首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In the present study, we have localized immunohistochemically S-100 protein, glial fibrillary acidic (GFA) protein, and neuron-specific enolase (NSE) by the unlabelled antibody peroxidase-antiperoxidase technique. Special attention was paid to the influence of fixation and of pretreatment of sections with proteolytic enzymes. It appeared that the final immunostaining of a given antigen largely depends on the fixative and on the species used. Moreover, pepsin pretreatment proved to be necessary to unmask S-100 protein in quail and GFA protein in rat. S-100 protein (rat, human) and GFA protein (human) immunoreactivities were detected in the folliculo-stellate (FS) cells. In quail, S-100 protein was also found in cells, which were not arranged around a follicular lumen and, in rat, the endothelial cells were immunostained for GFA protein. Clusters of granular cells were weakly immunostained for NSE in all species. An exclusive relationship between FS cells and S-100 protein could not be ascertained from this study.  相似文献   

2.
Summary Immunofluorescence double-labelling and immunoenzyme double-staining methods were used to examine the location of glycogen phosphorylase brain isozyme with the astrocyte markers glial fibrillary acidic protein (GFAP) and S-100 protein in formaldehydefixed, paraffin-embedded slices from adult rat brain. Astrocytes in the cerebellum and the hippocampus, which express GFAP or S-100 protein immunoreactivity, show glycogen phosphorylase immunoreactivity. Regional intensity and intracellular distribution of the three antigens vary characteristically. In ependymal cells, glycogen phosphorylase immunoreactivity is co-localized with S-100 protein immunoreactivity, but not with GFAP immunoreactivity. These findings confirm that glycogen phosphorylase in the rat brain is exclusively localized in astrocytes and ependymal cells. All astrocytes, as far as they express GFAP or S-100 protein, do contain glycogen phosphorylase.  相似文献   

3.
Immunofluorescence double-labelling and immunoenzyme double-staining methods were used to examine the location of glycogen phosphorylase brain isozyme with the astrocyte markers glial fibrillary acidic protein (GFAP) and S-100 protein in formaldehyde-fixed, paraffin-embedded slices from adult rat brain. Astrocytes in the cerebellum and the hippocampus, which express GFAP or S-100 protein immunoreactivity, show glycogen phosphorylase immunoreactivity. Regional intensity and intracellular distribution of the three antigens vary characteristically. In ependymal cells, glycogen phosphorylase immunoreactivity is co-localized with S-100 protein immunoreactivity, but not with GFAP immunoreactivity. These findings confirm that glycogen phosphorylase in the rat brain is exclusively localized in astrocytes and ependymal cells. All astrocytes, as far as they express GFAP or S-100 protein, do contain glycogen phosphorylase.  相似文献   

4.
The presence of neurofilament protein (NFP), glial fibrillary acidic protein (GFAP) and S-100 protein has been investigated in Pacinian corpuscles from cat's mesentery by means of immunohistochemical methods. The NFP-like positivity was found in the central axon of the corpuscles; the GFAP- and S-100 protein-like immunoreactivities were shown in the innermost layers of the differentiated cell of the inner core. No positive reaction was detected in the capsule. The authors discuss these findings.  相似文献   

5.
In the present work, the presence and distribution of astrocytes in the rat pineal stalk is investigated applying an immunohistochemical technique for the demonstration of glial fibrillary acidic protein (GFAP) on Epon-embedded semithin sections (0.5 micron thick). GFAP-immunoreactive cells are evenly and regularly distributed along the entire pineal stalk. The GFAP-immunoreactive cells display a stellate shape showing variable numbers of cell processes that are mainly oriented parallel to the longitudinal stalk axis. Astrocytic processes show a clear tendency to encircle the remaining elements of the pineal stalk; i.e., pinealocytes, nerve fibres and blood vessels. Furthermore, glial processes form a cover layer separating the stalk from surrounding anatomical structures.  相似文献   

6.
Light- and electron-immunocytochemical investigation with the peroxidase-antiperoxidase (PAP) procedure revealed neuron-specific enolase and S-100 protein-like immunoreactivities specifically localized in the chief cells and the sustentacular cells of the rat carotid body, respectively. This finding suggests a neuron-like nature of the chief cells and a glia-like nature of the sustentacular cells on both embryological and functional bases.  相似文献   

