首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding of Campylobacter jejuni to fibronectin (Fn), a component of the extracellular matrix, is mediated by a 37 kDa outer membrane protein termed CadF for Campylobacter adhesion to Fn. Previous studies have indicated that C. jejuni binds to Fn on the basolateral surface of T84 human colonic cells. To further characterize the interaction of the CadF protein with Fn, enzyme-linked immunosorbent assays were performed to identify the Fn-binding domain (Fn-BD). Using overlapping 30-mer and 16-mer peptides derived from translated cadF nucleotide sequence, maximal Fn-binding activity was localized to four amino acids (AA 134-137) consisting of the residues phenylalanine-arginine-leucine-serine (FRLS). A mouse alpha-CadF peptide polyclonal antibody (M alpha-CadF peptide pAb) was generated using FRLS containing peptides and found to react with viable C. jejuni as judged by indirect fluorescent microscopy, suggesting that the FRLS residues are surface-exposed. Binding of CadF to purified Fn and INT 407 human epithelial cells was significantly inhibited with peptides containing the Fn-BD. Moreover, a CadF recombinant variant protein, in which the Phe-Arg-Leu residues (CadF AA 134-136) were altered to Ala-Ala-Gly, exhibited a 91% decrease in Fn-binding activity as compared with the wild-type CadF protein. Collectively, these data indicate that the FRLS residues (CadF AA 134-137) of the C. jejuni CadF protein possess Fn-binding activity.  相似文献   

2.
Campylobacter is now recognized as the most common bacterial agent of gastroenteritis. The adhesion of bacteria to intestinal cells is a major step in human colonization. The binding of Campylobacter jejuni cells to fibronectin (Fn), a component of the extra cellular matrix, is mediated by a 37,000 outer membrane protein termed CadF for Campylobacter adhesion to Fn. CadF protein is very hard to purify from Campylobacter membranes. In order to study the conformation of this protein, we set out to clone, express, purify, and re-fold the CadF protein. The nucleotide sequence encoding the N-terminal domain of the CadF protein was cloned in a pET-based expression vector. The recombinant protein was further produced in Escherichia coli, purified from inclusion bodies, and refolded. More specifically, the purification experiments were set-up as follows: (i) protein aggregates were collected from cell-lysates, solubilized in urea and enriched by ion-exchange chromatography; (ii) refolding was achieved by drop-by-drop dilution method in detergent containing buffer and monitored by CD measurements; (iii) the protein was finally purified to homogeneity by gel filtration chromatography. In spite of our success in purifying the N-terminal domain of the CadF protein, repeated attempts to express and purify the entire cadF gene in E. coli failed. Using a novel approach, we found it possible to express the entire cadF gene fused to a hexa-histidine encoding nucleotide sequence in C. jejuni. This allowed the expression, synthesis, and purification of the recombinant CadF-His tagged protein from C. jejuni by nickel affinity chromatography followed by gel filtration chromatography. In summary, we developed a novel strategy to produce significant quantities of a recombinant N-terminal portion of the CadF protein (46.5 microg/mg of bacterial dry weight) and of the native CadF protein (3.5 microg/mg of bacterial dry weight) for further studies.  相似文献   

3.
Host cell invasion of the food-borne pathogen Campylobacter jejuni is one of the primary reasons of tissue damage in humans but molecular mechanisms are widely unclear. Here, we show that C. jejuni triggers membrane ruffling in the eukaryotic cell followed by invasion in a very specific manner first with its tip followed by the flagellar end. To pinpoint important signalling events involved in the C. jejuni invasion process, we examined the role of small Rho family GTPases. Using specific GTPase-modifying toxins, inhibitors and GTPase expression constructs we show that Rac1 and Cdc42, but not RhoA, are involved in C. jejuni invasion. In agreement with these observations, we found that internalization of C. jejuni is accompanied by a time-dependent activation of both Rac1 and Cdc42. Finally, we show that the activation of these GTPases involves different host cell kinases and the bacterial fibronectin-binding protein CadF. Thus, CadF is a bifunctional protein which triggers bacterial binding to host cells as well as signalling leading to GTPase activation. Collectively, our results suggest that C. jejuni invade host target cells by a unique mechanism and the activation of the Rho GTPase members Rac1 and Cdc42 plays a crucial role in this entry process.  相似文献   

