首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nutrient limitation of phytoplankton and periphyton growth in upland lakes   总被引:9,自引:0,他引:9  
SUMMARY 1. Thirty small upland lakes in Cumbria, Wales, Scotland and Northern Ireland were visited three times between April and August 2000. On each occasion water chemistry was measured and phytoplankton bioassays were performed in the laboratory to assess growth‐rate and yield limitation by phosphorus and nitrogen. In addition, yield limitation of periphyton growth was investigated twice, in situ, using nutrient‐diffusing substrata. 2. Over the whole season the percentage frequency of P, N and co‐limitation was 24, 13 and 63%, respectively, for phytoplankton rate limitation and 20, 22 and 58%, respectively, for phytoplankton yield limitation. 3. A clear response of periphyton yield to nutrient additions was found in 75% of all cases and of these, co‐limitation was most common (54%). Average percentage frequency for P and N limitation was 26 and 20%, respectively. 4. Phytoplankton and periphyton showed seasonal changes in nutrient limitation within sites. In particular, co‐limitation became progressively more common as the season progressed. 5. The response of phytoplankton growth rate to ammonium and nitrate addition was identical, but ammonium was a slightly better source of nitrogen than nitrate for phytoplankton yield on 7% and for periphyton yield on 10% of the occasions. However, the magnitude of the effect was small. 6. The concentration of dissolved inorganic nitrogen (DIN) and the molar ratio of DIN to total dissolved phosphorus (TDP), appeared to be the main environmental factors controlling the extent of nitrogen or phosphorus limitation at a given site. Nitrogen limitation was more likely than phosphorus limitation where the DIN was <6.5 mmol m?3 and the ratio of DIN : TDP was <53. Co‐limitation was the most likely outcome at a DIN concentration <13 mmol m?3 and at a DIN : TDP molar ratio <250. Above these values phosphorus limitation was most likely. 7. The relatively high frequency of nitrogen limitation and co‐limitation at higher N : P ratios than previously reported, may result from the inability of nitrogen‐fixing cyanobacteria to thrive in these upland lakes where pH and the concentration of phosphorus tended to be low and where flushing rates tended to be high.  相似文献   

2.
Bent Fredskild 《Hydrobiologia》1983,103(1):217-224
During the Holocene most West Greenland lakes passed from an early eutrophic stage, rich in both flora and fauna, through a mesotrophic to an oligotrophic stage with very low productivity. Temperature conditions were limiting factors only in the very beginning, whereas chemical factors alone were decisive later on.  相似文献   

3.
1. We tested whether increasing atmospheric nitrogen (N) deposition along a north–south gradient intensifies epilithic phosphorus (P) limitation in oligotrophic Swedish lakes from the north to the south. We examined the epilithic community at a shallow depth from seven northern and six southern Swedish lakes, and also compared the results with a lake located geographically between the two groups. We determined lake nutrient state, epilithic nutrient ratios and epilithic algal composition, as well as grazer N : P ratios, grazer-epilithon N : P imbalance, and N : P cycling ratios.
2. Epilithic communities appear to be generally more N-limited in the northern lakes and more P-limited in the southern lakes. Lake water total N (Tot-N) and epilithic N : P ratios were lower in northern than in southern lakes and the proportion of N2-fixing cyanobacteria was higher in northern than in southern lakes.
3. Gastropod grazers had lower N : P imbalances and cycled less N relative to P in northern than in southern lakes.
4. Atmospheric N-deposition showed a strong positive correlation with lake water Tot-N and a much weaker positive correlation with epilithon N : P ratios. Atmospheric N-deposition also correlated negatively with the proportion of N2-fixing cyanobacteria.
5. There are indications that increased atmospheric N-deposition towards the south might intensify P-limitation of epilithic algae and invertebrate grazers, although more studies are needed to show the strength and generality of our findings.  相似文献   