7.
Summary Normal parathyroid glands and parafollicular cells (C-cells) of man, rat and rabbit, and also human parathyroid adenomas and medullary carcinomas were investigated for the presence of S-100 protein and neuron-specific enolase (NSE). For determination of the proteins immuno-peroxidase methods were applied, i.e., the PAP method and the avidin-biotin system. The antisera, of polyclonal origin, were specifically directed against cow S-100 protein and rat or bovine NSE. The respective antisera are known to crossreact with S-100 protein from man, rat, and rabbit, as well as with NSE from man and rat. Surprisingly, the test for S-100 protein was found to be strongly positive in the parathyroid glands of rat and rabbit and was focally positive in normal and adenomatous human parathyroid glands, but completely negative in C-cells and medullary carcinoma cells. NSE was present in C-cells of rat and man, and in medullary carcinoma cells, but was absent in normal and adenomatous parathyroid cells. The results support data that indicate that both parathyroid cells and C-cells are derived from elements of the neural crest, but undergo different maturation processes during embryological development.  相似文献   

8.
M Zabel  M Dietel 《Histochemistry》1987,86(4):389-392
Normal parathyroid glands and parafollicular cells (C-cells) of man, rat and rabbit, and also human parathyroid adenomas and medullary carcinomas were investigated for the presence of S-100 protein and neuron-specific enolase (NSE). For determination of the proteins immunoperoxidase methods were applied, i.e., the PAP method and the avidin-biotin system. The antisera, of polyclonal origin, were specifically directed against cow S-100 protein and rat or bovine NSE. The respective antisera are known to crossreact with S-100 protein from man, rat, and rabbit, as well as with NSE from man and rat. Surprisingly, the test for S-100 protein was found to be strongly positive in the parathyroid glands of rat and rabbit and was focally positive in normal and adenomatous human parathyroid glands, but completely negative in C-cells and medullary carcinoma cells. NSE was present in C-cells of rat and man, and in medullary carcinoma cells, but was absent in normal and adenomatous parathyroid cells. The results support data that indicate that both parathyroid cells and C-cells are derived from elements of the neural crest, but undergo different maturation processes during embryological development.  相似文献   

9.
Calcitonin gene-related peptide-like and neuron-specific enolase-like immunoreactivity (CGRP-IR and NSE-IR) were surveyed immunohistochemically in the fungi-form, foliate and circumvallate papillae in rats. A dense CGRP-IR network (subgemmal and extragemmal) in the taste papillae is linked to the presence of taste buds, even though CGRP-IR fibers are rarely present in the taste buds. Three typical fiber populations were detected with these two markers. (a) A population of coarse NSE-IR intragemmal fibers characterized by thick neural swellings, never expressing CGRP-immunoreactivity. (b) A population of thin varicose intragemmal NSE/CGRP-IR fibers. (c) A population of subgemmal and extragemmal NSE-/CGRP-IR fibers that partly penetrated the epithelium. The common distribution of CGRP-IR and NSE-IR fibers at the base of taste buds, their differential distribution and morphology within taste buds, added to their restricted nature (gustatory or somatosensory) suggest that a population of CGRP-IR fibers undergoes a target-induced inhibition of its CGRP phenotype while entering the taste buds. The combined use of NSE and CGRP allowed a better characterization of nerve fibers within and between all three types of taste papillae. NSE was also a very good marker for a subtype of taste bud cells in the foliate and in the circumvallate papillae, but no such cells could be observed in the fungiform papillae.  相似文献   

10.
Analysis of the expression of genes encoding myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) in human glial tumors was carried out for determination of the expression specificity of these genes according to tumor types and their malignancy. Low levels of MBP mRNA in astrocytoma specimens of malignancy grades II-IV and significantly higher levels in perifocal zones adjacent to them have been determined by Northern hybridization. Diffuse astrocytomas and anaplastic astrocytomas are characterized mostly by a low level of MBP gene expression and high level of GFAP gene expression, but distinct subtypes of diffuse and anaplastic astrocytomas with a high level of GFAP gene expression can also be detected that may be the reflection of different oncogenic pathways. Very low levels or even absence of MBP mRNA were revealed in oligodendroglioma and all oligoastrocytomas. Thus, Northern hybridization data are correlated with serial analysis of gene expression (SAGE). Obtained results show that MBP is a nonspecific marker for tumors of oligodendroglial origin, but determination of relative levels of MBP and GFAP mRNAs may be useful for glial tumor recognition. In such a way, these two genes together with YKL-40 and TSC-22, which we found previously, can be included into the gene panel for determination of so-called “gene signatures” of brain tumors. However, strict requirements in relation to a clinical value of these “gene signatures” cannot be formulated without verifying them on a large number of clinical samples of tumors and valid control.  相似文献   

