首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homodimers have a role in catalysis and regulation through the formation of stable interfaces. These interfaces are formed through different folding mechanisms such as 2-state without stable intermediate (2S), 3-state with monomer intermediate (3SMI) and 3-state with dimer intermediate (3SDI). Therefore, it is of interest to understand folding mechanism using structural features at the interfaces. Several studies have documented the significance of structural features for the understanding of homodimer folding mechanisms. However, the known features provide limited information for understanding homodimer folding mechanisms. Hence, we created an extended dataset of 47 homodimers (twenty eight 2S, twelve 3SMI and seven 3SDI) to examine the types of interfaces in protein homodimers. 2S are usually small sized, 3SMI are often medium sized and 3SDI often exist as large sized proteins. The ratio of interface to total (I/T) residue is large in 2S and small in 3SMI and 3SDI. Hence, we used I/T measure to group 2S, 3SMI and 3SDI into categories with large I/T (≫ 50%), moderate I/T (50 - 25%) and small I/T (≪ 25%) interfaces. The grouping is further sub-grouped based on the type of physical interaction visualized at the interface using representations in two dimensions (2D). 2D representation of the interface shows eight different forms of interactions in these homodimers. 2S homodimers frequently have large I/T and thus, utilize the entire protein structure in the formation of the interface where the individual subunits are heavily inter communicated with each other. This is not true in the case of 3SMI and 3SDI. 3SMI subunits usually interact with each other at the interface with a gentle touch-like contact and hence, they have low I/T ratio. 3SDI are often quite different in interaction compared to 3SMI and their subunits do deeply interact at the interface with only one part of the surface and hence also having low I/T ratio.  相似文献   

2.
The formation of protein homodimer complexes for molecular catalysis and regulation is fascinating. The homodimer formation through 2S (2 state), 3SMI (3 state with monomer intermediate) and 3SDI (3 state with dimer intermediate) folding mechanism is known for 47 homodimer structures. Our dataset of forty-seven homodimers consists of twenty-eight 2S, twelve 3SMI and seven 3SDI. The dataset is characterized using monomer length, interface area and interface/total (I/T) residue ratio. It is found that 2S are often small in size with large I/T ratio and 3SDI are frequently large in size with small I/T ratio. Nonetheless, 3SMI have a mixture of these features. Hence, we used these parameters to develop a decision tree model. The decision tree model produced positive predictive values (PPV) of 72% for 2S, 58% for 3SMI and 57% for 3SDI in cross validation. Thus, the method finds application in assigning homodimers with folding mechanism.  相似文献   

3.
Most homodimeric proteins have symmetric structure. Although symmetry is known to confer structural and functional advantage, asymmetric organization is also observed. Using a non-redundant dataset of 223 high-resolution crystal structures of biologically relevant homodimers, we address questions on the prevalence and significance of asymmetry. We used two measures to quantify global and interface asymmetry, and assess the correlation of several molecular and structural parameters with asymmetry. We have identified rare cases (11/223) of biologically relevant homodimers with pronounced global asymmetry. Asymmetry serves as a means to bring about 2:1 binding between the homodimer and another molecule; it also enables cellular signalling arising from asymmetric macromolecular ligands such as DNA. Analysis of these cases reveals two possible mechanisms by which possible infinite array formation is prevented. In case of homodimers associating via non-topologically equivalent surfaces in their tertiary structures, ligand-dependent mechanisms are used. For stable dimers binding via large surfaces, ligand-dependent structural change regulates polymerisation/depolymerisation; for unstable dimers binding via smaller surfaces that are not evolutionarily well conserved, dimerisation occurs only in the presence of the ligand. In case of homodimers associating via interaction surfaces with parts of the surfaces topologically equivalent in the tertiary structures, steric hindrance serves as the preventive mechanism of infinite array. We also find that homodimers exhibiting grossly symmetric organization rarely exhibit either perfect local symmetry or high local asymmetry. Binding of small ligands at the interface does not cause any significant variation in interface asymmetry. However, identification of biologically relevant interface asymmetry in grossly symmetric homodimers is confounded by the presence of similar small magnitude changes caused due to artefacts of crystallisation. Our study provides new insights regarding accommodation of asymmetry in homodimers.  相似文献   

