminant analysis separated the lowland plants from those of the highlands with the central-highland plants being intermediate. Classificatory discriminant analysis corrected classification of 92.8% of the 249 plants into their respective three altitude groups. Multiple regression analysis identified a strong association between some RAPDs and altitude, temperature and rainfall, while the variation in most RAPDs was explained by combinations of the different ecogeographical variables. It is hypothesised that the different altitude groups may be (1) chemical and/or physiological ecotypes produced as a result of complex interactions of altitude with climatic and/or edaphic factors, or (2) different in ploidy levels. The significant correlations obtained between population means from some RAPDs and altitude and temperature as well as the strong association of some RAPDs with the ecogeographical variables in the multiple regression analysis suggest that part of the RAPD polymorphism could be adaptive, and responsive to environmental selection. Received: 15 December 1999 / Accepted: 12 February 2000  相似文献   

16.
Achnatherum sibiricum (Poaceae) is a perennial bunchgrass native to the Inner Mongolia Steppe of China. This grass is commonly infected by epichloë endophytes with high-infection frequencies. Previously, we identified two predominant Neotyphodium spp., N. sibiricum and N. gansuense. In the present study, genetic diversity and structure were analyzed for the two predominant Neotyphodium spp. as well as the host grass. We obtained 103 fungal isolates from five populations; 33 were identified as N. sibiricum and 61 as N. gansuense. All populations hosted both endophytic species, but genetic variation was much higher for N. gansuense than for N. sibiricum. The majority of fungal isolates were haploid, and 13% of them were heterozygous at one SSR locus, suggesting hybrid origins of those isolates. Significant linkage disequilibrium of fungal SSR loci suggested that both fungal species primarily propagate by clonal growth through plant seeds, whereas variation in genetic diversity and the presence of hybrids in both endophytic species revealed that although clonal propagation was prevalent, occasional recombination might also occur. By comparing genetic differentiation among populations, we found around 4–7-fold greater differentiation of endophyte populations than host populations, implying more restricted gene flow of endophytes than hosts. We proposed that endophyte infection of A. sibiricum might confer the host some selective advantages under certain conditions, which could help to maintain high-endophyte-infection frequencies in host populations, even when their gene flows do not match each other. Furthermore, we suggested that the same genotype of endophyte as well as host should be confirmed if the objective of the study is to know the influence of endophyte or host genotype on their symbiotic relationship, instead of just considering whether the plant is infected by an endophyte or not, since endophytes from the same host species could exhibit high levels of genetic diversity, which is likely to influence the outcome of their symbiotic relationship.  相似文献   

17.
The leaves of fescue grasses are protected from herbivores by the production of loline alkaloids by the mutualist fungal endophytes Neotyphodium sp. or Epichloë sp. Most bacteria that reside on the leaf surface of such grasses can consume these defensive chemicals. Loline-consuming bacteria are rare on the leaves of other plant species. Several bacterial species including Burkholderia ambifaria recovered from tall fescue could use N-formyl loline as a sole carbon and nitrogen source in culture and achieved population sizes that were about eightfold higher when inoculated onto plants harboring loline-producing fungal endophytes than on plants lacking such endophytes or which were colonized by fungal variants incapable of loline production. In contrast, mutants of B. ambifaria and other bacterial species incapable of loline catabolism achieved similarly low population sizes on tall fescue colonized by loline-producing Neotyphodium sp. and on plants lacking this endophytic fungus. Lolines that are released onto the surface of plants benefiting from a fungal mutualism thus appear to be a major resource that can be exploited by epiphytic bacteria, thereby driving the establishment of a characteristic bacterial community on such plants.  相似文献   

18.
Phragmites australis subsp. australis (Poaceae) is an aggressively invasive reed that threatens both freshwater and saltwater ecosystems in North America. We sampled P.a. australis plants for fungal endophytes at seven sites across a short geographic range near a freshwater lake in Michigan. Compared to previous studies, our data reveal novel variation in the diversity and abundance of fungal endophytes within P.a. australis. Within each sampling site we observed 4–10 morphologically unique, culturable fungi. Since fungal endophytes can confer significant benefits to their plant host, we hypothesized that fungal endophytes are important for mediating plant invasions. To test this hypothesis we first had to establish a protocol to experimentally control fungal endophytes within P.a. australis, which does not easily grow from sterile seed. We therefore investigated the effect of fungicides as a potential method for eliminating fungi from living plant tissue such as rhizomes. We selected the ten most abundant fungi isolated from P.a. australis and tested their susceptibility to three commonly available fungicides. Response to the fungicides varied across fungal isolates, demonstrating physiological variation and fungicide-resistant phenotypes.  相似文献   

19.
Mutualistic interactions are likely to exhibit a strong geographic mosaic in their coevolutionary dynamics, but the structure of geographic variation in these interactions is much more poorly characterized than in host-parasite interactions. We used a cross-inoculation experiment to characterize the scales and patterns at which geographic structure has evolved in an interaction between three pine species and one ectomycorrhizal fungus species along the west coast of North America. We found substantial and contrasting patterns of geographic interaction structure for the plants and fungi. The fungi exhibited a clinal pattern of local adaptation to their host plants across the geographic range of three coastal pines. In contrast, plant growth parameters were unaffected by fungal variation, but varied among plant populations and species. Both plant and fungal performance measures varied strongly with latitude. This set of results indicates that in such widespread species interactions, interacting species may evolve asymmetrically in a geographic mosaic because of differing evolutionary responses to clinally varying biotic and abiotic factors.  相似文献   

20.
Most asexual fungal symbionts of grasses in the genus Neotyphodium occurring in nature are of hybrid origin. Most hybrid Neotyphodium species result from interspecific hybridization events between pathogenic Epichloë species or co-occurring non-hybrid Neotyphodium species. Current hypotheses for the prevalence of hybrid Neotyphodium species include reduction of mutation accumulation and increased adaptive response to environmental extremes. We tested the adaptive response hypothesis by characterizing the distribution of uninfected, hybrid, and non-hybrid Neotyphodium endophytes in 24 native Arizona fescue host populations and abiotic parameters at each locality. Infection was high in all host populations (>70%), but the majority of host populations were infected by non-hybrid Neotyphodium (>50% on average). Principal component analysis indicates the frequency of plants infected with hybrid fungi is negatively related to soil nutrients and positively correlated with early spring moisture. Non-hybrid infected hosts are positively associated with soil nutrients and show a complex relationship with soil moisture (negative in early spring moisture, positive with late summer soil moisture). These results suggest the frequency of uninfected, hybrid, and non-hybrid infected plants is related to resource availability and abiotic stress factors. This supports the hypothesis that hybridization in asexual fungal symbionts increases host adaptability to extreme environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号