首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Syndecans are transmembranous heparan sulfate proteoglycans abundant in the surface of all adherent mammalian cells and involved in vital cellular functions. In this study, we found syndecan-1, -2, -3, and -4 to be constitutively expressed by human umbilical vein endothelial cells. The exposure of the ectodomains of syndecan-1 and -4 to the cell surface and their constitutive shedding into the extracellular compartment was measured by immunoassays. In the presence of plasmin and thrombin, shedding was accelerated and monitored by detection and identification of (35)S-labeled proteoglycans. To elucidate the cleavage site of the syndecan ectodomains, we used a cell-free in vitro system with enzyme and substrate as the only reactants. For this purpose, we constructed recombinant fusion proteins of the syndecan-1 and -4 ectodomain together with maltose-binding protein and enhanced yellow fluorescent protein as reporter proteins attached to the N and C termini via oligopeptide linkers. After protease treatment of the fusion proteins, the electrophoretically resolved split products were sequenced and cleavage sites of the ectodomain were identified. Plasmin generated cleavage sites at Lys(114) downward arrowArg(115) and Lys(129) downward arrowVal(130) in the ectodomain of syndecan-4. In thrombin proteolysates of the syndecan-4 ectodomain, the cleavage site Lys(114) downward arrowArg(115) was also identified. The cleavage sites for plasmin and thrombin within the syndecan-4 ectodomain were not present in the syndecan-1 ectodomain. Cleavage of the syndecan-1 fusion protein by thrombin occurred only at a control cleavage site (Arg downward arrowGly) introduced into the linker region connecting the ectodomain with the enhanced yellow fluorescent protein. Because both plasmin and thrombin are involved in thrombogenic and thrombolytic processes in the course of the pathogenesis of arteriosclerosis, the detachment of heparan sulfate-bearing ectodomains could be relevant for the development of arteriosclerotic plaques and recruitment of mononuclear blood cells to the plaque.  相似文献   

2.
The syndecan family of four transmembrane heparan sulfate proteoglycans binds a variety of soluble and insoluble extracellular effectors. Syndecan extracellular domains (ectodomains) can be shed intact by proteolytic cleavage of their core proteins, yielding soluble proteoglycans that retain the binding properties of their cell surface precursors. Shedding is accelerated by PMA activation of protein kinase C, and by ligand activation of the thrombin (G-protein-coupled) and EGF (protein tyrosine kinase) receptors (Subramanian, S.V., M.L. Fitzgerald, and M. Bernfield. 1997. J. Biol. Chem. 272:14713-14720). Syndecan-1 and -4 ectodomains are found in acute dermal wound fluids, where they regulate growth factor activity (Kato, M., H. Wang, V. Kainulainen, M.L. Fitzgerald, S. Ledbetter, D.M. Ornitz, and M. Bernfield. 1998. Nat. Med. 4:691-697) and proteolytic balance (Kainulainen, V., H. Wang, C. Schick, and M. Bernfield. 1998. J. Biol. Chem. 273:11563-11569). However, little is known about how syndecan ectodomain shedding is regulated.To elucidate the mechanisms that regulate syndecan shedding, we analyzed several features of the process that sheds the syndecan-1 and -4 ectodomains. We find that shedding accelerated by various physiologic agents involves activation of distinct intracellular signaling pathways; and the proteolytic activity responsible for cleavage of syndecan core proteins, which is associated with the cell surface, can act on unstimulated adjacent cells, and is specifically inhibited by TIMP-3, a matrix-associated metalloproteinase inhibitor. In addition, we find that the syndecan-1 core protein is cleaved on the cell surface at a juxtamembrane site; and the proteolytic activity responsible for accelerated shedding differs from that involved in constitutive shedding of the syndecan ectodomains. These results demonstrate the existence of highly regulated mechanisms that can rapidly convert syndecans from cell surface receptors or coreceptors to soluble heparan sulfate proteoglycan effectors. Because the shed ectodomains are found and function in vivo, regulation of syndecan ectodomain shedding by physiological mediators indicates that shedding is a response to specific developmental and pathophysiological cues.  相似文献   