4.
Levine  M.A.  Whalen  S.C. 《Hydrobiologia》2001,455(1-3):189-201
We used 54 enrichment bioassays to assess nutrient limitation (N, P) of 14C uptake by natural phytoplankton assemblages in 39 lakes and ponds in the Arctic Foothills region of Alaska. Our purpose was to categorize phytoplankton nutrient status in this under-represented region of North America and to improve our ability to predict the response of primary production to anticipated anthropogenically mediated increases in nutrient loading. Experiments were performed across several watersheds and included assays on terminal lakes and lakes occupying various positions in chains (lakes in series within a watershed and connected by streams). In total, 89% (48 of 54) of the bioassays showed significant stimulation of 14C primary production by some form of nutrient addition relative to unamended controls. A significant response was observed following enrichment with N and P, N alone and P alone in 83, 35 and 22% of the bioassays, respectively. In experiments where N and P proved stimulatory, the influence of N alone was significantly greater than the influence of P alone. Overall, the data point to a greater importance for N than P in regulating phytoplankton production in this region. The degree of response to N and P enrichment declined as the summer progressed and showed no relationship to irradiance or water temperature, suggesting secondary limitation by some micronutrient such as iron as the summer advanced. Phytoplankton nutrient status was often consistent across lakes within a watershed, suggesting that watershed characteristics influence nutrient availability. Lakes in this region will clearly show increased phytoplankton production in response to anthropogenic activities and anticipated changes in climate that will increase nutrient loading.  相似文献   

5.
Metal oxyhydroxide precipitates that form from acid mine drainage (AMD) may indirectly limit periphyton by sorbing nutrients, particularly P. We examined effects of nutrient addition on periphytic algal biomass (chl a), community structure, and carbon and nitrogen content along an AMD gradient. Nutrient diffusing substrata with treatments of +P, +NP and control were placed at seven stream sites. Conductivity and SO4 concentration ranged over an order of magnitude among sites and were used to define the AMD gradient, as they best indicate mine discharge sources of metals that create oxyhydroxide precipitates. Aqueous total phosphorous (TP) ranged from 2 to 23 μg · L?1 and significantly decreased with increasing SO4. Mean chl a concentrations at sites ranged from 0.2 to 8.1 μg · cm?2. Across all sites, algal biomass was significantly higher on +NP than control treatments (Co), and significantly increased with +NP. The degree of nutrient limitation was determined by the increase in chl a concentration on +NP relative to Co (response ratio), which ranged from 0.6 to 9.7. Response to nutrient addition significantly declined with increasing aqueous TP, and significantly increased with increasing SO4. Thus, nutrient limitation of algal biomass increased with AMD impact, indicating metal oxyhydroxides associated with AMD likely decreased P availability. Algal species composition was significantly affected by site but not nutrient treatment. Percent carbon content of periphyton on the Co significantly increased with AMD impact and corresponded to an increase in the relative abundance of Chlorophytes. Changes in periphyton biomass and cellular nutrient content associated with nutrient limitation in AMD streams may affect higher trophic levels.  相似文献   

6.
We investigated whether phytoplankton communities in two lakes in SW Greenland were phosphorus or nitrogen limited. The study lakes have contrasting water chemistry (mean conductivities differ ten fold) and are located near Kangerlussuaq, SW Greenland (~67°N, 51°W). A microcosm nutrient enrichment experiment was performed in June 2003 to determine whether nitrate or phosphate addition stimulated phytoplankton growth. Samples were analysed for species composition, biomass, and alkaline phosphatase activity (APA). Initially, both lakes had extremely low total phosphorus but high total nitrogen concentrations and high APA, suggesting that the phytoplankton were phosphorus limited prior to the start of the experiment. The phytoplankton composition and biomass (mainly Ochromonas spp.) responded to phosphate but not to nitrate addition. In both lakes, chlorophyll a increased significantly when phosphate was added. Furthermore, APA was significantly lower in the two lakes when phosphate was added compared to the control and the nitrogen addition treatment. The dominance of mixotrophic phytoplankton and high DOC values suggest that these lakes may be regulated by microbial loop processes.  相似文献   