4.
Human glutaredoxin 3 (Glrx3) is an essential [2Fe-2S]-binding protein with ill-defined roles in immune cell response, embryogenesis, cancer cell growth, and regulation of cardiac hypertrophy. Similar to other members of the CGFS monothiol glutaredoxin (Grx) family, human Glrx3 forms homodimers bridged by two [2Fe-2S] clusters that are ligated by the conserved CGFS motifs and glutathione (GSH). We recently demonstrated that the yeast homologues of human Glrx3 and the yeast BolA-like protein Fra2 form [2Fe-2S]-bridged heterodimers that play a key role in signaling intracellular iron availability. Herein, we provide biophysical and biochemical evidence that the two tandem Grx-like domains in human Glrx3 form similar [2Fe-2S]-bridged complexes with human BolA2. UV-visible absorption and circular dichroism, resonance Raman, and electron paramagnetic resonance spectroscopic analyses of recombinant [2Fe-2S] Glrx3 homodimers and [2Fe-2S] Glrx3-BolA2 complexes indicate that the Fe-S coordination environments in these complexes are virtually identical to those of the analogous complexes in yeast. Furthermore, we demonstrate that apo BolA2 binds to each Grx domain in the [2Fe-2S] Glrx3 homodimer forming a [2Fe-2S] BolA2-Glrx3 heterotrimer. Taken together, these results suggest that the unusual [2Fe-2S]-bridging Grx-BolA interaction is conserved in higher eukaryotes and may play a role in signaling cellular iron status in humans.  相似文献   

5.
The S(3) state of the water-oxidizing complex (WOC) of photosystem II (PSII) is the last state that can be trapped before oxygen evolution occurs at the transient S(4) state. A number of EPR-detectable intermediates are associated with this critical state. The preceding paper examined mainly the decay of S(3) at cryogenic temperatures leading to the formation of a proton-deficient configuration of S(2) termed S(2)'. This second paper examines all intermediates formed by the near-IR light (NIR) excitation of the S(3) state and compares these with the light-excitation products of the S(2)' state. The rather complex set of observations is organized in a comprehensive flowchart, the central part of which is the S(3)...Q(A)(-) state. This state can be converted to various intermediates via two main pathways: (A) Excitation of S(3) by NIR light at temperatures below 77 K results presumably in the formation of an excited S(3) state, S(3), which decays via either of two pathways. Slowly at liquid helium temperatures but much faster at 77 K, S(3) decays to an EPR-silent state, denoted S(3)' ', which by raising the temperature to ca. 190 K converts to a spin configuration of the Mn cluster, characterized by g = 21, 3.7 in perpendicular and g = 23 in parallel mode EPR, denoted S(3)'. Upon further warming to 220 K, S(3)' relaxes to the untreated S(3) state. Below about 77 K and more favorably at liquid helium temperatures, an alternative pathway of S(3) decay via the metallo-radical intermediate S(2)'Z*...Q(A)(-) can be traced. This leads to the metastable state S(2)'Z...Q(A) via charge recombination. S(2)'Z* is characterized by a split-radical signal at g = 2, while all S(2)' transients are characterized by the same g = 5/2.9 (S = (7)/(2)) configuration of the Mn cluster with small modifications, reflecting an influence of the tyr Z oxidation state on the crystal-field symmetry at the Mn cluster. (B) S(2)'...Q(A) can be reached alternatively by the slow charge recombination of S(3) and Q(A)(-) at 77 K. White-light illumination of S(2)'.Q(A) below about 20 K results in charge separation, reforming the intermediate S(2)'Z*...Q(A)(-). Thermally activated branches to the main pathways are also described, e.g., at elevated temperatures tyr Z* reoxidizes S(2)' to the S(3) state. The above observations are discussed in terms of a molecular model of the S(3) state of the OEC. Main aspects of the model are the following. Intermediates, isoelectronic to S(3), are attributed to the NIR-induced translocation of the positive hole to different Mn ligands, or to tyr Z. On the basis of a comparison of the electron-donating efficiency of tyr Z and tyr D at cryogenic temperatures, it is inferred that the Mn cluster acts as the main proton acceptor from tyr Z. Water associated with the Mn cluster is assumed to be in hydrogen-bonding equilibrium with tyr Z, and an array comprising this water and adjacent water (or OH or O) ligands to Mn followed by a sequence of proton acceptors is proposed to act as an efficient proton translocation pathway. Oxidation of the tyrosine by P(680)(+) repels protons to and out from the Mn cluster. This proposed role of tyr Z in the water-splitting process is described as a proton repeller/electron abstractor.  相似文献   