3.
Epidermal growth factor (EGF) family ligands are derived by proteolytic cleavage of the ectodomains of integral membrane precursors. Previously, we established that tumor necrosis factor alpha-converting enzyme (TACE/ADAM17) is a physiologic transforming growth factor-alpha (TGF-alpha) sheddase, and we also demonstrated enhanced shedding of amphiregulin (AR) and heparin-binding (HB)-EGF upon restoration of TACE activity in TACE-deficient EC-2 fibroblasts. Here we extended these results by showing that purified soluble TACE cleaved single sites in the juxtamembrane stalks of mouse pro-HB-EGF and pro-AR ectodomains in vitro. For pro-HB-EGF, this site matched the C terminus of the purified human growth factor, and we speculate that the AR cleavage site is also physiologically relevant. In contrast, ADAM9 and -10, both implicated in HB-EGF shedding, failed to cleave the ectodomain or cleaved at a nonphysiologic site, respectively. Cotransfection of TACE in EC-2 cells enhanced phorbol myristate acetate-induced but not constitutive shedding of epiregulin and had no effect on betacellulin (BTC) processing. Additionally, soluble TACE did not cleave the juxtamembrane stalks of either pro-BTC or pro-epiregulin ectodomains in vitro. Substitution of the shorter pro-BTC juxtamembrane stalk or truncation of the pro-TGF-alpha stalk to match the pro-BTC length reduced TGF-alpha shedding from transfected cells to background levels, whereas substitution of the pro-BTC P2-P2' sequence reduced TGF-alpha shedding less dramatically. Conversely, substitution of the pro-TGF-alpha stalk or lengthening of the pro-BTC stalk, especially when combined with substitution of the pro-TGF-alpha P2-P2' sequence, markedly increased BTC shedding. These results indicate that efficient TACE cleavage is determined by a combination of stalk length and scissile bond sequence.  相似文献   

4.
Syndecans are constitutively shed from growing epithelial cells as the part of normal cell surface turnover. However, increased serum levels of the soluble syndecan ectodomain have been reported to occur during bacterial infections. The aim of this study was to evaluate the potential of lipopolysaccharide (LPS) from the periodontopathogen Porphyromonas gingivalis to induce the shedding of syndecan-1 expressed by human gingival epithelial cells. We showed that the syndecan-1 ectodomain is constitutively shed from the cell surface of human gingival epithelial cells. This constitutive shedding corresponding to the basal level of soluble syndecan-1 ectodomain was significantly increased when cells were stimulated with P. gingivalis LPS and reached a level comparable to that caused by phorbol myristic acid (PMA), an activator of protein kinase C (PKC) which is well known as a shedding agonist. The syndecan-1 shedding was paralleled by pro-inflammatory cytokine interleukin-1 beta (IL-1beta), IL-6, IL-8, and tumor necrosis factor alpha (TNF-alpha) release. Indeed, secretion of IL-1beta and TNF-alpha increased following stimulation by P. gingivalis LPS and PMA, respectively. When recombinant forms of these proteins were added to the cell culture, they induced a concentration-dependent increase in syndecan-1 ectodomain shedding. A treatment with IL-1beta converting enzyme (ICE) specific inhibitor prevented IL-1beta secretion by epithelial cells stimulated by P. gingivalis LPS and decreased the levels of shed syndecan-1 ectodomain. We also observed that PMA and TNF-alpha stimulated matrix metalloproteinase-9 secretion, whereas IL-1beta and P. gingivalis LPS did not. Our results demonstrated that P. gingivalis LPS stimulated syndecan-1 shedding, a phenomenon that may be mediated in part by IL-1beta, leading to an activation of intracellular signaling pathways different from those involved in PMA stimulation.  相似文献   

