首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aspergilli are filamentous, cosmopolitan and ubiquitous fungi which have significant impact on human, animal and plant welfare worldwide. Due to their extraordinary metabolic diversity, Aspergillus species are used in biotechnology for the production of a vast array of biomolecules. However, little is known about Aspergillus species that are able to adapt an endophytic lifestyle in Cupressaceae plant family and are capable of producing cytotoxic, antifungal and antibacterial metabolites. In this work, we report a possible ecological niche for pathogenic fungi such as Aspergillus fumigatus and Aspergillus flavus. Indeed, our findings indicate that A. fumigatus, A. flavus, Aspergillus niger var. niger and A. niger var. awamori adapt an endophytic lifestyle inside the Cupressaceous plants including Cupressus arizonica, Cupressus sempervirens var. fastigiata, Cupressus semipervirens var. cereiformis, and Thuja orientalis. In addition, we found that extracts of endophytic Aspergilli showed significant growth inhibition and cytotoxicity against the model fungus Pyricularia oryzae and bacteria such as Bacillus sp., Erwinia amylovora and Pseudomonas syringae. These endophytic Aspergilli also showed in vitro antifungal effects on the cypress fungal phytopathogens including Diplodia seriata, Phaeobotryon cupressi and Spencermartinsia viticola. In conclusion, our findings clearly support the endophytic association of Aspergilli with Cupressaceae plants and their possible role in protection of host plants against biotic stresses. Observed bioactivities of such endophytic Aspergilli may represent a significant potential for bioindustry and biocontrol applications.  相似文献   

2.
Psychrophilic microorganisms are cold-adapted organisms that have an optimum growth temperature below 15 °C, and often below 5 °C. Endophytic microorganisms live inside healthy plants and biosynthesize an array of secondary metabolites which confer major ecological benefits to their host. We provide information, for the first time, on an endophytic association between bioactive psychrophilic fungi and trees in Cupressaceae plant family living in temperate to cold, semi-arid habitats. We have recovered psychrophilic endophytic fungi (PEF) from healthy foliar tissues of Cupressus arizonica, Cupressus sempervirens and Thuja orientalis (Cupressaceae, Coniferales). In total, 23 such fungi were found out of 110 endophytic fungal isolates. They were identified as ascomycetous fungi, more specifically Phoma herbarum, Phoma sp. and Dothideomycetes spp., all from Dothideomycetes. The optimal growth temperature for all these 23 fungal isolates was 4 °C, and the PEF isolates were able to biosynthesize secondary metabolite at this temperature. Extracted metabolites from PEF showed significant antiproliferative/cytotoxic, antifungal and antibacterial effects against phytopathogenic fungi and bacteria. Of special interest was their antibacterial activity against the ice-nucleation active bacterium Pseudomonas syringae. Accordingly, we suggest that evergreen Cupressaceae plants may benefit from their psychrophilic endophytic fungi during cold stress. Whether such endosymbionts confer any ecological and evolutionary benefits to their host plants remains to be investigated in vivo.  相似文献   