4.
Campylobacter jejuni , a Gram-negative bacterium, is a common cause of gastrointestinal disease. By analogy with other enteric pathogens such as Salmonella and Shigella , the ability of C. jejuni to bind to host cells is thought to be essential in the pathogenesis of enteritis. Scanning electron microscopy of infected INT407 cells suggested that C. jejuni bound to a component of the extracellular matrix. Binding assays using immobilized extracellular matrix proteins and soluble fibronectin showed specific and saturable binding of fibronectin to C. jejuni . Ligand immunoblot assays using 125I-labelled fibronectin revealed specific binding to an outer membrane protein with an apparent molecular mass of 37 kDa. A rabbit antiserum, raised against the gel-purified protein, reacted with a 37 kDa protein in all C. jejuni isolates ( n  = 15) as tested by immunoblot analysis. Antibodies present in convalescent serum from C. jejuni -infected individuals also recognized a 37 kDa protein. The gene encoding the immunoreactive 37 kDa protein was cloned and sequenced. Sequencing of overlapping DNA fragments revealed an open reading frame (ORF) that encodes a protein of 326 amino acids with a calculated molecular mass of 36 872 Da. The deduced amino acid sequence of the ORF exhibited 52% similarity and 28% identity to the root adhesin protein from Pseudomonas fluorescens . Isogenic C. jejuni mutants which lack the 37 kDa outer membrane protein, which we have termed CadF, displayed significantly reduced binding to fibronectin. Biotinylated fibronectin bound to a protein with an apparent molecular mass of 37 kDa in the outer membrane protein extracts from wild-type C. jejuni as judged by ligand-binding blots. These results indicate that the binding of C. jejuni to fibronectin is mediated by the 37 kDa outer membrane protein which is conserved among C. jejuni isolates.  相似文献   

5.
Campylobacter jejuni is the leading cause of food- and water-borne illness world-wide. The membrane-associated proteome of a recent C. jejuni gastrointestinal isolate (JHH1) was generated by sodium carbonate precipitation and ultracentrifugation followed by 2-DE and MALDI-TOF MS as well as 2-DLC (strong cation exchange followed by RP chromatography) of trypsin digests coupled to MS/MS (2-DLC/MS/MS). 2-DE/MS identified 77 proteins, 44 of which were predicted membrane proteins, while 2-DLC/MS/MS identified 432 proteins, of which 206 were predicted to be membrane associated. A total of 453 unique proteins (27.4% of the C. jejuni theoretical proteome), including 187 bona fide membrane proteins were identified in this study. Membrane proteins were also compared between C. jejuni JHH1 and ATCC 700297 to identify factors potentially associated with increased gastrointestinal virulence. We identified 28 proteins that were significantly (>two-fold) more abundant in, or unique to, JHH1, including eight proteins involved in chemotaxis signal transduction and flagellar motility, the amino acid-binding surface antigens CjaA and CjaC, and four outer membrane proteins (OMPs) of unknown function (Cj0129c, Cj1031, Cj1279c, and Cj1721c). Immunoblotting using convalescent patient sera generated post-gastrointestinal infection revealed 13 (JHH1) and 12 (ATCC 700297) immunoreactive proteins. These included flagellin (FlaA) and CadF as well as Omp18, Omp50, Cj1721c, PEB1A, PEB2, and PEB4A. This study provides a comprehensive analysis of membrane-associated proteins from C. jejuni.  相似文献   

6.
Campylobacter jejuni is one of the major causes of human diarrhea throughout the world. Attachment to host cells and extracellular matrix proteins is considered to be an essential primary event in the pathogenesis of enteritis. Outer membrane proteins of three C. jejuni strains, one of which was aflagellate, were investigated for their contribution to the process of adhesion to INT 407 cell membranes and the extracellular matrix protein fibronectin. Using a ligand-binding immunoblotting assay the flagellin, the major outer membrane protein and a 59-kDa protein were detected to be involved in adhesion to both substrates. The MOMP was able to inhibit the attachment of the bacteria to INT 407 cell membranes partly, when the protein was isolated under native conditions. However, it was totally lost when the protein was isolated in the presence of SDS. The 59-kDa protein of one strain was identified by N-terminal sequencing, and regarding the first 14 amino acids it was found to be identical to the 37-kDa CadF protein just recently described as fibronectin-binding protein of C. jejuni. Especially for the aflagellate strain this protein may be of special importance for adhesion of the bacteria to different substrates.  相似文献   