5.
Syndecans are a family of four transmembrane heparan sulfate proteoglycans that act as coreceptors for a variety of cell-surface ligands and receptors. Receptor activation in several cell types leads to shedding of syndecan-1 and syndecan-4 ectodomains into the extracellular space by metalloproteinase-mediated cleavage of the syndecan core protein. We have found that 3T3-L1 adipocytes express syndecan-1 and syndecan-4 and that their ectodomains are shed in response to insulin in a dose-, time-, and metalloproteinase-dependent manner. Insulin responsive shedding is not seen in 3T3-L1 fibroblasts. This shedding involves both Ras-MAP kinase and phosphatidylinositol 3-kinase pathways. In response to insulin, adipocytes are known to secrete active lipoprotein lipase, an enzyme that binds to heparan sulfate on the luminal surface of capillary endothelia. Lipoprotein lipase is transported as a stable enzyme from its site of synthesis to its site of action, but the transport mechanism is unknown. Our studies indicate that shed adipocyte syndecans associate with lipoprotein lipase. The shed syndecan ectodomain can stabilize active lipoprotein lipase. These data suggest that syndecan ectodomains, shed by adipocytes in response to insulin, are physiological extracellular chaperones for lipoprotein lipase as it translocates from its site of synthesis to its site of action.  相似文献   

6.
Ectodomain shedding generates soluble isoforms of cell-surface proteins, including angiotensin-converting enzyme (ACE). Increasing evidence suggests that the juxtamembrane stalk of ACE, where proteolytic cleavage-release occurs, is not the major site of sheddase recognition. The role of the cytoplasmic domain has not been completely defined. We deleted the cytoplasmic domain of human testis ACE and found that this truncation mutant (ACE-DeltaCYT) was shed constitutively from the surface of transfected CHO-K1 cells. Phorbol ester treatment produced only a slight increase in shedding of ACE-DeltaCYT, unlike the marked stimulation seen with wild-type ACE. However, for both wild-type ACE and ACE-DeltaCYT, shedding was inhibited by the peptide hydroxamate TAPI and the major cleavage site was identical, indicating the involvement of similar or identical sheddases. Cytochalasin D markedly increased the basal shedding of wild-type ACE but had little effect on the shedding of ACE-DeltaCYT. These data suggest that the cytoplasmic domain of ACE interacts with the actin cytoskeleton and that this interaction is a negative regulator of ectodomain shedding.  相似文献   

7.
The ectodomain shedding of syndecan-1, a major cell surface heparan sulfate proteoglycan, modulates molecular and cellular processes central to the pathogenesis of inflammatory diseases. Syndecan-1 shedding is a highly regulated process in which outside-in signaling accelerates the proteolytic cleavage of syndecan-1 ectodomains at the cell surface. Several extracellular agonists that induce syndecan-1 shedding and metalloproteinases that cleave syndecan-1 ectodomains have been identified, but the intracellular mechanisms that regulate syndecan-1 shedding are largely unknown. Here we examined the role of the syndecan-1 cytoplasmic domain in the regulation of agonist-induced syndecan-1 shedding. Our results showed that the syndecan-1 cytoplasmic domain is essential because mutation of invariant cytoplasmic Tyr residues abrogates ectodomain shedding, but not because it is Tyr phosphorylated upon shedding stimulation. Instead, our data showed that the syndecan-1 cytoplasmic domain binds to Rab5, a small GTPase that regulates intracellular trafficking and signaling events, and this interaction controls the onset of syndecan-1 shedding. Syndecan-1 cytoplasmic domain bound specifically to Rab5 and preferentially to inactive GDP-Rab5 over active GTP-Rab5, and shedding stimulation induced the dissociation of Rab5 from the syndecan-1 cytoplasmic domain. Moreover, the expression of dominant-negative Rab5, unable to exchange GDP for GTP, interfered with the agonist-induced dissociation of Rab5 from the syndecan-1 cytoplasmic domain and significantly inhibited syndecan-1 shedding induced by several distinct agonists. Based on these data, we propose that Rab5 is a critical regulator of syndecan-1 shedding that serves as an on-off molecular switch through its alternation between the GDP-bound and GTP-bound forms.  相似文献   

