首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Activins control many physiologic and pathophysiologic processes in multiple tissues and, like other TGF-beta superfamily members, signal via type II (ActRII/IIB) and type I (ALK4) receptor serine kinases. ActRII/IIB are promiscuous receptors known to bind at least a dozen TGF-beta superfamily ligands including activins, myostatin, several BMPs, and nodal. Here we utilize a new screening procedure to rapidly identify activin-A mutants with loss of signaling activity. Our goal was to identify activin-A mutants able to bind ActRII but unable to bind ALK4 and which would be, therefore, candidate type II activin receptor antagonists. Using the structure of BMP-2 bound to its type I receptor (ALK3) as a guide, we introduced mutations in the context of the inhibin betaA cDNA and assessed the signaling activity of the resulting mutant proteins. We identified several mutants in the finger (M91E, I105E, M108A) and wrist (activin A/activin C chimera, S60P, I63P) regions of activin-A with reduced signaling activity. Of these the M108A mutant displayed the lowest signaling activity while retaining wild-type-like affinity for ActRII. Unlike wild-type activin-A, the M108A mutant was unable to form a cross-linked complex with ALK4 in the presence of ActRII indicating that its ability to bind ALK4 was disrupted. This data suggested that the M108A mutant might be capable of modulating signaling of activin and related ligands. Indeed, the M108A mutant antagonized activin-A and myostatin, but not TGF-beta, signaling in 293T cells, indicating it may be generally capable of blocking ligands that signal via ActRII/IIB.  相似文献   

2.
Type II activin receptors (ActRII and ActRIIB) are single-transmembrane domain serine/threonine kinase receptors that bind activin to initiate the signaling and cellular responses triggered by this hormone. Inhibin also binds type II activin receptors and antagonizes many activin effects. Here we describe alanine scanning mutagenesis of the ActRII extracellular domain. We identify a cluster of three hydrophobic residues (Phe(42), Trp(60), and Phe(83)) that, when individually mutated to alanine in the context of the full-length receptor, cause the disruption of activin and inhibin binding to ActRII. Each of the alanine-substituted ActRII mutants retaining activin binding maintains the ability to form cross-linked complexes with activin and supports activin cross-linking to the type I activin receptor ALK4. Unlike wild-type ActRII, the three mutants unable to bind activin do not cause an increase in activin signaling when transiently expressed in a corticotroph cell line. Together, our results implicate these residues in forming a critical binding surface on ActRII required for functional interactions with both activin and inhibin. This first identification of a transforming growth factor-beta family member binding site may provide a general basis for characterizing binding sites for other members of the superfamily.  相似文献   

3.
Activins are involved in many physiological and pathological processes and, like other members of the transforming growth factor-beta superfamily, signal via type II and I receptor serine kinases. Ligand residues involved in type II receptor binding are located in the two anti-parallel beta strands of the TGF-beta proteins, also known as the fingers. Activin-A mutants able to bind ActRII but unable to bind the activin type I receptor ALK4 define ligand residues involved in ALK4 binding and could potentially act as antagonists. Therefore, a series of FLAG-tagged activin-A/C chimeras were constructed, in each of which eight residues in the wrist loop and helix region (A/C 46-53, 54-61, 62-69, and 70-78) were replaced. Additionally, a chimera was generated in which the entire wrist region (A/C 46-78) was changed from activin-A to activin-C. The chimeras were assessed for ActRII binding, activin bioactivity, as well as antagonistic properties. All five chimeras retained high affinity for mouse ActRII. Of these, only A/C 46-78 was devoid of significant activin bioactivity in an A3 Lux reporter assay in 293T cells at concentrations up to 40 nM. A/C 46-53, 54-61, 62-69, and 70-78 showed activity comparable with wild type activin-A. When tested for the ability to antagonize ligands that signal via activin type II receptors, such as activin-A and myostatin, only the A/C 46-78 chimera showed antagonism (IC(50), 1-10 nM). Additionally, A/C 46-78 decreased follicle-stimulating hormone release from the LbetaT2 cell line and rat anterior pituitary cells in primary culture in a concentration-dependent manner. These data indicate that activin residues in the wrist are involved in ALK4-mediated signaling. The activin antagonist A/C 46-78 may be useful for the study and modulation of activin-dependent processes.  相似文献   