11.
Summary Antibodies raised against glial fibrillary acidic protein (GFA), S-100 protein (S100) and glutamine synthetase (GS) are currently used as glial markers. The distribution of GFA, S100 and GS in the ependyma of the rat subcommissural organ (SCO), as well as in the adjacent nonspecialized ventricular ependyma and neuropil of the periaqueductal grey matter, was studied by use of the immunocytochemical peroxidase-antiperoxidase technique. In the neuropil, GFA, S100 and GS were found in glial elements, i.e., in fibrous (GFA, S100) and protoplasmic astrocytes (S100, GS). The presence of S100 in the majority of the ventricular ependymal cells and tanycytes, and the presence of GFA in a limited number of ventricular ependymal cells and tanycytes confirm the glial nature of these cells. The absence of S100, GFA and GS from the ependymocytes of the SCO, which are considered to be modified ependymal cells, suggests either a non-astrocytic lineage of these cells or an extreme specialization of the SCO-cells as glycoprotein-synthesizing and secreting elements, a process that may have led to the disappearance of the glial markers.  相似文献   

12.
It was shown that the glial fibrillary acidic protein (GFAP) content in developing (fetal) human brain is sharply increased. The expression of GFAP was observed already on the 7th-8th week after gestation, the GFAP concentration being less than 0.05% in comparison with adult brain. GFAP can be immunohistochemically detected in radial glial cells. At early stages of development the presence of antigenic determinants of 68 kDa and 100 kDa polypeptides interacting with monoclonal antibodies alongside with native GFAP (51 kDa) and its low molecular weight forms was demonstrated. These antigenic determinants cannot be detected at later stages of development and are absent in adult brain. The data obtained testify to changes in the gene expression of intermediate filament proteins at early stages of human brain ontogenesis.  相似文献   

13.
Glial fibrillary acidic protein was localized at the electron microscope level in the cerebellum of adult mice by indirect immunoperoxidase histology. In confirmation of previous studies at the light microscope level, the antigen was detectable in astrocytes and their processes, but not in neurons or their processes, or in oligodendroglia. Astrocytic processes were stained in white matter, in the granular layet surrounding synaptic glomerular complexes, and in the molecular layer in the form of radially oriented fibers and of sheaths surrounding Purkinje cell dendrites. Astrocytic endfeet impinging on meninges and perivascular membranes were also antigen positive. In astrocytic perikarya and processes, the immunohistochemical reaction product appears both as a diffuse cytoplasmic label and as elongated strands, which by their distribution and frequency could be considered glial filaments.  相似文献   

14.
The distribution of glial fibrillary acidic protein (GFAP) in normal human retina and in retinae with gliosis due to different diseases was studied by immunohistochemical methods. In normal retina, an evident GFAP-positivity is encountered only in the nerve fiber and ganglion cell layers; Müller cells do not stain. In retinal gliosis, together with an enhanced positivity of the perivascular and accessory glia, a strong staining for GFAP is observed in Müller cells, which extends from the inner to the outer limiting layers. A correlation between the intensity of immunohistochemical glial staining, its anatomical localization and the degree of retinal changes is suggested.  相似文献   

15.
胶质原纤维酸性蛋白的研究进展   总被引:10,自引:0,他引:10  
星形胶质细胞(astrocyte,AS)约占正常成人中枢神经系统(central nervous system,CNS)细胞总数的40%,其重要功能日益受到重视,AS可特异性表达胶质原纤维酸性蛋白(glial fibrillary acidic protein,GFAP).GFAP是AS骨架蛋白特有的成分,可作为AS的特异性标记物,本文主要从分子生物学角度,就GFAP在复杂的细胞活动(如细胞骨架重建,髓鞘维持,细胞粘附和信号转导途径等)中的广泛作用,及GFAP转基因动物研究等做一综述。  相似文献   

16.
Summary Immunohistochemical examination for neuronspecific enolase (NSE), neurofilament protein (NFP), and S-100 protein was performed in the olfactory mucosa of human fetuses. NSE and NFP immunoreactivities were found in the olfactory receptor cells, while no S-100 immunoreactive cells were recognized within the olfactory epithelium. The anti-NSE serum stained various types of nerve bundles in the lamina propria mucosae; a population of the NSE-positive nerve bundles was also immunoreactive for NFP. The anti-S-100 serum clearly demonstrated Schwann cells associated with the nerve fibers in the lamina propria mucosae. These findings 1) suggest a possibility of NSE and NFP as new marker substances for olfactory cells and 2) indicate that immunohistochemistry is a useful tool to analyse the cellular components of the olfactory organs in normal and pathological conditions.  相似文献   