8.
Apical membrane antigen-1 (AMA1) is a conserved apicomplexan protein that plays an important but undefined role in host cell invasion. We have studied the fate of Plasmodium falciparum AMA1 (PfAMA1) during erythrocyte invasion by the malaria merozoite, and compared it with that of the Toxoplasma gondii orthologue, TgAMA1. Shedding of the PfAMA1 ectodomain goes essentially to completion during invasion, and occurs predominantly or exclusively via juxtamembrane cleavage at the previously identified sheddase cleavage site, Thr517. Only the resulting juxtamembrane stub of the ectodomain is efficiently carried into the host cell, and this remains distributed around the plasma membrane of the intracellular ring-stage parasite. Inhibition of normal shedding, however, results in proteolysis at an intramembrane, rhomboid-like cleavage site, and PfAMA1 is susceptible to cleavage by Drosophila rhomboid-1, showing that it can be a substrate for intramembrane cleavage but is not normally processed in this manner. In contrast, shedding of TgAMA1 from the surface of extracellular tachyzoites occurs exclusively via cleavage within the luminal half of its transmembrane domain by a rhomboid-like protease. Also unlike PfAMA1, complete TgAMA1 shedding does not accompany Toxoplasma invasion as the intact protein was readily detected on the surface of newly invaded tachyzoites. This work reveals unexpected differences in the manner in which Plasmodium and Toxoplasma shed AMA1 from the surface of invasive zoites, and demonstrates the presence at the malaria merozoite surface of a rhomboid-like protease.  相似文献   

9.
Ectodomain shedding of cell surface membrane-anchoring proteins is an important process in a wide variety of physiological events(1, 2). Tumor necrosis factor alpha (TNF-alpha) converting enzyme (TACE) is the first discovered mammalian sheddase responsible for cleavage of several important surface proteins, including TNF-alpha, TNF p75 receptor, L-selectin, and transforming growth factor-a. Phorbol myristate acetate (PMA) has long been known as a potent agent to enhance ectodomain shedding. However, it is not fully understood how PMA activates TACE and induces ectodomain shedding. Here, we demonstrate that PMA induces both reactive oxygen species (ROS) generation and TNF p75 receptor shedding in Mono Mac 6 cells, a human monocytic cell line, and l-selectin shedding in Jurkat T-cells. ROS scavengers significantly attenuated PMA-induced TNF p75 receptor shedding. Exogenous H2O2 mimicked PMA-induced enhancement of ectodomain shedding, and H2O2-induced shedding was blocked by TAPI, a TACE inhibitor. Furthermore, both PMA and H2O2 failed to cause ectodomain shedding in a cell line that lacks TACE activity. By use of an in vitro TACE cleavage assay, H2O2 activated TACE that had been rendered inactive by the addition of the TACE inhibitory pro-domain sequence. We presume that the mechanism of TACE activation by H2O2 is due to an oxidative attack of the pro-domain thiol group and disruption of its inhibitory coordination with the Zn++ in the catalytic domain of TACE. These results demonstrate that ROS production is involved in PMA-induced ectodomain shedding and implicate a role for ROS in other shedding processes.  相似文献   

10.
Dassler K  Kaup M  Tauber R  Fuchs H 《FEBS letters》2003,536(1-3):25-29
The human transferrin receptor (TfR) is proteolytically cleaved at R100 within the juxtamembrane stalk and to a lesser extent at an alternative site. We examined the effect of stalk mutations on human TfR shedding in transfected CHO cells. Point mutations at R100 led to an increase in alternative shedding while the R100 cleavage product was undetectable. Replacing the TfR-stalk by the corresponding sequences from tumor necrosis factor-alpha or interleukin-6 receptor also led to TfR ectodomain shedding. These results show that cleavage at alternative sites can compensate for suppressed cleavage at the major site and inhibitor studies reveal that at least three metalloproteases are involved in the shedding process.  相似文献   