6.
The EF-hand proteins S100A8 and S100A9 are important calcium signalling proteins that are involved in wound healing and provide clinically relevant markers of inflammatory processes, such as rheumatoid arthritis and inflammatory bowel disease. Both can form homodimers via distinct modes of association, probably of lesser stability in the case of S100A9, whereas in the presence of calcium S100A8 and S100A9 associate to calprotectin, the physiologically active heterooligomer. Here we describe the crystal structure of the (S100A8/S100A9)(2) heterotetramer at 1.8 A resolution. Its quaternary structure illustrates how specific heteroassociation is energetically driven by a more extensive burial of solvent accessible surface areas in both proteins, most pronounced for S100A9, thus leading to a dimer of heterodimers. A major contribution to tetramer association is made by the canonical calcium binding loops in the C-terminal halves of the two proteins. The mode of heterodimerisation in calprotectin more closely resembles the subunit association previously observed in the S100A8 homodimer and provides trans stabilisation for S100A9, which manifests itself in a significantly elongated C-terminal alpha-helix in the latter. As a consequence, two different putative zinc binding sites emerge at the S100A8/S100A9 subunit interface. One of these corresponds to a high affinity arrangement of three His residues and one Asp side-chain, which is unique to the heterotetramer. This structural feature explains the well known Zn(2+) binding activity of calprotectin, whose overexpression can cause strong dysregulation of zinc homeostasis with severe clinical symptoms.  相似文献   

7.
Thrombin activates platelets by binding and cleaving protease-activated receptors 1 and 4 (PAR1 and PAR4). Because of the importance of PAR4 activation on platelets in humans and mice and emerging roles for PAR4 in other tissues, experiments were done to characterize the interaction between PAR4 homodimers. Bimolecular fluorescence complementation and bioluminescence resonance energy transfer (BRET) were used to examine the PAR4 homodimer interface. In bimolecular fluorescence complementation experiments, PAR4 formed homodimers that were disrupted by unlabeled PAR4 in a concentration-dependent manner, but not by rhodopsin. In BRET experiments, the PAR4 homodimers showed a specific interaction as indicated by a hyperbolic BRET signal in response to increasing PAR4-GFP expression. PAR4 did not interact with rhodopsin in BRET assays. The threshold maximum BRET signal was disrupted in a concentration-dependent manner by unlabeled PAR4. In contrast, rhodopsin was unable to disrupt the BRET signal, indicating that the disruption of the PAR4 homodimer is not due to nonspecific interactions. A panel of rho-PAR4 chimeras and PAR4 point mutants has mapped the dimer interface to hydrophobic residues in transmembrane helix 4. Finally, mutations that disrupted dimer formation had reduced calcium mobilization in response to the PAR4 agonist peptide. These results link the loss of dimer formation to a loss of PAR4 signaling.  相似文献   