7.
Campylobacter jejuni is a major gastrointestinal pathogen that colonizes host mucosa via interactions with extracellular matrix proteins, such as fibronectin (Fn). Fn‐binding is mediated by a 37 kDa outer membrane protein termed Campylobacter adherence Factor (CadF). The outer membrane protein profile of a recent gastrointestinal C. jejuni clinical isolate (JHH1) was analysed using 2‐DE and MS. Several spots were identified as products of the cadF gene. These included mass and pI variants of 34 and 30 kDa, as well as 24 kDa (CadF24) and 22 kDa (CadF22) mass variants. CadF variants were fully characterized by MALDI‐TOF MS and MALDI‐MS/MS. These data confirmed that CadF forms re‐folding variants resulting in spots with lower mass and varying pI that are identical at the amino acid sequence level and are not modified post‐translationally. CadF22 and CadF24, however, were characterized as N‐terminal, membrane‐associated polypeptides resulting from cleavage between serine195 and leucine196, and glycine201 and phenylalanine202, respectively. These variants were more abundant in the virulent (O) isolate of C. jejuni NCTC11168 when compared with the avirulent (genome sequenced) isolate. Hexahistidine fusion constructs of full‐length CadF (34 kDa), CadF24, and the deleted C‐terminal OmpA domain (14 kDa; CadF14) were created in Escherichia coli. Recombinant CadF variants were probed against patient sera and revealed that only full‐length CadF retained reactivity. Binding assays showed that CadF24 retained Fn‐binding capability, while CadF14 did not bind Fn. These data suggest that the immunogenic epitope of CadF is cleaved to generate smaller Fn‐binding polypeptides, which are not recognized by the host humoral response. CadF cleavage therefore may be associated with virulence in C. jejuni.  相似文献   

8.
The bacterial pathogen Campylobacter jejuni invades mucosal cells via largely undefined and rather inefficient (0.01–2 bacteria per cell) mechanisms. Here we report a novel, highly efficient C. jejuni infection pathway resulting in 10–15 intracellular bacteria per cell within 3 h of infection. Electron microscopy, pulse–chase infection assays and time-lapse multiphoton laser confocal microscopy demonstrated that the mechanism involved active and rapid migration of the pathogen into the subcellular space (termed 'subvasion'), followed by bacterial entry ('invasion') at the cell basis. Efficient subvasion was maximal after repeated rounds of selection for the subvasive phenotype. Targeted mutagenesis indicated that the CadF, JlpA or PEB1 adhesins were not required. Dissection of the selected and parental phenotypes by SDS-PAGE yielded comparable capsule polysaccharide and lipooligosaccharide profiles. Proteomics revealed reduced amounts of the chemotaxis protein CheW for the subvasive phenotype. Swarming assays confirmed that the selected phenotype exhibited altered migration behaviour. Introduction of a plasmid carrying chemotaxis genes into the subvasive strain yielded wild-type subvasion levels and migration behaviour. These results indicate that alterations in the bacterial migration machinery enable C. jejuni to actively penetrate the subcellular space and gain access to the cell interior with unprecedented efficiency.  相似文献   

9.
We identified and characterized the iron-binding protein Dps from Campylobacter jejuni. Electron microscopic analysis of this protein revealed a spherical structure of 8.5 nm in diameter, with an electron-dense core similar to those of other proteins of the Dps (DNA-binding protein from starved cells) family. Cloning and sequencing of the Dps-encoding gene (dps) revealed that a 450-bp open reading frame (ORF) encoded a protein of 150 amino acids with a calculated molecular mass of 17,332 Da. Amino acid sequence comparison indicated a high similarity between C. jejuni Dps and other Dps family proteins. In C. jejuni Dps, there are iron-binding motifs, as reported in other Dps family proteins. C. jejuni Dps bound up to 40 atoms of iron per monomer, whereas it did not appear to bind DNA. An isogenic dps-deficient mutant was more vulnerable to hydrogen peroxide than its parental strain, as judged by growth inhibition tests. The iron chelator Desferal restored the resistance of the Dps-deficient mutant to hydrogen peroxide, suggesting that this iron-binding protein prevented generation of hydroxyl radicals via the Fenton reaction. Dps was constitutively expressed during both exponential and stationary phase, and no induction was observed when the cells were exposed to H(2)O(2) or grown under iron-supplemented or iron-restricted conditions. On the basis of these data, we propose that this iron-binding protein in C. jejuni plays an important role in protection against hydrogen peroxide stress by sequestering intracellular free iron and is expressed constitutively to cope with the harmful effect of hydrogen peroxide stress on this microaerophilic organism without delay.  相似文献   