4.
Inhibin is a heterodimeric peptide hormone produced in the ovary that antagonizes activin signaling and FSH synthesis in the pituitary. The inhibin β-subunit interacts with the activin type II receptor (ActRII) to functionally antagonize activin. The inhibin α-subunit mature domain (N terminus) arose relatively early during the evolution of the hormone, and inhibin function is decreased by an antibody directed against the α-subunit N-terminal extension region or by deletion of the N-terminal region. We hypothesized that the α-subunit N-terminal extension region interacts with the activin type I receptor (ALK4) to antagonize activin signaling in the pituitary. Human or chicken free α-subunit inhibited activin signaling in a pituitary gonadotrope-derived cell line (LβT2) in a dose-dependent manner, whereas an N-terminal extension deletion mutant did not. An α-subunit N-terminal peptide, but not a control peptide, was able to inhibit activin A signaling and decrease activin-stimulated FSH synthesis. Biotinylated inhibin A, but not activin A, bound ALK4. Soluble ALK4-ECD bioneutralized human free α-subunit in LβT2 cells, but did not affect activin A function. Competitive binding ELISAs with N-terminal mutants and an N-terminal region peptide confirmed that this region is critical for direct interaction of the α-subunit with ALK4. These data expand our understanding of how endocrine inhibin achieves potent antagonism of local, constitutive activin action in the pituitary, through a combined mechanism of competitive binding of both ActRII and ALK4 by each subunit of the inhibin heterodimer, in conjunction with the co-receptor betaglycan, to block activin receptor-ligand binding, complex assembly, and downstream signaling.  相似文献   

5.
Cripto plays critical roles during embryogenesis and has been implicated in promoting the growth and spread of tumors. Cripto is required for signaling by certain transforming growth factor-beta superfamily members, such as Nodal, but also antagonizes others, such as activin. The opposing effects of Cripto on Nodal and activin signaling seem contradictory, however, because these closely related ligands utilize the same type I (ALK4) and type II (ActRII/IIB) receptors. Here, we have addressed this apparent paradox by demonstrating that Cripto forms analogous receptor complexes with Nodal and activin and functions as a noncompetitive activin antagonist. Our results show that activin-A and Nodal elicit similar maximal signaling responses in the presence of Cripto that are substantially lower than that of activin-A in the absence of Cripto. In addition, we provide biochemical evidence for complexes containing activin-A, Cripto, and both receptor types and show that the assembly of such complexes is competitively inhibited by Nodal. We further demonstrate that Nodal and activin-A share the same binding site on ActRII and that ALK4 has distinct and separable binding sites for activin-A and Cripto. Finally, we show that ALK4 mutants with disrupted activin-A binding retain Cripto binding and prevent the effects of Cripto on both activin-A and Nodal signaling. Together, our data indicate that Cripto facilitates Nodal signaling and inhibits activin signaling by forming receptor complexes with these ligands that are structurally and functionally similar.  相似文献   

6.
BMPRII is a type II TGF-beta serine threonine kinase receptor which is integral to the bone morphogenetic protein (BMP) signalling pathway. It is known to bind BMP and growth differentiation factor (GDF) ligands, and has overlapping ligand specificity with the activin type II receptor, ActRII. In contrast to activin and TGF-beta type ligands, BMPs bind to type II receptors with lower affinity than type I receptors. Crystals of the BMPRII ectodomain were grown in two different forms, both of which diffracted to high resolution. The tetragonal form exhibited some disorder, whereas the entire polypeptide was seen in the orthorhombic form. The two structures retain the basic three-finger toxin fold of other TGF-beta receptor ectodomains, and share the main hydrophobic patch used by ActRII to bind various ligands. However, they present different conformations of the A-loop at the periphery of the proposed ligand-binding interface, in conjunction with rearrangement of a disulfide bridge within the loop. This particular disulfide (Cys94-Cys117) is only present in BMPRII and activin receptors, suggesting that it is important for their likely shared mode of binding. Evidence is presented that the two crystal forms represent ligand-bound and free conformations of BMPRII. Comparison with the solved structure of ActRII bound to BMP2 suggests that His87, unique amongst TGF-beta receptors, may play a key role in ligand recognition.  相似文献   