8.
Many Golgi membrane-bound glycosyltransferases exist as intermoleculardisulfide bonded species, some of which have been demonstratedto be homodimers. Evidence for homodimer formation has comeprimarily from radiation inactivation experiments. We utilizedan alternative strategy to test for homodimer formation of thecloned ß1,4 N-acetylgalactosaminyltransferase (GalNAcT)responsible for synthesis of the glycosphingolipids GM2, GD2,and GA2. We stably transfected CHO cells with. myc epitope-taggedGalNAcT, which localizes primarily to the Golgi, and a hemagglutinin(HA) epitope-tagged GalNAcT fusion protein in which the cytoplasmicdomain of GalNAcT was replaced by an ER retention signal. Wethen sought evidence for dimer formation between the two formsof GalNAcT. Immunoprecipitation with anti-myc or anti-HA co-immunoprecipitatedthe HA-tagged form or the myc-tagged form, respectively, providingevidence for the physical association of the two forms of GalNAcT.As a result of this association, GalNAcT/myc increased in theER as demonstrated by Western blots and immunofluorescence.The rapid formation of dimers provided further evidence fordimer formation occurring in the ER. In summary, these resultsdemonstrate that GalNAcT forms homodimers as a result of intermoleculardisulfide bond formation in the ER. Furthermore, this ER motifstrategy is potentially useful for demonstrating homodimer formationof other Golgi enzymes. ganglioside glycosyltransferase  相似文献   

9.
S100A8 and S100A9 are Ca2+-binding proteins that are associated with acute and chronic inflammation and cancer. They form predominantly heterodimers even if there are data supporting homodimer formation. We investigated the stability of the heterodimer in myeloid and S100A8/S100A9 over-expressing COS cells. In both cases, S100A8 and S100A9 proteins were not completely degraded even 48 hrs after blocking protein synthesis. In contrast, in single transfected cells, S100A8 protein was completely degraded after 24 h, while S100A9 was completely unstable. However, S100A9 protein expression was rescued upon S100A8 co-expression or inhibition of proteasomal activity. Furthermore, S100A9, but not S100A8, could be stabilized by LPS, IL-1β and TNFα treatment. Interestingly, stimulation of S100A9-transfected COS cells with proteasomal inhibitor or IL-1β lead to the formation of protease resistant S100A9 homodimers. In summary, our data indicated that S100A9 protein is extremely unstable but can be rescued upon co-expression with S100A8 protein or inflammatory stimuli, via proteolytically resistant homodimer formation. The formation of S100A9 homodimers by this mechanism may constitute an amplification step during an inflammatory reaction.  相似文献   

10.
We have applied flash-induced FTIR spectroscopy to study structural changes upon the S(2)-to-S(3) state transition of the oxygen-evolving complex (OEC) in Photosystem II (PSII). We found that several modes in the difference IR spectrum are associated with bond rearrangements induced by the second laser flash. Most of these IR modes are absent in spectra of S(2)/S(1), of the acceptor-side non-heme ion, of Yradical(D)/Y(D) and of S(3)'/S(2)' from Ca-depleted PSII preparations. Our results suggest that these IR modes most likely originate from structural changes in the oxygen-evolving complex itself upon the S(2)-to-S(3) state transition in PSII.  相似文献   

11.
Preformed CD40/CD40 homodimers were initially observed on human Burkitt lymphoma cell lines, normal B cells, and transitional bladder carcinoma cell lines. However, the nature and the biological relevance of these homodimers have not yet been investigated. In the present study, we demonstrated that Epstein-Barr virus-transformed B cells and CD40-transfected HEK 293 cells constitutively expressed disulfide-linked CD40/CD40 homodimers at low levels. Oligomerization of CD40 leads to a rapid and significant increase in the disulfide-linked CD40/CD40 homodimer formation, a response that could be prevented using a thiol-alkylating agent. Formation of CD40/CD40 homodimers was found to be absolutely required for CD40-mediated activation of phosphatidylinositol 3-kinase, which, in turn regulated B7.2 expression. In contrast, CD40 monomers provided the minimal signal emerging from CD40, activating p38 MAP kinase and inducing homotypic B cell adhesion. CD40/CD40 homodimer formation was totally independent of TRAF1/2/3/5 associations with the threonine at position 254 in the cytoplasmic tail of the CD40 molecules. This finding may be vital to better understanding the molecular mechanisms that govern cell signaling triggered by CD40/CD154 interactions.  相似文献   