3.
Trichoderma fungal species are universal soil residents that are also isolated from decaying wood, vegetables, infected mushroom and immunocompromised patients. Trichoderma species usually biosynthesize a plethora of secondary metabolites. In an attempt to explore endophytic fungi from healthy foliar tissues of the plant family Cuppressaceae, we explored Cupressus arizonica, C. sempervirens var. cereiformis, C. sempervirens var. fastigiata, C. sempervirens var. horizontalis, Juniperus excelsa, Juniperus sp. and Thuja orientalis plants and recovered several endophytic Trichoderma fungal strains from Trichoderma atroviride and Trichoderma koningii species. We found that the host plant species and biogeographical location of sampling affected the biodiversity and bioactivity of endophytic Trichoderma species. Furthermore, the bioactivity of Trichoderma isolates and the methanol extracts of their intra- and extra-cellular metabolites were assessed against a panel of pathogenic fungi and bacteria. Fungal growth inhibition, conidial cytotoxicity, minimum inhibitory concentration and minimum bactericidal concentration were evaluated and analyzed by statistical methods. Our data showed that both intra- and extracellular secondary metabolites from all endophytic isolates had significant cytotoxic and antifungal effects against the model target fungus Pyricularia oryzae and the cypress fungal phytopathogens Diplodia seriata, Phaeobotryon cupressi and Spencermartinsia viticola. Further research indicated their significant antimicrobial bioactivity against the model phytopathogenic bacteria Pseudomonas syringae, Erwinia amylovora and Bacillus sp., as well. Altogether, the above findings show for the first time the presence of T. atroviride and T. koningii as endophytic fungi in Cupressaceae plants and more importantly, the Trichoderma isolates demonstrate significant bioactivity that could be used in future for agrochemical/drug discovery and pathogen biocontrol.  相似文献   

4.
云南会泽铅锌矿废弃矿渣堆常见植物内生真菌多样性   总被引:2,自引:0,他引:2  
李东伟  徐红梅  梅涛  李海燕 《生态学报》2012,32(7):2288-2293
从云南会泽铅锌矿废弃矿渣堆上的常见植物硬毛南芥(Arabis hirsuta)、毛萼香茶菜(Rabbosia eriocalyx)和倒挂刺(Rosa longicuspis)等6种植物的690个组织块中共分离得到内生真菌495株,内生真菌的分离频率在0.42—0.93之间,平均为0.72,所有植物茎内生真菌的分离频率都明显高于叶(P<0.05)。经形态学鉴定,内生真菌分属于茎点霉属(Phoma)、交链孢属(Alternaria)和派伦霉属(Peyronellaea)等20个分类单元,其中茎点霉属和派伦霉属为该废弃矿渣堆上常见植物的优势内生真菌属。6种植物内生真菌的多样性指数在1.05—2.29之间,与其它非重金属污染环境植物内生真菌的多样性指数相似,说明在重金属污染地区仍然存在多种重金属耐受的内生真菌种类。6种植物内生真菌的相似性系数(0.455—0.833)表明,会泽铅锌矿区植物内生真菌的宿主专一性较小。  相似文献   

5.
This study is to evaluate the potential of endophytic fungi of Salvadora persica for the production of bioactive compounds against pathogenic bacteria and fungi. Forty-two fungal isolates were obtained from 135 young and old stem and 125 root segments. Those 42 isolates representing ten fungi include: Trichoderma sp. (the most common), two species of Alternaria, Rhizopus arrhizus and 6 sterile mycelia. The ten fungi were grown in liquid culture and their crude extracts were tested against pathogenic bacteria and fungi. Nine crude extracts gave positive reactions against pathogenic bacteria of which Alternaria sp. (A8) was chosen further study. The fungal isolate was growing as sterile mycelium and was identified by phylogenetic analyses based on LSU rDNA sequence data and it might represent undescribed species of Alternaria. Sixty-two bioactive chemical compounds were identified from the ethyl acetate crude extracts of Alternaria sp., of which the following were recorded as major compounds in the active sub-fractions. These compounds showed strong antibacterial activity in combination.  相似文献   

6.
从蔓草虫豆(Atylosia scarabaeoides)、余甘子(Phyllanthus emblica)和黄花稔(Sida acuta)等5种云南元江干热河谷植物的525个组织块中,共分离得到内生真菌371株,内生真菌的分离频率在0.61~0.92之间,且所有植物叶内生真菌的分离频率都明显高于茎(P<0.05)。经形态学鉴定,内生真菌分属于拟茎点霉属(Phomopsis sp.)、离蠕孢属(Bipolaris sp.)和交链孢属(Alternaria sp.)等32个分类单元。拟茎点霉属为干热河谷植物优势内生真菌属,从所有被调查植物的茎叶中都分离得到该属真菌,且相对分离频率高达12.90%~50.54%。内生真菌群落组成的多样性和相似性分析结果表明,云南元江干热河谷植物内生真菌多样性偏低、宿主专一性较小。  相似文献   

7.