10.
We have undertaken a comprehensive analysis of cytoplasmic protein phosphorylation in Campylobacter jejuni by mass spectrometric identification of phosphoproteins and localization of the sites of modification by phosphopeptide analyses. Cell extracts, enriched for phosphoproteins using Fe(III) IMAC or commercial phosphoprotein purification kits, were analyzed by 1-D and 2-D SDS-PAGE and subjected to mass fingerprinting by in-gel tryptic digestion and MALDI-TOF MS. Fifty-eight phosphopeptides were identified from 1-D gel bands by nano-LC-MS/MS and automated searching in a C. jejuni ORF database resulting in the unequivocal identification of 36 phosphoproteins of diverse function. In addition to elongation factors and chaperonins, which have been reported to be phosphorylated in other bacteria, the major phosphoproteins included bacterioferritin and superoxide dismutase. The sequences around the phosphorylated Ser and Thr residues are indicative of specific kinases being responsible for some of the modifications. However, many of the other identified proteins are enzymes that have phosphorylated substrates, including ATP, hence other modifications may arise from autophosphorylation. Comparative analyses of IMAC extracts from the Escherichia coli strain AD202 and Helicobacter pylori resulted in the identification of homologs of six of the C. jejuni phosphoproteins, though their overall phosphoproteome maps were distinctly different.  相似文献   

11.
12.
A genomic library of Campylobacter jejuni (NCTC 11351) was used to identify genes which could confer a hemolytic phenotype to Escherichia coli. Accordingly, when transformants were screened on blood plates, hemolytic colonies appeared at a frequency of 3 x 10(-4). The gene conferring the hemolytic activity was identified by subcloning and was found to be responsible for the phenotype of all hemolytic transformants isolated. The open reading frame conferring this activity encodes a protein of 36,244 Da with a typical endopeptidase type II leader sequence. The protein is modified with palmitic acid when it is processed in E. coli, confirming that it is a typical lipoprotein. The deduced gene product of 329 amino acids has significant homology to the group of solute binding proteins from periplasmic-binding-protein-dependent transport systems for ferric siderophores, including the FatB protein from Vibrio anguillarium and the FhuD protein from Bacillus subtilis. In particular, the protein contained the signature sequence for siderophore-binding proteins, suggesting that the protein may be the siderophore-binding protein component of an iron acquisition system of C. jejuni.  相似文献   

13.
Twenty-eight isolates of catalase-negative/weak (CNW) thermophilic campylobacters from human blood and faecal cultures were characterized by one-dimensional (1-D) high-resolution SDS-PAGE of cellular proteins. A further 11 Campylobacter strains were included for reference purposes. Partial protein patterns were used as the basis for numerical analysis, which showed that all of the hippurate-positive strains had a high similarity to C. jejuni. Two subclusters were formed within C. jejuni corresponding to C. jejuni subsp. doylei (15 strains) and C. jejuni subsp. jejuni (4 strains). Most of the paediatric strains from South Africa were members of C. jejuni subsp. doylei. Hippurate-negative CNW thermophilic strains were identified as "C. upsaliensis". The analysis demonstrated that the catalase-negative C. jejuni strains were quite distinct from "C. upsaliensis" and that electrophoretic protein patterns provide an excellent criterion for the identification of subspecies within C. jejuni.  相似文献   

14.
Campylobacter jejuni, a gram-negative motile bacterium, secretes a set of proteins termed the Campylobacter invasion antigens (Cia proteins). The purpose of this study was to determine whether the flagellar apparatus serves as the export apparatus for the Cia proteins. Mutations were generated in five genes encoding three structural components of the flagella, the flagellar basal body (flgB and flgC), hook (flgE2), and filament (flaA and flaB) genes, as well as in genes whose products are essential for flagellar protein export (flhB and fliI). While mutations that affected filament assembly were found to be nonmotile (Mot-) and did not secrete Cia proteins (S-), a flaA (flaB+) filament mutant was found to be nonmotile but Cia protein secretion competent (Mot-, S+). Complementation of a flaA flaB double mutant with a shuttle plasmid harboring either the flaA or flaB gene restored Cia protein secretion, suggesting that Cia export requires at least one of the two filament proteins. Infection of INT 407 human intestinal cells with the C. jejuni mutants revealed that maximal invasion of the epithelial cells required motile bacteria that are secretion competent. Collectively, these data suggest that the C. jejuni Cia proteins are secreted from the flagellar export apparatus.  相似文献   