12.
The dynamics of glycoprotein hormone alpha-subunit (GPHalpha) maturation and GPHalpha alpha homodimer formation were studied in presence (JEG-3 choriocarcinoma cells) and absence (HeLa cells) of hCGbeta. In both cases, the major initially occurring GPHalpha variant in [35S]Met/Cys-labeled cells carried two N-glycans (M(r app) = 22 kDa). Moreover, a mono-N-glycosylated in vivo association-incompetent GPHalpha variant (M(r app) = 18 kDa) was observed. In JEG-3 cells the early 22-kDa GPHalpha either associated with hCGbeta, or showed self-association to yield GPHalpha alpha homodimers, or was later converted into heavily glycosylated large free GPHalpha (M(r app) = 24 kDa). Micro-preparative isolation of intracellular GPHalpha alpha homodimers of JEG-3 cells and their conversion by reduction revealed that they consisted of 22-kDa GPHalpha monomers and not of large free GPHalpha. In HeLa cells, the large free GPHalpha variant was not observed, whereas GPHalpha alpha homodimers were present. Intracellularly, early GPHalpha alpha homodimers (35 kDa) and late variants (JEG-3: 44 kDa, HeLa: 39 kDa) were found. Both cell types secreted 45 kDa GPHalpha alpha homodimers. Large free GPHalpha and GPHalpha alpha homodimers were more rapidly sialylated than hCG alphabeta-heterodimers indicating a sequestration mechanism in the secretory pathway. In GPHalpha alpha homo- as well as hCG alphabeta-heterodimers the subunit interaction site, located on loop 2 of GPHalpha (amino acids 33-42), became immunologically inaccessible indicating similar spatial orientation of GPHalpha in both types of dimers. The studies demonstrate the formation, in vivo dynamics of GPHalpha alpha homodimers, and the pathways of the cellular metabolism of variants of GPHalpha, monoglycosylated GPHalpha and large free GPHalpha.  相似文献   

13.
The nectin and nectin-like molecule (Necl) family includes important cell adhesion molecules (CAMs) characterized by their Ig-like nature. Such CAMs regulate a broad spectrum of cell-cell interactions, including the interaction between NK cells and cytotoxic T lymphocytes (CTLs) and their target cells. CAM members nectin-2 (CD112) and Necl-5 (CD155) are believed to form homodimers (for nectin-2) or heterodimers in their functions for cell adhesion, as well as to interact with immune costimulatory receptor DNAX accessory molecule 1 (DNAM-1) (CD226) to regulate functions of both NK and CTL cells. However, the structural basis of the interactive mode of DNAM-1 with nectin-2 or Necl-5 is not yet understood. In this study, a soluble nectin-2 Ig-like V-set domain (nectin-2v) was successfully prepared and demonstrated to bind to both soluble ectodomain and cell surface-expressed full-length DNAM-1. The 1.85-? crystal structure of nectin-2v displays a perpendicular homodimer arrangement, revealing the homodimer characteristics of the nectin and Necls. Further mutational analysis indicated that disruption of the homodimeric interface of nectin-2v led to a failure of the homodimer formation, as confirmed by crystal structure and biochemical properties of the mutant protein of nectin-2v. Interestingly, the monomer mutant also loses DNAM-1 binding, as evidenced by cell staining with tetramers and surface plasmon resonance assays. The data indicate that interaction with DNAM-1 requires either the homodimerization or engagement of the homodimeric interface of nectin-2v. These results have implications for immune intervention of tumors or autoimmune diseases in the DNAM-1/nectin-2-dependent pathway.  相似文献   