11.
12.
Signaling of the pleiotropic cytokine Interleukin-6 (IL-6) is coordinated by membrane-bound and soluble forms of the IL-6 receptor (IL-6R) in processes called classic and trans-signaling, respectively. The soluble IL-6R is mainly generated by ADAM10- and ADAM17-mediated ectodomain shedding. Little is known about the role of the 52-amino acid-residue-long IL-6R stalk region in shedding and signal transduction. Therefore, we generated and analyzed IL-6R stalk region deletion variants for cleavability and biological activity. Deletion of 10 amino acids of the stalk region surrounding the ADAM17 cleavage site substantially blocked IL-6R proteolysis by ADAM17 but only slightly affected proteolysis by ADAM10. Interestingly, additional deletion of the remaining five juxtamembrane-located amino acids also abrogated ADAM10-mediated IL-6R shedding. Larger deletions within the stalk region, that do not necessarily include the ADAM17 cleavage site, also reduced ADAM10 and ADAM17-mediated IL-6R shedding, questioning the importance of cleavage site recognition. Furthermore, we show that a 22-amino acid-long stalk region is minimally required for IL-6 classic signaling. The gp130 cytokine binding sites are separated from the plasma membrane by ∼96 Å. 22 amino acid residues, however, span maximally 83.6 Å (3.8 Å/amino acid), indicating that the three juxtamembrane fibronectin domains of gp130 are not necessarily elongated but somehow flexed to allow IL-6 classic signaling. Our findings underline a dual role of the IL-6R stalk region in IL-6 signaling. In IL-6 trans-signaling, it regulates proper proteolysis by ADAM10 and ADAM17. In IL-6 classic-signaling, it acts as a spacer to ensure IL-6·IL-6R·gp130 signal complex formation.  相似文献   

13.
The role of juxtamembrane stalk glycosylation in modulating stalk cleavage and shedding of membrane proteins remains unresolved, despite reports that proteins expressed in glycosylation-deficient cells undergo accelerated proteolysis. We have constructed stalk glycosylation mutants of angiotensin-converting enzyme (ACE), a type I ectoprotein that is vigorously shed when expressed in Chinese hamster ovary cells. Surprisingly, stalk glycosylation did not significantly inhibit release. Introduction of an N-linked glycan directly adjacent to the native stalk cleavage site resulted in a 13-residue, proximal displacement of the cleavage site, from the Arg-626/Ser-627 to the Phe-640/Leu-641 bond. Substitution of the wild-type stalk with a Ser-/Thr-rich sequence known to be heavily O-glycosylated produced a mutant (ACE-JGL) in which this chimeric stalk was partially O-glycosylated; incomplete glycosylation may have been due to membrane proximity. Relative to levels of cell-associated ACE-JGL, rates of basal, unstimulated release of ACE-JGL were enhanced compared with wild-type ACE. ACE-JGL was cleaved at an Ala/Thr bond, 14 residues from the membrane. Notably, phorbol ester stimulation and TAPI (a peptide hydroxamate) inhibition of release-universal characteristics of regulated ectodomain shedding-were significantly blunted for ACE-JGL, as was a formerly undescribed transient stimulation of ACE release by 3, 4-dichloroisocoumarin. These data indicate that (1) stalk glycosylation modulates but does not inhibit ectodomain shedding; and (2) a Ser-/Thr-rich, O-glycosylated stalk directs cleavage, at least in part, by an alternative shedding protease, which may resemble an activity recently described in TNF-alpha convertase null cells [Buxbaum, J. D., et al. (1998) J. Biol. Chem. 273, 27765-27767].  相似文献   

14.
Syndecans are transmembrane heparan sulphate proteoglycans. Their role in the development of the malignant phenotype is ambiguous and depends upon the particular type of cancer. Nevertheless, syndecans are promising targets in cancer therapy, and it is important to elucidate the mechanisms controlling their various cellular effects. According to earlier studies, both syndecan-1 and syndecan-2 promote malignancy of HT-1080 human fibrosarcoma cells, by increasing the proliferation rate and the metastatic potential and migratory ability, respectively. To better understand their tumour promoter role in this cell line, syndecan expression levels were modulated in HT-1080 cells and the growth rate, chemotaxis and invasion capacity were studied. For in vivo testing, syndecan-1 overexpressing cells were also inoculated into mice. Overexpression of full length or truncated syndecan-1 lacking the entire ectodomain but containing the four juxtamembrane amino acids promoted proliferation and chemotaxis. These effects were accompanied by a marked increase in syndecan-2 protein expression. The pro-migratory and pro-proliferative effects of truncated syndecan-1 were not observable when syndecan-2 was silenced. Antisense silencing of syndecan-2, but not that of syndecan-1, inhibited cell migration. In vivo, both full length and truncated syndecan-1 increased tumour growth and metastatic rate. Based on our in vitro results, we conclude that the tumour promoter role of syndecan-1 observed in HT-1080 cells is independent of its ectodomain; however, in vivo the presence of the ectodomain further increases tumour proliferation. The enhanced migratory ability induced by syndecan-1 overexpression is mediated by syndecan-2. Overexpression of syndecan-1 also leads to activation of IGF1R and increased expression of Ets-1. These changes were not evident when syndecan-2 was overexpressed. These findings suggest the involvement of IGF1R and Ets-1 in the induction of syndecan-2 synthesis and stimulation of proliferation by syndecan-1. This is the first report demonstrating that syndecan-1 enhances malignancy of a mesenchymal tumour cell line, via induction of syndecan-2 expression.  相似文献   