Background

To monitor the richness in microbial inhabitants in the phyllosphere of apple trees cultivated under various cultural and environmental conditions, we developed an oligo-DNA macroarray for major pathogenic and non-pathogenic fungi and bacteria inhabiting the phyllosphere of apple trees.

Methods and Findings

First, we isolated culturable fungi and bacteria from apple orchards by an agar-plate culture method, and detected 32 fungal and 34 bacterial species. Alternaria, Aureobasidium, Cladosporium, Rhodotorula, Cystofilobasidium, and Epicoccum genera were predominant among the fungi, and Bacillus, Pseudomonas, Sphingomonas, Methylobacterium, and Pantoea genera were predominant among the bacteria. Based on the data, we selected 29 major non-pathogenic and 12 phytopathogenic fungi and bacteria as the targets of macroarray. Forty-one species-specific 40-base pair long oligo-DNA sequences were selected from the nucleotide sequences of rDNA-internal transcribed spacer region for fungi and 16S rDNA for bacteria. The oligo-DNAs were fixed on nylon membrane and hybridized with digoxigenin-labeled cRNA probes prepared for each species. All arrays except those for Alternaria, Bacillus, and their related species, were specifically hybridized. The array was sensitive enough to detect 103 CFU for Aureobasidium pullulans and Bacillus cereus. Nucleotide sequencing of 100 each of independent fungal rDNA-ITS and bacterial 16S-rDNA sequences from apple tree was in agreement with the macroarray data obtained using the same sample. Finally, we analyzed the richness in the microbial inhabitants in the samples collected from apple trees in four orchards. Major apple pathogens that cause scab, Alternaria blotch, and Marssonina blotch were detected along with several non-phytopathogenic fungal and bacterial inhabitants.

Conclusions

The macroarray technique presented here is a strong tool to monitor the major microbial species and the community structures in the phyllosphere of apple trees and identify key species antagonistic, supportive or co-operative to specific pathogens in the orchard managed under different environmental conditions.  相似文献   

8.
To clarify the effects of forest fragmentation and a change in tree species composition following urbanization on endophytic fungal communities, we isolated fungal endophytes from the foliage of nine tree species in suburban (Kashiwa City, Chiba) and rural (Mt. Wagakuni, Ibaraki; Mt. Takao, Tokyo) forests and compared the fungal communities between sites and host tree species. Host specificity was evaluated using the index of host specificity (Si), and the number of isolated species, total isolation frequency, and the diversity index were calculated. From just one to several host-specific species were recognized in all host tree species at all sites. The total isolation frequency of all fungal species on Quercus myrsinaefolia, Quercus serrata, and Chamaecyparis obtusa and the total isolation frequency of host-specific species on Q. myrsinaefolia, Q. serrata, and Eurya japonica were significantly lower in Kashiwa than in the rural forests. The similarity indices (nonmetric multidimensional scaling (NMS) and CMH) of endophytic communities among different tree species were higher in Kashiwa, as many tree species shared the same fungal species in the suburban forest. Endophytic fungi with a broad host range were grouped into four clusters suggesting their preference for conifer/broadleaves and evergreen/deciduous trees. Forest fragmentation and isolation by urbanization have been shown to cause the decline of host-specific fungal species and a decrease in β diversity of endophytic communities, i.e., endophytic communities associated with tree leaves in suburban forests were found to be depauperate.  相似文献   