14.
It is well established that the CD154/CD40 interaction is required for T cell-dependent B cell differentiation and maturation. However, the early molecular and structural mechanisms that orchestrate CD154 and CD40 signaling at the T cell/APC contact site are not well understood. We demonstrated that CD40 engagement induces the formation of disulfide-linked (dl) CD40 homodimers that predominantly associate with detergent-resistant membrane microdomains. Mutagenesis and biochemical analyses revealed that (a) the integrity of the detergent-resistant membranes is necessary for dl-CD40 homodimer formation, (b) the cytoplasmic Cys(238) of CD40 is the target for the de novo disulfide oxidation induced by receptor oligomerization, and (c) dl-CD40 homodimer formation is required for CD40-induced interleukin-8 secretion. Stimulation of CD154-positive T cells with staphylococcal enterotoxin E superantigen that mimics nominal antigen in initiating cognate T cell/APC interaction revealed that dl-CD40 homodimer formation is required for interleukin-2 production by T cells. These findings indicate that dl-CD40 homodimer formation has a physiological role in regulating bidirectional signaling.  相似文献   

15.
Several recent studies suggest that G protein-coupled receptors can assemble as heterodimers or hetero-oligomers with enhanced functional activity. However, inactivation of a fully functional receptor by heterodimerization has not been documented. Here we show that the somatostatin receptor (sst) subtypes sst(2A) and sst(3) exist as homodimers at the plasma membrane when expressed in human embryonic kidney 293 cells. Moreover, in coimmunoprecipitation studies using differentially epitope-tagged receptors, we provide direct evidence for heterodimerization of sst(2A) and sst(3). The sst(2A)-sst(3) heterodimer exhibited high affinity binding to somatostatin-14 and the sst(2)-selective ligand L-779,976 but not to the sst(3)-selective ligand L-796,778. Like the sst(2A) homodimer, the sst(2A)-sst(3) heterodimer stimulated guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) binding, inhibition of adenylyl cyclase, and activation of extracellular signal-regulated kinases after exposure to the sst(2)-selective ligand L-779,976. However, unlike the sst(3) homodimer, the sst(2A)-sst(3) heterodimer did not promote GTPgammaS binding, adenylyl cyclase inhibition, or extracellular signal-regulated kinase activation in the presence of the sst(3)-selective ligand L-796,778. Interestingly, during prolonged somatostatin-14 exposure, the sst(2A)-sst(3) heterodimer desensitized at a slower rate than the sst(2A) and sst(3) homodimers. Both sst(2A) and sst(3) homodimers underwent agonist-induced endocytosis in the presence of somatostatin-14. In contrast, the sst(2A)-sst(3) heterodimer separated at the plasma membrane, and only sst(2A) but not sst(3) underwent agonist-induced endocytosis after exposure to somatostatin-14. Together, heterodimerization of sst(2A) and sst(3) results in a new receptor with a pharmacological and functional profile resembling that of the sst(2A) receptor, however with a greater resistance to agonist-induced desensitization. Thus, inactivation of sst(3) receptor function by heterodimerization with sst(2A) or possibly other G protein-coupled receptors may explain some of the difficulties in detecting sst(3)-specific binding and signaling in mammalian tissues.  相似文献   