17.
Glial fibrillary acidic protein, which is specific to astroglia in the central nervous system, polymerizes in vitro into filaments similar to native ~ 100 Å filaments. Following purification from aqueous extracts of bovine brain by immunoaffinity chromatography, GFA 2 protein is highly soluble in very low ionic strength solutions. Sedimentation equilibrium analysis of protein solutions in prefilament solvent conditions (2 mm-Tris · HCl, pH 7.8, 20 °C, containing 0.5 mm-dithiothreitol) indicates a paucidisperse mixture of species in solution with a typical range of apparent weight-average molecular weights from about 186,000 to 227,000. Between pH 6.0 and 8.0 the solubility is a function of pH and ionic strength as well as temperature, and precipitation is favored by lowering the pH or temperature and by raising the ionic strength. GFA protein associates in the form of filaments over a narrow range of pH and ionic strength; optimal conditions for polymerization of a 0.1 mg/ml protein solution are 100 mm-imidazole-HCl buffer (pH 6.8), at a temperature of 37 °C, and there is no requirement for co-factors. Filaments appear primarily as tangles of smooth curvilinear structures approximately 100 Å in diameter and of indefinite length, although some lateral association of filaments into thick bundles is also observed. While the formation of filaments is not affected by the presence or absence of reducing agent, under oxidizing conditions disulfide linkages form between protein subunits. Disassembly is achieved by dialysis against 2 mm-Tris · HCl buffer (pH 8.5), but this process is significantly enhanced by the addition of 0.5 mM-dithiothreitol during assembly and disassembly.These experiments clarify the role of GFA protein as the subunit of astroglialspecific intermediate filaments. In addition, they suggest that the 100 Å filament, as other components of the cytoskeleton, may assemble and disassemble in the glial cytoplasm.  相似文献   

18.
The appearance, distribution and some histochemical features of non-neuronal cells (NN cells) associated with the myenteric plexus of human fetal small intestine have been studied by means of S-100 protein and GFAP immunocytochemistry between the 10th and 17th week of gestation. In addition, double labelling immunocytochemistry using an antibody raised against a constitutive isoform of nitric oxide synthase (bNOS) in combination with an S-100 protein antibody was applied to investigate the morphological relations between NN cells and nitrergic neurons in the developing gut wall. Cells with immunoreactivity for both glial-specific proteins are already present in the 10th week of gestation. While cells with S-100 protein immunoreactivity are located within the circular muscle layer as well as in the myenteric, and submucous plexuses, cells with GFAP immunopositivity are mainly restricted to the side of the myenteric plexus adjacent to the longitudinal muscle layer. In contrast to the dense network formed by S-100 protein immunopositive structures the GFAP immunopositive cells appear singly and do not connect into a network. Double-labelling immunocytochemistry reveals nitrergic fibers (NOS-IR) in close relation to the S-100 protein immunoreactive glial network. NOS-IR varicosities are in close association with the surface of those cells both in the circular muscle layer (CM) and in the tertiary plexus. It is concluded that two populations of NN cells with different locations and different immunohistochemical characters appear and develop together with the enteric ganglia in the human fetal intestine. The close morphological relation of NOS-IR fibers with S-100 protein immunopositive cellular network indicate a functional relationship between S-100 protein immunopositive cells and the nitrergic nerves during the early development of human enteric nervous system (ENS).  相似文献   

19.
Summary Using the immunoperoxidase technique, a small number of prolactin cells were first detected in the pars distalis of the hamster near developing sinusoids at 131/2 days gestation. Little change in number or distribution of immunoreactive cells was noted until the first few days after birth when a dramatic increase in number of immunoreactive cells was demonstrated throughout the pars distalis. Electron microscopy revealed cells in the fetal and neonatal anterior pituitary which had immunoreactive granules smaller in diameter than those seen in adult pituitary cells.Submitted by the senior author to the Graduate School at Louisiana State University, Baton Rouge, Louisiana in partial fulfillment of the requirements for the Ph.D. degree  相似文献   

20.
Summary Expression of intermediate filament proteins was studied in human developing spinal cord using immunoperoxidase and double-label immunofluorescence methods with monoclonal antibodies to vimentin and glial fibrillary acidic protein (GFAP). Vimentin was found in the processes of radial glial cells in 6-week embryos, while GFAP appeared in vimentin-positive astroglial cells at 8–10 weeks. GFAP and vimentin were present in approximately equal amounts in differentiating astrocytes in 23-week spinal cord. In 30-week fetuses, astrocytes reacted strongly for GFAP, while both the reaction intensity and the number of vimentin-positive cells fluctuated predominantly in the grey matter. No clear-cut transition from vimentin to GFAP was noticed during the development of astrocytes. The majority of ependymal cells in 23-week fetuses contained vimentin but only a few of them reacted for GFAP. The expression of vimentin continued during the whole development of the ependymal layer, in contrast to the reactivity for GFAP which disappeared between the 30th week and term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号