9.
Fungal endophytes are the most ubiquitous and highly diverse microorganisms that inhabit the interior of healthy plants. They are important in plant ecology and offer untapped potential to improve plant health and productivity in agroecosystems. The endophytic assemblage of avocado is poorly understood; therefore, surveys of fungal endophytes of Persea americana Mill. (Avocado) in South Florida organic and conventional orchards were conducted. A total of 17 endophytic fungal species were recovered from healthy avocado terminal branches. Endophytic fungal species were identified by rDNA sequencing of the internal transcribed spacer (ITS) region, using UNITE Species Hypotheses to reliably assign a taxon name, and determined as belonging to the genera Alternaria, Cladosporium, Colletotrichum, Corynespora, Diaporthe, Lasiodiplodia, Neofusicoccum, Neopestalotiopsis, Phyllosticta, and Strelitziana. Endophyte community assemblage differed between organic and conventional agroecosystems. This is the first report of Alternaria eichhorniae, Cladosporium tenuissimum, Corynespora cassiicola, Colletotrichum alatae, Diaporthe fraxini-angustifoliae, Lasiodiplodia gonubiensis, Neofusicoccum algeriense, Neofusicoccum andinum, Neopestalotiopsis foedans, Phyllosticta capitalensis, and Strelitziana africana as endophytes of avocado. Evaluation using pathogenicity tests on avocado leaves and terminal branches showed that endophytic fungal isolates did not cause disease symptoms.  相似文献   

10.
This study was conducted to isolate endophytic fungi from oilseed rape (Brassica napus), to identify the fungal endophytes based on morphology and ITS (ITS1-5.8S rDNA-ITS2) sequences, and to evaluate their efficacy in suppression of the plant pathogenic fungi Sclerotinia sclerotiorum and Botrytis cinerea. Selected endophytic fungal isolates were further tested for promoting growth of oilseed rape in potting experiments. A total of 97 endophytic fungal isolates were obtained from roots (35), stems (49) and leaves (13) of B. napus. Forty fungal species were identified and most species (80%) belong to Ascomycota. The species composition is highly diversified with Simpson’s diversity index reaching 0.959. Alternaria alternata is the dominant species accounting for 12.4% of the isolates. Twenty-four isolates exhibited antifungal activity against S. sclerotiorum in dual cultures on potato dextrose agar forming inhibition zones of 3–17 mm in width. The culture filtrates of Aspergillus flavipes CanS-34A, Chaetomium globosum CanS-73, Clonostachys rosea CanS-43 and Leptosphaeria biglobosa CanS-51 in potato dextrose broth exhibited consistent and effective suppression of oilseed rape leaf blight caused by S. sclerotiorum. Fusarium oxysporum CanR-46 was detected capable of production of volatile organic compounds highly inhibitory to S. sclerotiorum and B. cinerea. Moreover, A. alternata CanL-18, Fusarium tricinctum CanR-70 and CanR-71r, and L. biglobosa CanS-51 exhibited growth-promoting effects on oilseed rape. These results suggest that B. napus harbors diversified endophytic fungi, from which potential biocontrol agents against S. sclerotiorum and B. cinerea, and for promoting growth of B. napus can be screened.  相似文献   

11.
In this paper, thermal (8-13 µm) and hyperspectral imaging in visible and near infrared (VNIR) and short wavelength infrared (SWIR) ranges were used to elaborate a method of early detection of biotic stresses caused by fungal species belonging to the genus Alternaria that were host (Alternaria alternata, Alternaria brassicae, and Alternaria brassicicola) and non-host (Alternaria dauci) pathogens to oilseed rape (Brassica napus L.). The measurements of disease severity for chosen dates after inoculation were compared to temperature distributions on infected leaves and to averaged reflectance characteristics. Statistical analysis revealed that leaf temperature distributions on particular days after inoculation and respective spectral characteristics, especially in the SWIR range (1000-2500 nm), significantly differed for the leaves inoculated with A. dauci from the other species of Alternaria as well as from leaves of non-treated plants. The significant differences in leaf temperature of the studied Alternaria species were observed in various stages of infection development. The classification experiments were performed on the hyperspectral data of the leaf surfaces to distinguish days after inoculation and Alternaria species. The second-derivative transformation of the spectral data together with back-propagation neural networks (BNNs) appeared to be the best combination for classification of days after inoculation (prediction accuracy 90.5%) and Alternaria species (prediction accuracy 80.5%).  相似文献   