7.
Activins and inhibins compose a heterogeneous subfamily within the transforming growth factor-beta (TGF-beta) superfamily of growth and differentiation factors with critical biological activities in embryos and adults. They signal through a heteromeric complex of type II, type I, and for inhibin, type III receptors. To characterize the affinity, specificity, and activity of these receptors (alone and in combination) for the inhibin/activin subfamily, we developed a cell-free assay system using soluble receptor-Fc fusion proteins. The soluble activin type II receptor (sActRII)-Fc fusion protein had a 7-fold higher affinity for activin A compared with sActRIIB-Fc, whereas both receptors had a marked preference for activin A over activin B. Although inhibin A and B binding was 20-fold lower compared with activin binding to either type II receptor alone, the mixture of either type II receptor with soluble TGF-beta type III receptor (TbetaRIII; betaglycan)-Fc reconstituted a soluble high affinity inhibin receptor. In contrast, mixing either soluble activin type II receptor with soluble activin type I receptors did not substantially enhance activin binding. Our results support a cooperative model of binding for the inhibin receptor (ActRII.sTbetaRIII complex) but not for activin receptors (type II + type I) and demonstrate that a complex composed of activin type II receptors and TbetaRIII is both necessary and sufficient for high affinity inhibin binding. This study also illustrates the utility of this cell-free system for investigating hypotheses of receptor complex mechanisms resulting from crystal structure analyses.  相似文献   

8.
9.
A new crystal structure of activin in complex with the extracellular domain of its type II receptor (ActRIIb-ECD) shows that the ligand exhibits an unexpected flexibility. The motion in the activin dimer disrupts its type I receptor interface, which may account for the disparity in its affinity for type I versus type II receptors. We have measured the affinities of activin and its antagonist inhibin for ActRIIb-ECD and found that the affinity of the 2-fold symmetric homodimer activin for ActRIIb-ECD depends on the availability of two spatially coupled ActRIIb-ECD molecules, whereas the affinity of the heterodimer inhibin does not. Our results indicate that activin's affinity for its two receptor types is greatly influenced by their membrane-restricted setting. We propose that activin affinity is modulated by the ligand flexibility and that cooperativity is achieved by binding to two ActRII chains that immobilize activin in a type I binding-competent orientation.  相似文献   

10.
The inhibitory Smads, Smad6 and Smad7, play pivotal roles in negative regulation of transforming growth factor-beta (TGF-beta) family signaling as feedback molecules as well as mediators of cross-talk with other signaling pathways. Whereas Smad7 acts as a ubiquitous inhibitor of Smad signaling, Smad6 has been shown to effectively inhibit bone morphogenetic protein (BMP) signaling but only weakly TGF-beta/activin signaling. In the present study, we have found that Smad6 inhibits signaling from the activin receptor-like kinase (ALK)-3/6 subgroup in preference to that from the ALK-1/2 subgroup of BMP type I receptors. The difference is attributable to the interaction of Smad6 with these BMP type I receptors. The amino acid residues responsible for Smad6 sensitivity of ALK-3 were identified as Arg-238, Phe-264, Thr-265, and Ala-269, which map to the N-terminal lobe of the ALK-3 kinase domain. Although Smad6 regulates BMP signaling through multiple mechanisms, our findings suggest that interaction with type I receptors is a critical step in the function of Smad6.  相似文献   

11.
12.
Molecular recognition of BMP-2 and BMP receptor IA   总被引:2,自引:0,他引:2  
Bone morphogenetic protein-2 (BMP-2) and other members of the TGF-beta superfamily regulate the development, maintenance and regeneration of tissues and organs. Binding epitopes for these extracellular signaling proteins have been defined, but hot spots specifying binding affinity and specificity have so far not been identified. In this study, mutational and structural analyses show that epitopes of BMP-2 and the BRIA receptor form a new type of protein-protein interface. The main chain atoms of Leu 51 and Asp53 of BMP-2 represent a hot spot of binding to BRIA. The BMP-2 variant L51P was deficient in type I receptor binding only, whereas its overall structure and its binding to type II receptors and modulator proteins, such as noggin, were unchanged. Thus, the L51P substitution converts BMP-2 into a receptor-inactive inhibitor of noggin. These results are relevant for other proteins of the TGF-beta superfamily and provide useful clues for structure-based drug design.  相似文献   