16.
The lipocalin β‐lactoglobulin (β‐LG) exists in different natural genetic variants—of which β‐LG A and B are predominant in bovine milk. At physiological conditions the protein dimerizes—building homodimers of β‐LG A and β‐LG B and heterodimers of β‐LG AB. Although β‐LG is one of the most intensely characterized lipocalins, the interaction behavior of ligands with hetero‐ and homodimers of β‐LG is largely unknown. The present findings revealed significant differences for hetero‐ and homodimers regarding ligand binding capacity as tested with a model ligand (i.e. surface binding (?)‐epigallocatechin gallate (EGCG)). These findings were confirmed using FT‐IR, where the addition of EGCG influenced the β‐sheet backbone of homodimer A and B with significantly higher intensity compared to heterodimer AB. Further, shape analysis by SAXS revealed oligomerization of both types of dimers upon addition of EGCG; however, homodimer A and B produced significantly larger aggregates compared to the heterodimer AB. In summary, the present study revealed that EGCG showed significantly different interaction reactivity (binding sites, aggregation size and conformational changes) to the hetero and homodimers of β‐LG in the order β‐LG A > B > AB. The results suggest that conformational differences between homodimers and heterodimers strongly influence the EGCG binding ability. This may also occur with other polyphenols and ligands of β‐LG and gives not only important information for β‐LG binding studies, but may also apply for polymorphisms of other self‐aggregating lipocalins. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Jeong SY  Gaume B  Lee YJ  Hsu YT  Ryu SW  Yoon SH  Youle RJ 《The EMBO journal》2004,23(10):2146-2155
Bcl-x(L) is a potent inhibitor of apoptosis. While Bcl-x(L) can be bound to mitochondria, a substantial fraction, depending on the cell type or tissue, is found in the cytosol of healthy cells. Gel filtration and crosslinking experiments reveal that, unlike monomeric Bax, Bcl-x(L) migrates in a complex of approximately 50 kDa in the cytosol. Co-immunoprecipitation experiments indicate that Bcl-x(L) in the cytosol forms homodimers. The C-terminal hydrophobic tails of two Bcl-x(L) molecules are involved in homodimer formation, and analysis of mutants demonstrates that the C-terminal lysine residue and the G138 residue lining the BH3-binding pocket are required for homodimerization. The flexible loop preceding the C-terminal tail in Bcl-x(L) is longer than that of several monomeric Bcl-2 family members and is a requisite for the homodimer formation. Bad binding to Bcl-x(L) dissociates the homodimers and triggers Bcl-x(L) binding to mitochondrial membranes. The C-terminal tail of Bcl-x(L) is also required to mediate Bcl-x(L)/Bax heterodimer formation. Both mitochondrial import and antiapoptotic activity of different Bcl-x(L) mutants correlate with their ability to form homodimers.  相似文献   

18.
Hydroxylation of proline residues in the Yaa position of the Gly-Xaa-Yaa repeated sequence to 4(R)-hydroxyproline is essential for the formation of the collagen triple helix. A small number of 3(S)-hydroxyproline residues are present in most collagens in the Xaa position. Neither the structural nor a biological role is known for 3(S)-hydroxyproline. To characterize the structural role of 3(S)-hydroxyproline, the peptide Ac-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 was synthesized and analyzed by circular dichroism spectroscopy, analytical ultracentrifugation, and 1H nuclear magnetic resonance spectroscopy. At 4 degrees C in water the circular dichroism spectrum indicates that this peptide was in a polyproline-II-like secondary structure with a positive peak at 225 nm similar to Ac-(Gly-Pro-4(R)Hyp)10-NH2. The positive peak at 225 nm almost linearly decreases with increasing temperature to 95 degrees C without an obvious transition. Although the peptide Ac-(Gly-Pro-4(R)Hyp)10-NH2 forms a trimer at 10 degrees C, sedimentation equilibrium experiments indicate that Ac-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 is a monomer in water at 7 degrees C. To study the role of 3(S)-hydroxyproline in the Yaa position, we synthesized Ac-(Gly-Pro-3(S)Hyp)10-NH2. This peptide also does not form a triple helix in water. 1H Nuclear magnetic resonance spectroscopy data (including line widths and nuclear Overhauser effects) are entirely consistent, with neither Ac-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 nor Ac-(Gly-Pro-3(S)Hyp)10-NH2 forming a triple helix in water. Therefore 3(S)-hydroxyproline destabilizes the collagen triple helix in either position. In contrast, when 3(S)-hydroxyproline is inserted as a guest in the highly stable -Gly-Pro-4(R)Hyperepeated host sequence, Ac-(Gly-Pro-4(R)Hyp)3-Gly-3(S)Hyp-4(R)Hyp-(Gly-Pro-4(R)Hyp)4-Gly-Gly-NH2 forms as stable a trimer (Tm=49.6 degrees C) as Ac-(Gly-Pro-4(R)Hyp)8-Gly-Gly-NH2 (Tm=48.9 degrees C). Given that Ac-(Gly-Pro-4(R)Hyp)3-Gly-4(R)Hyp-Pro-(Gly-Pro-4(R)Hyp)4-Gly-Gly-NH2 forms a triple helix nearly as stable as the above two peptides (Tm=45.0 degrees C) and the knowledge that Ac-(Gly-4(R)Hyp-Pro)10-NH2 does not form a triple helix, we conclude that the host environment dominates the structure of host-guest peptides and that these peptides are not necessarily accurate predictors of triple helical stability.  相似文献   