12.
Many fungi behave as endophytes in grasses. Unlike the well known Epichloë/Neotyphodium species, most other endophytes are not capable of systemic colonization of plant organs, or seed transmission. The species diversity of the non-systemic endophytic mycobiota of grasses is large, dominated by ascomycetes. The relative abundance of species is very unequal, a few dominant taxa like Acremonium, Alternaria, Cladosporium, Epicoccum and Penicillium spp., occur in many grasses and locations. In contrast, many rare species are isolated only once in endophyte surveys. The possible ecological functions of endophytes are diverse, and often unknown. Latent pathogens represent a small fraction of endophytic mycobiotas, indicating that many non-pathogenic fungal taxa are able to enter plants overriding defence reactions. Some dominant species behave as latent saprotrophs, sporulating when the host tissue dies. Endofungal viruses and bacteria occur among endophytic species, but their effect in their hosts is largely unknown.  相似文献   

13.
Ash dieback, caused by the fungus Hymenoscyphus fraxineus, has threatened ash trees in Europe for more than two decades. However, little is known of how endophytic communities affect the pathogen, and no effective disease management tools are available. While European ash (Fraxinus excelsior) is severely affected by the disease, other more distantly related ash species do not seem to be affected. We hypothesise that fungal endophytic communities of tolerant ash species can protect the species against ash dieback, and that selected endophytes have potential as biocontrol agents. These hypotheses were tested by isolating members of the fungal communities of five tolerant ash species, and identifying them using ITS regions. Candidate endophytes were tested by an in vitro antagonistic assay with H.fraxineus. From a total of 196 isolates we identified 9 fungal orders, 15 families, and 40 species. Fungi in orders Pleosporales, such as Boeremia exigua and Diaporthe spp., and Hypocreales (e.g., Fusarium sp.), were recovered in most communities, suggesting they are common taxa. The in vitro antagonistic assay revealed five species with high antagonistic activity against H. fraxineus. These endophytes were identified based on ITS region as Sclerostagonospora sp., Setomelanomma holmii, Epicoccum nigrum, B. exigua and Fusarium sp. Three of these taxa have been described previously as antagonists of plant pathogenic microbes, and are of interest for future studies of their potential as biological control agents against ash dieback, especially for valuable ash trees in parks and urban areas.  相似文献   

14.
Seiridium cardinale, S. cupressi and S. unicorne represent three distinct species of fungi that cause cankers on Cupressus species and the disease collectively known as cypress canker. These fungi cannot be distinguished reliably from each other using morphological characters or ribosomal DNA sequence data. Here we describe a RFLP assay based on digesting β-tubulin amplicons with a single endonuclease, HaeIII, which easily can be used to distinguish among these three species. This RFLP assay provides an inexpensive and simple means of identifying Seiridium species, which include some of the most serious threats to trees in Cupressaceae.  相似文献   

15.
Endophytic fungi live within the healthy tissues of plants and can promote host species tolerance to different environmental stresses. However, most studies have been of plants in humid environments, and there are few reports of the benefits of such associations for plants of extreme environments. Our aims were to identify endophytic fungi using morphological taxonomy, to explore richness and estimate species frequency in a cactus, C. jamacaru, in Brazilian tropical dry forest (Caatinga). We thus identified 59 taxa, corresponding to 69.7 % of the total number of isolates; the other 30.3 % were sterile mycelia. Cladosporium cladosporioides and Fusarium oxysporum were the species most commonly isolated, followed by Acremonium implicatum, Aureobasidium pullulans, Trichoderma viride, Chrysonilia sitophila, and Aspergillus flavus. Forty-seven species are recorded for the first time as endophytic fungi of cacti, and 18 others as endophytes for Brazil; this suggests that C. jamacaru harbors a highly diverse fungal community as measured by a diversity index. However, species accumulation curves suggest that our study still underestimates endophyte diversity because it does not provide an exhaustive sample. To our knowledge, this is the first report of endophytic fungi from C. jamacaru in tropical dry forests.  相似文献   