15.
SHPS-1 is a transmembrane protein whose cytoplasmic region undergoes tyrosine phosphorylation and then binds the protein-tyrosine phosphatase SHP-2. Formation of the SHPS-1-SHP-2 complex is implicated in regulation of cell migration. In addition, SHPS-1 and its ligand CD47 constitute an intercellular recognition system that contributes to inhibition of cell migration by cell-cell contact. The ectodomain of SHPS-1 has now been shown to be shed from cells in a reaction likely mediated by a metalloproteinase. This process was promoted by activation of protein kinase C or of Ras, and the released ectodomain exhibited minimal CD47-binding activity. Metalloproteinases catalyzed the cleavage of a recombinant SHPS-1-Fc fusion protein in vitro, and the primary cleavage site was localized to the juxtamembrane region of SHPS-1. Forced expression of an SHPS-1 mutant resistant to ectodomain shedding impaired cell migration, cell spreading, and reorganization of the actin cytoskeleton. It also increased the tyrosine phosphorylation of paxillin and FAK triggered by cell adhesion. These results suggest that shedding of the ectodomain of SHPS-1 plays an important role in regulation of cell migration and spreading by this protein.  相似文献   

16.
Exploitation of host components by microbes to promote their survival in the hostile host environment has been a recurring theme in recent years. Available data indicate that bacterial pathogens activate ectodomain shedding of host cell surface molecules to enhance their virulence. We reported previously that several major bacterial pathogens activate ectodomain shedding of syndecan-1, the major heparan sulfate proteoglycan of epithelial cells. Here we define the molecular basis of how Staphylococcus aureus activates syndecan-1 shedding. We screened mutant S. aureus strains devoid of various toxin and protease genes and found that only strains lacking both alpha-toxin and beta-toxin genes do not stimulate shedding. Mutations in the agr global regulatory locus, which positively regulates expression of alpha- and beta-toxins and other exoproteins, also abrogated the capacity to stimulate syndecan-1 shedding. Furthermore, purified S. aureus alpha- and beta-toxins, but not enterotoxin A and toxic shock syndrome toxin-1, rapidly potentiated shedding in a concentration-dependent manner. These results establish that S. aureus activates syndecan-1 ectodomain shedding via its two virulence factors, alpha- and beta-toxins. Toxin-activated shedding was also selectively inhibited by antagonists of the host cell shedding mechanism, indicating that alpha- and beta-toxins shed syndecan-1 ectodomains through stimulation of the host cell's shedding machinery. Interestingly, beta-toxin, but not alpha-toxin, also enhanced ectodomain shedding of syndecan-4 and heparin-binding epidermal growth factor. Because shedding of these ectodomains has been implicated in promoting bacterial pathogenesis, activation of ectodomain shedding by alpha-toxin and beta-toxin may be a previously unknown virulence mechanism of S. aureus.  相似文献   