7.
1. Two small humic lakes in northern Sweden with concentrations of dissolved organic carbon (DOC) between 15 and 20 mg L–1 were fertilized with inorganic phosphorus (P) and inorganic nitrogen (N), respectively. A third lake was unfertilized and served as a control. In addition to this lake fertilization experiment, data from different regional surveys were used to assess the role of different limiting factors.
2. The P fertilization had no effects on bacterioplankton or phytoplankton, while phytoplankton were significantly stimulated by N fertilization. Inorganic nutrient limitation of bacterioplankton was a function of DOC concentration in water of the investigated region and nutrient-limited bacteria were found only in lakes with DOC concentrations less than around 15 mg L–1
3. The fertilization experiments demonstrated that the DOC-rich experimental lakes contained a bioavailable pool of P that was not utilized to its full potential under natural conditions. The overall mobilization of energy (bacterioplankton plus phytoplankton) in the experimental lakes was restricted by lack of inorganic N.  相似文献   

8.
Nutrient limitation of Myriophyllum spicatum growth in situ   总被引:2,自引:0,他引:2  
SUMMARY. 1. The hypothesis that the submersed macrophyte biomass in natural weedbeds is nutrient limited was tested in situ by an enrichment experiment.
2. The response of Myriophyllum spicatum was significant and positive for N-enrichment, resulting in a 30–40% increase in biomass over controls. There was no response to phosphorus or to potassium enrichment.
3. Plant length and number of shoots per rephcate were also significantly increased by nitrogen additions but again showed no response to phosphorus and potassium.
4. Water depth differences were also found to affect the plant responses in some cases.
5. The macrophyte response to fertilization was similar to that recorded for emergent macrophytes and terrestrial crops but much smaller than for phytoplankton.  相似文献   

9.
The material comprised 1205 arctic charr caught by gillnets and electrofishing in the ice-free season 1982 in four interconnected lakes. The lakes were similar in biotic and abiotic factors and the arctic charr populations were therefore treated as one population. Two size groups of fish older than three years, called 'small charr' and 'large charr', were found. The two groups differed in feeding habits, growth rates, age of maturity and spawning frequencies. However, they did not differ in the frequencies of the F- and S- serum esterase alleles, and were in accord with the model proposed by Johnson (1976) which states that the 'small charr' and 'large charr' are two different forms of the same population. 'Small charr' recruit to the 'large charr' by entering a period of fast growth. In the investigated lakes this occurred when the 'small charr' were 3–10 years old. Some indications of rematuration of the 'small charr' when entering the group of 'large charr' were found.  相似文献   

10.
We determined the limiting nutrient of phytoplankton in 21 lakes and ponds in Wapusk National Park, Canada, using nutrient enrichment bioassays to assess the response of natural phytoplankton communities to nitrogen and phosphorus additions. The goal was to determine whether these Subarctic lakes and ponds were nutrient (N or P) limited, and to improve the ability to predict future impacts of increased nutrient loading associated with climate change. We found that 38% of lakes were not limited by nitrogen or phosphorus, 26% were co-limited by N and P, 26% were P-limited and 13% were N-limited. TN/TP, DIN/TP and NO3 /TP ratios from each lake were compared to the Redfield ratio to predict the limiting nutrient; however, these predictors only agreed with 29% of the bioassay results, suggesting that nutrient ratios do not provide a true measure of nutrient limitation within this region. The N-limited lakes had significantly different phytoplankton community composition with more chrysophytes and Anabaena sp. compared to all other lakes. N and P limitation of phytoplankton communities within Wapusk National Park lakes and ponds suggests that increased phytoplankton biomass may result in response to increased nutrient loading associated with environmental change.  相似文献   