16.
Endophytic fungi from Nyctanthes arbor-tristis were isolated and evaluated for their antimicrobial activity. A total of 19 endophytic fungi were isolated from 400 segments of healthy leaf and stem tissues of N. arbor-tristis. Eighteen endophytic fungi were obtained from leaf, while only ten from stem. Alternaria alternata had the highest colonization frequency (15.0%) in leaf, whereas Cladosporium cladosporioides ranked first in stem with a colonization frequency of 12%. The diversity and species richness were found higher in leaf tissues than in stem. The similarity indices between leaf and stem were 0.473 for Jaccard’s and 0.642 for the Sorenson index, respectively. Of 16, 12 (75%) endophytic fungal extracts showed antibacterial activity against either one or more pathogenic bacteria. The endophytic Nigrospora oryzae showed maximum inhibition against Shigella sp. and Pseudomonas aeruginosa. The leaf endophytes Colletotrichum dematium and Chaetomium globosum exhibited a broad range of anibacterial activity and were active against Shigella flexnii, Shigella boydii, Salmonella enteritidis, Salmonella paratyphi, and P. aeruginosa. Nine out of 16 (56.25%) endophytic fungi exhibited antifungal activity to one or more fungal pathogens. Colletotrichum dematium inhibited 55.87% of the radial growth of the phytopathogen Curvularia lunata. The antimicrobial activity of these endophytic microorganisms could be exploited in the biotechnological, medicinal, and agricultural industries.  相似文献   

17.
Xing YM  Chen J  Cui JL  Chen XM  Guo SX 《Current microbiology》2011,62(4):1218-1224
Endophytic fungi are rich in orchids and have great impacts on their host plants. 53 endophytes (30 isolates from Dendrobium devonianum and 23 endophytic fungi from D. thyrsiflorum) were isolated, respectively, from roots and stems of Dendrobium species. All the fungi were identified by way of morphological and/or molecular biological methods. 30 endophytic fungi in D. devonianum were categorized into 11 taxa and 23 fungal endophytes in D. thyrsiflorum were grouped into 11 genera, respectively. Fusarium was the dominant species of the two Dendrobium species in common. Antimicrobial activity of ethanol extract of fermentation broth of these fungi was explored using agar diffusion test. 10 endophytic fungi in D. devonianum and 11 in D. thyrsiflorum exhibited antimicrobial activity against at least one pathogenic bacterium or fungus among 6 pathogenic microbes (Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus). Out of the fungal endophytes isolated from D. devonianum and D. thyrsiflorum, Phoma displayed strong inhibitory activity (inhibition zones in diameter >20 mm) against pathogens. Epicoccum nigrum from D. thyrsiflorum exhibited antibacterial activity even stronger than ampicillin sodium. Fusarium isolated from the two Dendrobium species was effective against the pathogenic bacterial as well as fungal pathogens. The study reinforced the assumption that endophytic fungi isolated from different Dendrobium species could be of potential antibacterial or antifungal resource.  相似文献   