15.
Expression of the peroxide stress genes alkyl hydroperoxide reductase (ahpC) and catalase (katA) of the microaerophile Campylobacter jejuni is repressed by iron. Whereas iron repression in gram-negative bacteria is usually carried out by the Fur protein, previous work showed that this is not the case in C. jejuni, as these genes are still iron repressed in a C. jejuni fur mutant. An open reading frame encoding a Fur homolog (designated PerR for "peroxide stress regulator") was identified in the genome sequence of C. jejuni. The perR gene was disrupted by a kanamycin resistance cassette in C. jejuni wild-type and fur mutant strains. Subsequent characterization of the C. jejuni perR mutants showed derepressed expression of both AhpC and KatA at a much higher level than that obtained by iron limitation, suggesting that expression of these genes is controlled by other regulatory factors in addition to the iron level. Other iron-regulated proteins were not affected by the perR mutation. The fur perR double mutant showed derepressed expression of known iron-repressed genes. Further phenotypic analysis of the perR mutant, fur mutant, and the fur perR double mutant showed that the perR mutation made C. jejuni hyperresistant to peroxide stress caused by hydrogen peroxide and cumene hydroperoxide, a finding consistent with the high levels of KatA and AhpC expression, and showed that these enzymes were functional. Quantitative analysis of KatA expression showed that both the perR mutation and the fur mutation had profound effects on catalase activity, suggesting additional non-iron-dependent regulation of KatA and, by inference, AhpC. The PerR protein is a functional but nonhomologous substitution for the OxyR protein, which regulates peroxide stress genes in other gram-negative bacteria. Regulation of peroxide stress genes by a Fur homolog has recently been described for the gram-positive bacterium Bacillus subtilis. C. jejuni is the first gram-negative bacterium where non-OxyR regulation of peroxide stress genes has been described and characterized.  相似文献   

16.
Polar membrane in Campylobacter jejuni has been visualized on membrane vesicles. It was composed of doughnut-shaped particles 5-6 nm in diameter, with stalks, arranged in a hexagonal array. This structure was stabilized on the membrane by a high ionic strength buffer in the presence of 2-mercaptoethanol. Histochemical staining indicated localized ATPase activity at the poles of the cells. An ATPase with distinctive properties has been isolated and purified from this organism; it gives a specific activity of approximately 0.3 units/mg of protein. Electron microscopy showed doughnut-shaped particles 5-6 nm in diameter. Nondissociating and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme revealed, respectively, a single band with ATPase activity and a molecular weight of ca. 75,000 Da. The enzyme was cold labile and activity was abolished by trypsin. Dicyclohexylcarbodiimide inhibited the membrane-bound form of the enzyme, but did not inhibit the soluble form. Oligomycin had no inhibitory activity on either form of the enzyme. The enzyme specifically hydrolysed ATP, but other nucleotide substrates were not degraded. The enzyme was activated by Mg2+ and inhibited by Ca2+, whereas other ions had no effect on activity. Antibodies prepared to this enzyme bound to the polar regions of whole cells as shown by protein A - colloidal gold immunoelectron microscopy. The antibodies to this ATPase cross reacted (shown by Western blotting) with four proteins from a whole-cell extract of this organism, two proteins in Aquaspirillum serpens MW5, and three proteins from Escherichia coli K12. They did not cross-react with any proteins from Spirillum volutans, Methanococcus voltae, Vibrio cholerae, or rat liver mitochondria. Antibodies raised against the F1-ATPase of E. coli K12 cross reacted with six proteins in a whole-cell extract of this organism, and one protein species in each of the whole-cell extracts of V. cholera, A. serpens MW5, S. volutans, and rat liver mitochondria. These antibodies did not recognize any whole cell proteins from either C. jejuni or M. voltae. These results along with the ATPase activity localized by histochemical staining suggest that polar membrane is an assembly of ATPase molecules at the poles of the cell and that the ATPase isolated from C. jejuni is serologically and structurally unusual.  相似文献   