11.
The movement of sediment between the lake bottom and water column of shallow lakes can be sizeable due to the large potential for resuspension in these systems. Resuspended sediments have been shown to alter phytoplankton community composition and elevate water column production and nutrient concentrations. We measured the summer sedimentation rates of two lakes in 2003 and six lakes in 2004. All lakes were shallow and located in the Alaskan Arctic. In 2004, turbidity, light attenuation, total sediment:chlorophyll a mass in the sediment traps, and thermal stratification were also measured in each of the lakes. The sediment:chlorophyll a mass was much greater than if the sediment was derived from phytoplankton production in all of the lakes, indicating that the source of the sedimenting material was resuspension and allochthonous inputs. Consistent with these findings, the temporal variation in sedimentation rate was synchronous between most lakes, and sedimentation rate was positively related to wind speed and rainfall suggesting that sedimentation rate was strongly influenced by landscape-scale factors (e.g., wind and rain events). Two of the lakes are located on deposits of loess that accumulated during past glacial periods. These two lakes had sedimentation rates that were significantly greater and more variable than any of the other lakes in the study, as well as high turbidity and light attenuation. Our results indicate that sedimentation in these shallow arctic lakes is supported primarily by allochthonous inputs and resuspension and that landscape-scale factors (e.g., weather and geology) impact on the transport of materials between the lake bottom and water column. Handling editor: J. Saros  相似文献   

12.
1. Surface sediment samples of subfossil chironomid head capsules from 47 lakes in southern West Greenland were analysed using multivariate numerical methods in order to explore the relationship between chironomid assemblages and selected environmental variables. The study lakes are located along a climate gradient ranging from coastal maritime conditions near the Davis Strait to a continental climate near the margin of the Greenland ice sheet. 2. High‐resolution surface water temperatures were measured through the summer season using automatic data loggers in 21 of the study lakes. The mean July surface water temperature (1999) ranged from 7.3 to 16.5 °C in the data set. 3. In all lakes, a total of 24 chironomid taxa were recorded; Micropsectra, Psectrocladius, Chironomus and Procladius were the dominant genera. There was a strong correlation between the trophic variables [total nitrogen and total phosphorus (TN, TP)] and temperature, and in redundancy analysis (RDA) the three variables explained almost equal significant amounts of variation in the chironomid data (19.8–22.3%). However, temperature lost significant explanatory power when the effect of TN was partialled out in RDA. 4. The lakes were classified using two‐way indicator species analysis (TWINSPAN ) into eight groups defined by temperature, trophic variables, salinity (conductivity) and lake‐morphometric data. Fourteen chironomid taxa showed significant differences in percentage abundances among groups, with Heterotrissocladius, Micropsectra, Ablabesmyia and Chironomus as the most robust group‐indicator taxa. Forward selection of taxa in multiple discriminant analysis was used to fit chironomid assemblages into lake groups. Using only eight taxa, 95% of lakes were correctly classified at a second TWINSPAN division level (four groups) and 85% of lakes at a third division level (eight groups). 5. This study showed that there is considerable potential in using subfossil chironomid head capsules as paleoenvironmental indicators in both short‐ and long‐term (down‐core) studies of lake ontogeny and palaeoclimate conditions in West Greenland. However, because of the strong correlation between temperature and trophic variables, a quantitative reconstruction of lake‐ and habitat‐type is recommended, in combination with direct reconstruction of single variables such as temperature.  相似文献   

13.
14.
The objective of the study was to identify nutrient impacts, if any, on stream periphyton growth in Black Bear Creek (north central Oklahoma) and its tributaries. Passive diffusion periphytometers were deployed at ten study sites within the Black Bear Creek basin to evaluate periphyton growth in response to nutrient enrichment. These sites were selected to represent a gradient of land uses, from predominantly agricultural to predominantly urban. Periphytometer treatments included phosphorus (P) (1.0 mg/L PO4-P, n = 10), nitrogen (N) (10.0 mg/L NO3-N, n = 10), N plus P (n = 10) and control (reverse osmosis-treated water, n = 10). Results indicated that average dissolved inorganic N (DIN, PQL = 0.04 mg/L) concentrations were significantly correlated (R2 = 0.63, p < 0.01) with chlorophyll a production on the periphytometer control treatments in the Black Bear Creek basin. Periphytic growth was nutrient-limited (increased chlorophyll a was measured on nutrient-enriched growth media) at four of the ten sites sampled; two sites were limited by N and two sites were co-limited by both N and P. The lotic ecosystem trophic status index (LETSI), the ratio of C to N + P chlorophyll a, was calculated to compare treatment responses across sites. At nutrient-limited sites, LETSI was positively correlated to ambient DIN values (R2 = 0.97, p < 0.01). However, some sites that were not nutrient-limited had ambient nutrient concentrations similar to sites with observed nutrient limitation, indicating other factors were limiting periphyton growth at those sites.  相似文献   