13.
14.
15.
Transforming growth factor beta (TGF-beta) is involved in a wide range of biological functions including development, carcinogenesis, and immune regulation. Here we report the 1.1 A resolution crystal structure of human TGF-beta type II receptor ectodomain (TBRII). The overall structure of TBRII is similar to that of activin type II receptor ectodomain (ActRII) and bone morphogenic protein receptor type IA (BRIA). It displays a three-finger toxin fold with fingers formed by the beta strand pairs beta1-beta2, beta3-beta4, and beta5-beta6. The first finger in the TBRII is significantly longer than in ActRII and BRIA and folds tightly between the second finger and the C terminus. Surface charge distributions and hydrophobic patches predict potential TBRII binding sites.  相似文献   

16.
17.
Bone morphogenetic proteins (BMPs) belong to the transforming growth factor-beta (TGF-beta) superfamily of multifunctional cytokines. BMP induces its signal to regulate growth, differentiation, and apoptosis of various cells upon trimeric complex formation with two distinct type I and type II receptors on the cell surface: both are single-transmembrane serine/threonine kinase receptors. To identify the amino acid residues on BMP type I receptor responsible for its ligand binding, the structure-activity relationship of the extracellular ligand-binding domain of the BMP type IA receptor (sBMPR-IA) was investigated by alanine-scanning mutagenesis. The mutant receptors, as well as sBMPR-IA, were expressed as fusion proteins with thioredoxin in Escherichia coli, and purified using reverse phase high performance liquid chromatography (RP-HPLC) after digestion with enterokinase. Structural analysis of the parent protein and representative mutants in solution by CD showed no detectable differences in their folding structures. The binding affinity of the mutants to BMP-4 was determined by surface plasmon resonance biosensor. All the mutant receptors examined, with the exception of Y70A, displayed reduced affinities to BMP-4 with the rank order of decreases: I52A (17-fold) approximately F75A (15-fold) > T64A (4-fold) = T62A (4-fold) approximately E54A (3-fold). The decreases in binding affinity observed for the latter three mutants are mainly due to decreased association rate constants while alterations in rate constants both, for association and dissociation, result in the drastically reduced affinities for the former two mutants. These results allow us to conclude that sBMPR-IA recognizes the ligand using the concave face of the molecule. The major ligand-binding site of the BMP type IA receptor consists of Phe75 in loop 2 and Ile52, Glu54, Thr62 and Thr64 on the three-stranded beta-sheet. These findings should provide a general basis for the ligand/type I receptor recognition in the TGF-beta superfamily.  相似文献   

18.
19.
20.
Although BMP6 is highly capable of inducing osteogenic differentiation of mesenchymal progenitor cells (MPCs), the molecular mechanism involved remains to be fully elucidated. Using dominant negative (dn) mutant form of type I and type II TGFβ receptors, we demonstrated that three dn-type I receptors (dnALK2, dnALK3, dnALK6), and three dn-type II receptors (dnBMPRII, dnActRII, dnActRIIB), effectively diminished BMP6-induced osteogenic differentiation of MPCs. These findings suggested that ALK2, ALK3, ALK6, BMPRII, ActRII and ActRIIB are essential for BMP6-induced osteogenic differentiation of MPCs. However, MPCs in this study do not express ActRIIB. Moreover, RNA interference of ALK2, ALK3, ALK6, BMPRII and ActRII inhibited BMP6-induced osteogenic differentiation in MPCs. Our results strongly suggested that BMP6-induced osteogenic differentiation of MPCs is mediated by its functional TGFβ receptors including ALK2, ALK3, ALK6, BMPRII, and ActRII. [BMB Reports 2013; 46(2): 107-112]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号