17.
Thermally responsive elastin like polypeptides (ELPs) can be used to purify proteins from Escherichia coli culture when proteins are expressed as a fusion with an ELP. Nonchromatographic purification of ELP fusion proteins, termed inverse transition cycling (ITC), exploits the reversible soluble-insoluble phase transition behavior imparted by the ELP tag. Here, we quantitatively compare the expression and purification of ELP and oligohistidine fusions of chloramphenicol acetyltransferase (CAT), blue fluorescent protein (BFP), thioredoxin (Trx), and calmodulin (CalM) from both a 4-h culture with chemical induction of the plasmid-borne fusion protein gene and a 24-h culture without chemical induction. The total protein content and functional activity were quantified at each ITC purification step. For CAT, BFP, and Trx, the 24-h noninduction culture of ELP fusion proteins results in a sevenfold increase in the yield of each fusion protein compared to that obtained by the 4-h-induced culture, and the calculated target protein yield is similar to that of their equivalent oligohistidine fusion. For these proteins, ITC purification of fusion proteins also results in approximately 75% recovery of active fusion protein, similar to affinity chromatography. Compared to chromatographic purification, however, ITC is inexpensive, requires no specialized equipment or reagents, and because ITC is a batch purification process, it is easily scaled up to accommodate larger culture volumes or scaled down and multiplexed for high-throughput, microscale purification; thus, potentially impacting both high-throughput protein expression and purification for proteomics and large scale, cost-effective industrial bioprocessing of pharmaceutically relevant proteins.  相似文献   

18.
In the Gram-negative bacterium Campylobacter jejuni there is a pgl (protein glycosylation) locus-dependent general N-glycosylation system of proteins. One of the proteins encoded by pgl locus, PglB, a homolog of the eukaryotic oligosaccharyltransferase component Stt3p, is proposed to function as an oligosaccharyltransferase in this prokaryotic system. The sequence requirements of the acceptor polypeptide for N-glycosylation were analyzed by reverse genetics using the reconstituted glycosylation of the model protein AcrA in Escherichia coli. As in eukaryotes, the N-X-S/T sequon is an essential but not a sufficient determinant for N-linked protein glycosylation. This conclusion was supported by the analysis of a novel C. jejuni glycoprotein, HisJ. Export of the polypeptide to the periplasm was required for glycosylation. Our data support the hypothesis that eukaryotic and bacterial N-linked protein glycosylation are homologous processes.  相似文献   

19.
Campylobacter jejuni is a major gastrointestinal pathogen that colonizes host mucosa via interactions with extracellular matrix proteins such as fibronectin. The aim of this work was to study in vitro the adhesive properties of C. jejuni ATCC 33291 and C. jejuni 241 strains, in both culturable and viable but non-culturable (VBNC) forms. To this end, the expression of the outer-membrane protein CadF, which mediates C. jejuni binding to fibronectin, was evaluated. VBNC bacteria were obtained after 46–48 days of incubation in freshwater at 4 °C. In both cellular forms, the expression of the cadF gene, assessed at different time points by RT-PCR, was at high levels until the third week of VBNC induction, while the intensity of the signal declined during the last stage of incubation. CadF protein expression by the two C. jejuni strains was analysed using 2-dimensional electrophoresis and mass spectrometry; the results indicated that the protein, although at low levels, is also present in the VBNC state. Adhesion assays with culturable and VBNC cells, evaluated on Caco-2 monolayers, showed that non-culturable bacteria retain their ability to adhere to intestinal cells, though at a reduced rate. Our results demonstrate that the C. jejuni VBNC population maintains an ability to adhere and this may thus have an important role in the pathogenicity of this microorganism.  相似文献   

20.
Membrane proteins constitute 20–30% of all proteins encoded by the genome of various organisms. Large amounts of purified proteins are required for activity and crystallization attempts. Thus, there is an unmet need for a heterologous membrane protein overexpression system for purification, crystallization, and activity determination. We developed a combinatorial method for overexpressing and purifying membrane proteins using Escherichia coli. This method utilizes short hydrophilic bacterial proteins, YaiN and YbeL, fused to the ends of the membrane proteins to serve as facilitating factors for expression and purification. Fourteen prokaryotic and mammalian membrane proteins were expressed using this system. Moderate to high expression was obtained for most proteins, and detergent solubilization combined with a short purification process produced stable, monodispersed membrane proteins. Five of the mammalian membrane proteins, overexpressed using our system, were reconstituted into liposomes and exhibited transport activity comparable with the native transporters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号