18.
A total of 89 freshly harvested soybean seed samples (Roundup Ready [transgenic] soybean cultivars) from the 2010/2011 crop season were collected from five locations in the Northern Pampean Region II, Argentina. These samples were analyzed for internal mycoflora, toxin production of isolated fungi, and for a range of mycotoxins. Mycotoxin analysis of aflatoxins (AFs), zearalenone (ZEA), fumonisins (FBs) and ochratoxin A (OTA) was done by HPLC-FLD (high performance liquid chromatography with postcolumn fluorescence derivatization), alternariol and alternariol monomethyl ether with HPLC-UV (HPLC with UV detection), trichothecenes (deoxynivalenol, nivalenol, T-2 toxin, HT-2 toxin, fusarenon X, 3-acetyldeoxynivalenol and 15-acetyldeoxynivalenol were analyzed by GC-ECD (gas chromatography with electron capture detector). Fungal colonization was more frequently found for samples from América, Saladillo and Trenque Lauquen than for samples from General Villegas and Trenel; a total of 1,401 fungal isolates were obtained from the soybean seeds. The most commonly identified fungal genera were Alternaria, Sclerotinia, Chaetomium, Cladosporium, Aspergillus, Penicillium, Phomopsis and Fusarium. Alternaria alternata, A.tenuissima, Aspergillus flavus, Penicillium citrinum, Fusarium verticillioides and F.semitectum were the predominant toxigenic fungal species. Mycotoxin production was confirmed for several isolates of toxigenic species, including Aspergillus flavus, A. parasiticus, Alternaria alternata, A.tenuissima, Fusarium graminearum, F semitectum and F. verticillioides. In particular, the percentage of mycotoxigenic Alternaria alternata (100 %), A.tenuissima (95 %) and aflatoxigenic strains of A. flavus (57 %) were remarkably high. Although none of the mycotoxins, AFs, ZEA, FBs, trichothecenes and OTA, were directly detected in samples of soybean seeds, the frequent presence of toxigenic fungal species indicates the risk of multiple mycotoxin contamination.  相似文献   

19.
《Fungal biology》2020,124(10):864-876
To examine how host plant genotype, endophytic fungal species, and their interaction may affect growth and key chemical content and composition in an important orchid species, we assessed four Dendrobium catenatum cultivars co-cultured with three fungi previously isolated from D. catenatum. Fungal endophytes (Tulasnella sp., Leptosphaeria microscopica, and Guignardia sp.) specifically affected the growth and chemical composition of the four cultivars. Fungal infection significantly increased certain growth traits, especially mid-stem thickness, stem biomass, stem polysaccharide and ethanol-soluble extractive content, and leaf flavonoid and phenol content. Presence or abundance of some key chemical components was also altered by fungal treatment. These increases and alterations were highly dependent on the host genotype. The findings of this study contribute to our understanding of Dendrobium and endophytic fungi interactions, and provide vital information for improving the development and use of endophytic fungi in D. catenatum breeding.  相似文献   

20.
《Fungal biology》2023,127(9):1267-1275
Social bees can establish interactions with microorganisms to keep their colonies free of pathogens and parasites by developing different protection strategies. We explored the fungal microbiota isolated from three species of stingless bees, Tetragonisca fiebrigi, Plebeias sp., and Scaptotrigona jujuyensis, and its potential ability to suppress pathogenic microorganisms of A. mellifera, namely Paenibacillus larvae, Ascosphaera apis and Aspergillus flavus, which were tested and evaluated. Six filamentous fungal strains, Trametes hirsuta, Alternaria alternata, Curvularia spicifera, Skeletocutis sp., Alternaria tenuissima, Monascus spp., as well as the yeast Wickerhamomyces anomalus, were selected for trials and isolated from the heads of foraging bees. The fungal strains were identified by macroscopic and microscopic taxonomic characteristics and by sequencing of the ITS1–5.8S–ITS2 region of ribosomal DNA. All fungal strains inhibited these pathogens of A. mellifera. We also evaluated the effect of the secondary metabolites extracted with and without ethanol. Both metabolites showed antimicrobial properties, and our results suggest that fungi isolated from stingless bees produce bioactive compounds with antibacterial and antifungal effects that could be used to treat Apis mellifera colony diseases and maintain colony health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号