15.
Periphyton is an aquatic community composed by algae, bacteria, fungi, and other microorganisms that can develop a complex architecture comparable to tropical forests. We analyzed the spatial pattern of a periphyton community along a succession developed in experimental tanks. Our aim was to identify regularities that may help us to explain the patchiness of this community. Therefore, we estimated the spatial pattern of periphyton biomass using a non‐destructive image analysis technique to obtain a temporal series of the spatial distribution. These were analyzed using multifractal techniques. Multifractals are analogous to fractals but they look at the geometry of quantities instead of the geometry of pattern. To use these techniques the object of study must show scale invariance and then can be characterized by a spectra of fractal dimensions. Self‐organization describes the evolution of complex structures that emerge spontaneously driven internally by variations of the system itself. The spatial distribution of biomass showed scale invariance at all stages of succession and as the periphyton developed in a homogeneous landscape, in a demonstration of self‐organized behavior. Self‐organization to a critical state (SOC) is presented in the complex systems literature as a general explanation for scale invariance in nature. SOC requires a mechanism where the history of past events in a place influence the actual dynamics, this was termed ecological memory. The scale invariance was found from the very beginning of the succession thus self‐organized criticality is a very improbable explanation for the pattern because there would be not enough time for the build‐up of ecological memory. Positive interactions between algae and bacteria, and the existence of different spatial scales of colonization and growth are the likely causes of this pattern. Our work is a demonstration of how large scale patterns emerge from local biotic interactions.  相似文献   

16.
17.
Phytoplankton nutrient limitation in Colorado mountain lakes   总被引:12,自引:0,他引:12  
SUMMARY. 1. Limiting nutrients for phytoplankton were studied experimentally in eight mountain lakes of central Colorado between May and November of 1984.
2. Five categories of phytoplankton limitation were identified: no limitation, N limitation, P limitation, concurrent limitation (stimulation only by simultaneous additions of N and P), and reciprocal limitation (stimulation by addition of either N or P). The phytoplankton communities of three lakes were primarily N-limited, one was primarily phosphorus-limited, and four showed primarily combined limitation (concurrent or reciprocal). Switching between categories of limitation was also observed within lakes. Nitrogen was the most frequently limiting nutrient; N, either alone or in combination with P, accounted for 79% of all observed instances of limitation.
3. Nine indices were tested for effectiveness in predicting phytoplankton limitation by N and P. The best indices for discriminating all limitations were ratios of dissolved inorganic N: total P (84% accuracy) and dissolved inorganic N:total dissolved P (80% accuracy). The effectiveness of these indices may be explained by the degree to which they represent N and P fractions actually available to the phytoplankton.  相似文献   