19.
Resolution of (2RS,3RS)-2-[alpha-(2-methoxymethoxyphenoxy)phenylmethyl]morpholine, 11, with (+) mandelic acid led to the formation of (+)-(2S,3S)-2-[alpha-(2-methoxymethoxyphenoxy)phenyl methyl] morpholine (11a). Compound 11 was synthesized in seven steps from (2RS,3RS)-cinnamyl alcohol-2,3-epoxide (4), with an overall yield of 17%. Cleavage of the methoxymethyl group of the Fmoc derivative 12 with catalytic amounts of p-toluenesulfonic acid in methanol afforded (+)-(2S,3S)-2-(2-morpholin-2-yl-2-phenylmethoxy)phenol 2. The synthetic utility as well as the configuration of compound 2 has been demonstrated by converting (S,S)-2-(2-morpholin-2-yl-2-phenylmethoxy)phenol 2 to (2S,3S)-2-[alpha-(2-ethoxyphenoxy)phenylmethyl]morpholine (1) and (2S,3S)-2-(2-methoxyphenoxy) benzyl)morpholine (16), two potential norepinephrine reuptake inhibitors under clinical evaluation.  相似文献   

20.

Background

S100 proteins are a large family of calcium binding proteins present only in vertebrates. They function intra- and extracellularly both as regulators of homeostatic processes and as potent effectors during inflammation. Among these, S100A8 and S100A9 are two major constituents of neutrophils that can assemble into homodimers, heterodimers and higher oligomeric species, including fibrillary structures found in the ageing prostate. Each of these forms assumes specific functions and their formation is dependent on divalent cations, notably calcium and zinc. In particular, zinc appears as a major regulator of S100 protein function in a disease context. Despite this central role, no structural information on how zinc bind to S100A8/S100A9 and regulates their quaternary structure is yet available.

Results

Here we report two crystallographic structures of calcium and zinc-loaded human S100A8. S100A8 binds two zinc ions per homodimer, through two symmetrical, all-His tetracoordination sites, revealing a classical His-Zn binding mode for the protein. Furthermore, the presence of a (Zn)2-cacodylate complex in our second crystal form induces ligand swapping within the canonical His4 zinc binding motif, thereby creating two new Zn-sites, one of which involves residues from symmetry-related molecules. Finally, we describe the calcium-induced S100A8 tetramer and reveal how zinc stabilizes this tetramer by tightening the dimer-dimer interface.

Conclusions

Our structures of Zn2+/Ca2+-bound hS100A8 demonstrate that S100A8 is a genuine His-Zn S100 protein. Furthermore, they show how zinc stabilizes S100A8 tetramerization and potentially mediates the formation of novel interdimer interactions. We propose that these zinc-mediated interactions may serve as a basis for the generation of larger oligomers in vivo.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号