17.
Proteolytic processing shapes cellular interactions with the environment. As a pathway of unconventional protein secretion, ectodomain shedding releases soluble proteoforms of membrane-anchored proteins. This can trigger subsequent cleavage within the membrane stub and the release of additional soluble fragments to intra- and extracellular environments. Distinct membrane-bound proteases, or sheddases, may cleave the same membrane proteins at different sites. Determination of these precise cleavage sites is important, as differently processed proteoforms may exhibit distinct physiological properties and execute antagonistic paracrine and endocrine signaling functions. Conventional quantitative proteomic approaches reliably identify shed proteoforms, but typically not their termini and are thus not able distinguish between functionally different proteoforms differing only by a few amino acids. Dedicated positional proteomics overcomes this challenge and enables proteome-wide identification of protein N- and C-termini. Here, we review positional proteomics techniques, summarize their application to ectodomain shedding and discuss current challenges and developments.  相似文献   

18.
The ectodomain of the transmembrane form of HB-EGF (proHB-EGF) is cleaved at the cell surface by proteases, yielding a soluble growth factor. A number of stimuli, including TPA, accelerate this cleavage. However, proHB-EGF is shed constitutively under normal culture conditions without any particular stimuli. We demonstrate here that constitutive cleavage resulted largely from factor(s) contained in supplemented FCS in a culture medium. Analysis of serum factors, including digestion with enzymes, separation by thin layer chromatography, and shedding assay with purified phospholipids, revealed that lysophosphatidic acid (LPA) is a major factor in FCS for stimulation of proHB-EGF shedding. We also studied here ectodomain shedding of two kinds of mutant form of proHB-EGF which have a single amino acid substitution around the putative cleavage sites. These mutant forms showed resistance to stimuli of both TPA and LPA, suggesting that proHB-EGF is cleaved at the similar site by stimulation with TPA and LPA.  相似文献   

19.
The aspartyl protease BACE1 cleaves the amyloid precursor protein and the sialyltransferase ST6Gal I and is important in the pathogenesis of Alzheimer's disease. The normal function of BACE1 and additional physiological substrates have not been identified. Here we show that BACE1 acts on the P-selectin glycoprotein ligand 1 (PSGL-1), which mediates leukocyte adhesion in inflammatory reactions. In human monocytic U937 and human embryonic kidney 293 cells expressing endogenous or transfected BACE1, PSGL-1 was cleaved by BACE1 to generate a soluble ectodomain and a C-terminal transmembrane fragment. No evidence of the cleavage fragment was seen in primary cells derived from mice deficient in BACE1. By using deletion constructs and enzymatic deglycosylation of the C-terminal PSGL-1 fragments, the cleavage site in PSGL-1 was mapped to the juxtamembrane region within the ectodomain. In an in vitro assay BACE1 catalyzed the formation of the PSGL-1 products seen in vivo. The cleavage occurred at a Leu-Ser peptide bond as identified by mass spectrometry using a synthetic peptide. We conclude that PSGL-1 is an additional substrate for BACE1.  相似文献   

20.
Fan H  Derynck R 《The EMBO journal》1999,18(24):6962-6972
A variety of transmembrane proteins, such as transforming growth factor-alpha (TGF-alpha), tumor necrosis factor-alpha (TNF-alpha) and L-selectin, undergo shedding, i.e. cleavage of the ectodomain, resulting in release of a soluble protein. Although the physiological relevance of ectodomain shedding is well recognized, little is known about the signaling mechanisms activating this process. We show that growth factor activation of cell surface tyrosine kinase receptors induces ectodomain cleavage of transmembrane TGF-alpha through activation of the Erk MAP kinase signaling cascade without the need for new protein synthesis. In addition, expression of constitutively activated MEK1 or its downstream target Erk2 MAP kinase was sufficient to stimulate TGF-alpha shedding. The basal cleavage level in the absence of exogenous growth factor stimulation was due to p38 MAP kinase signaling. Accordingly, a constitutively activated MKK6, a p38 activator, activated TGF-alpha shedding in the absence of exogenous stimuli. In addition to TGF-alpha shedding, these mechanisms also mediate L-selectin and TNF-alpha cleavage. Thus, L-selectin shedding by neutrophils, induced by N-formylmethionyl-leucyl-phenylalanine, was strongly inhibited by inhibitors of Erk MAP kinase or p38 MAP kinase signaling. Our results indicate that activation of Erk and p38 signaling pathways may represent a general physiological mechanism to induce shedding of a variety of transmembrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号