18.
J. Kalff 《Hydrobiologia》1983,100(1):101-112
Two of three Kenyan lakes studied between November 1979 and October 1980 have very short 33PO4 turnover times, indicating a high phosphorus (P) demand throughout the year. The P turnover time in Lakes Oloidien and Sonachi is as rapid as in the most P deficient temperate zone lakes. The third lake, Lake Naivasha, has a lower overall P demand and a wide seasonal range, with lowest demand between November 1979 and February 1980 when a P deficiency was unlikely. On an annual basis the Lake Naivasha status is, however, not statistically different from that recorded during the summer in Lake Memphremagog, a generally P-limited temperate zone lake. Lake Naivasha and Lake Oloidien fit well to the line of best fit for the Dillon-Rigler relationship relating total phosphorus (TP) and chlorophyll a derived in temperate zone lakes. Thus, temperate zone models predicting aspects of lake behaviour on the basis of TP may also be applicable to these two tropical lakes. Saline lake Sonachi had not only a short P turnover time but also responded dramatically to the fertilization of enclosures with P. However, it does not fit the TP-chla or the total nitrogen-chla plots from the temperate zone. This suggests that, in this saline lake at least, much of the TP is unavailable to the algae, with some of it in a particulate form that is readily extracted with boiling water. The epilimnetic N:P ratios also characterize lakes Oloidien and Sonachi lakes as highly P deficient and lake Naivasha as more moderately P limited. A single set of measurements in Winam Gulf (Lake Victoria) also showed a rapid P turnover time and thus P limitation, but as in lake Sonachi much of the TP was in a non-algal particulate form. Occasional measurements in three other hypertrophic and saline lakes suggest them to be primarily light limited on the basis of their very high photosynthetic cover. These findings support the hypothesis of a primary P limitation for those lakes not light limited, and contradicts literature suggestions that nitrogen is the primary limiting element in tropical lakes.  相似文献   

19.
Holocene carbon burial by lakes in SW Greenland   总被引:3,自引:0,他引:3  
The role of the Arctic in future global change processes is predicted to be important because of the large carbon (C) stocks contained in frozen soils and peatlands. Lakes are an important component of arctic landscapes although their role in storing C is not well prescribed. The area around Kangerlussuaq, SW Greenland (66–68°N, 49–54°W) has extremely high lake density, with ∼20 000 lakes that cover about 14% of the land area. C accumulation rates and standing stock (kg C m−2), representing late- to mid-Holocene C burial, were calculated from AMS 14C-dated sediment cores from 11 lakes. Lake ages range from ∼10 000 cal yr  bp to ∼5400 cal yr  bp , and reflect the withdrawal of the ice sheet from west to east. Total standing stock of C accumulated in the studied lakes for the last ∼8000 years ranged from 28 to 71 kg C m−2, (mean: ∼42 kg C m−2). These standing stock determinations yield organic C accumulation rates of 3.5–11.5 g C m−2 yr−1 (mean: ∼6 g C m−2 yr−1) for the last 4500 years. Mean C accumulation rates are not different for the periods 8–4.5 and 4.5–0 ka, despite cooling trends associated with the neoglacial period after 4.5 ka. We used the mean C standing stock to estimate the total C pool in small lakes (<100 ha) of the Kangerlussuaq region to be ∼4.9 × 1013 g C. This C stock is about half of that estimated for the soil pool in this region (but in 5% of the land area) and indicates the importance of incorporating lakes into models of regional C balance at high latitudes.  相似文献   

20.
Abstract. Nitrogen, phosphorus and potassium were supplied to some Belgian fens of varying nutrient status and productivity. Plant growth in the lowest productive fen with a species-rich Caricion davallianae vegetation was strongly P-limited. N was ineffective when applied alone, but increased the effect of P-addition when applied together. Summer biomass and plant nutrient concentrations were monitored for four years, and showed partial recovery of nutrient limitation. In a more productive fen dominated by Carex lasiocarpa and in a fen meadow, nutrient limitation was less strong. N limited growth in the productive fen, and N and K were co-limiting in the fen meadow. The P-concentration in the productive fen vegetation showed a marked increase after P-fertilization, but it did not result in higher standing crop. The significance of P-limitation for the conservation of species rich low productive fens is discussed. P-limitation may be an essential feature in the conservation of low productive rich fens: because it is less mobile in the landscape than N and/or because it is an intrinsic property of this vegetation type. Plant nutrient concentrations and N:P-ratios may be used as an indication for the presence and type of nutrient limitation in the vegetation. We found N:P-ratios of 23 to 31 for a P-limited site and 8 to 15 in N-limited sites. This was in agreement with critical values from the literature: N:P > ca. 20 for P-limitation and N:P < 14 for N-limitation. Thus, this technique appears valid in the vegetation types that were studied here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号