首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of anti-mosquito-midgut antibodies on the development of the malaria parasite, P. vivax was studied by feeding the vector mosquito, An. culicifacies with infected blood supplemented with serum from immunized rabbits. In order to get antisera, rabbits were immunized with midgut proteins of three siblings species of Anopheles culicifacies, reported to exhibit differential vectorial capacity. The mosquitoes that ingested anti-midgut antibodies along with infectious parasites had significantly fewer oocysts compared to the control group of mosquitoes. The immunized rabbits generated high titer of antibodies. Their cross reactivity amongst various tissues of the same species and with other sibling species was also determined. Immunogenic polypeptides expressed in the midgut of glucose or blood fed An. culicifacies sibling species were identified by Western blotting. One immunogenic polypeptide of 62 kDa was exclusively present in the midgut of species A. Similarly, three polypeptides of 97, 94 and 58 kDa and one polypeptide of 23 kDa were present exclusively in species B and C respectively. Immunoelectron microscopy revealed the localization of these antigens on baso-lateral membrane and microvilli. The effects of anti-mosquito midgut antibodies on fecundity, longevity, mortality and engorgement of mosquitoes were studied. Fecundity was also reduced significantly. These observations open an avenue for research toward the development of a vector-based malaria parasite transmission-blocking vaccine.  相似文献   

2.
Effect of anti-mosquito-fat body antibodies on the development of the malaria parasite, Plasmodium vivax has been studied by feeding Anopheles stephensi mosquitoes with infected blood supplemented with serum from immunized rabbits. Immunogenic polypeptides were identified by western blot. Mosquitoes that ingested anti-fat body antibodies along with infectious blood meal had significantly fewer oocysts than the mosquitoes in the control group. Effect of anti-mosquito fat body antibodies on fecundity, hatchability, mortality and engorgement of mosquitoes has also been reported. A significant reduction in fecundity and hatchability was observed, however, effect on mortality and engorgement was variable and statistically insignificant. Results indicated that fat body antibodies have the potential to disrupt reproductive physiology of malaria vector An. stephensi.  相似文献   

3.
Rabbits immunized with polypeptides of midgut of glucose fed A. stephensi resulted in high titer of antibodies (10(4)-10(6)) as detected by ELISA. Effect of antisera on fecundity, hatchability and engorgement was investigated. Fecundity was reduced drastically (62.4%). Eight polypeptides were recognized by the antisera raised against midgut tissues viz., 92, 85, 55, 52, 45, 38, 29 and 13 kDa. Cross reactivity of these antibodies with different tissues of A. stephensi as well as different species of Anopheles was also analyzed. The results indicated that anti-mosquito midgut antibodies had the potential to disrupt the reproductive physiology of mosquitoes in view of the present study, there is a need for further investigation with target antigens.  相似文献   

4.
Ookinetes are motile invasive stages of the malaria parasite that enter the midgut epithelium of the mosquito vector via an intracellular route. Ookinetes often migrate through multiple adjacent midgut epithelial cells, which subsequently undergo apoptosis/necrosis and are extruded from the midgut epithelium into the midgut lumen. Hundreds of ookinetes may simultaneously invade the midgut epithelium, causing destruction of an appreciable proportion of the total number of midgut epithelial cells. However, there is little evidence that ookinete invasion of the midgut epithelium per se is detrimental to the survival of the mosquito vector implying that efficient mechanisms exist to restore the damaged midgut epithelium following malaria parasite infection. Proliferation and differentiation of precursor stem cells could replace the midgut epithelial cells destroyed and lost as a consequence of ookinete invasion. Although the existence of so-called "regenerative" cells within the mosquito midgut epithelium has long been recognized, there has been no previously published evidence for proliferation/differentiation of these putative precursor midgut epithelial cells in mature adult female mosquitoes. In the current study, examination of Giemsa-stained histological sections from Anopheles stephensi mosquito midguts infected with the human malaria parasite Plasmodium falciparum provided morphological evidence that regenerative cells undergo division and subsequent differentiation into normal columnar midgut epithelial cells. Furthermore, the number of these putatively proliferating/differentiating regenerative cells was significantly higher in P. falciparum-infected compared to uninfected mosquitoes, and was positively correlated with both the level of malaria parasite infection and midgut epithelial cell destruction. The loss of invaded midgut epithelial cells associated with intracellular migration by ookinetes, therefore, appears to trigger, and to be compensated by, proliferative regeneration of the mosquito midgut epithelium.  相似文献   

5.
The effect of mouse anti-mosquito antibodies, present in the bloodmeal, on the infectivity of Plasmodium berghei Vincke to Anopheles farauti Laveran was investigated. Significantly fewer oocysts developed in mosquitoes feeding on mice immunized with sugar-fed mosquito midgut antigens than in mosquitoes feeding on control mice. Mosquitoes feeding on mice immunized with the midgut antigens derived from sugar-fed mosquitoes also showed reduced mortality and had lower infection rates than those fed on unimmunized mice. Blood-fed midgut antigen was less effective in producing these effects than sugar-fed midgut antigen.  相似文献   

6.
The insulin/insulin-like growth factor signaling (IIS) cascade is highly conserved and regulates diverse physiological processes such as metabolism, lifespan, reproduction and immunity. Transgenic overexpression of Akt, a critical regulator of IIS, was previously shown to shorten mosquito lifespan and increase resistance to the human malaria parasite Plasmodium falciparum. To further understand how IIS controls mosquito physiology and resistance to malaria parasite infection, we overexpressed an inhibitor of IIS, phosphatase and tensin homolog (PTEN), in the Anopheles stephensi midgut. PTEN overexpression inhibited phosphorylation of the IIS protein FOXO, an expected target for PTEN, in the midgut of A. stephensi. Further, PTEN overexpression extended mosquito lifespan and increased resistance to P. falciparum development. The reduction in parasite development did not appear to be due to alterations in an innate immune response, but rather was associated with increased expression of genes regulating autophagy and stem cell maintenance in the midgut and with enhanced midgut barrier integrity. In light of previous success in genetically targeting the IIS pathway to alter mosquito lifespan and malaria parasite transmission, these data confirm that multiple strategies to genetically manipulate IIS can be leveraged to generate fit, resistant mosquitoes for malaria control.  相似文献   

7.
Anopheles tessellatus mosquitoes ingested Plasmodium vivax gametocytes in human erythrocytes suspended in rabbit sera with and without anti-mosquito midgut antibodies. When the mosquito bloodmeal contained anti-midgut antibodies, fewer oocysts of P. vivax developed on the mosquito midgut and the proportion of mosquitoes becoming infected was significantly reduced. Complement inactivated serum also reduced the infection rate and load. A second bloodmeal containing anti-midgut antibodies, given 48 or 72 h later, did not enhance the transmission-blocking effect. IgG purified from antimidgut sera was shown to mediate the transmission-blocking effect.  相似文献   

8.
Xanthurenic acid (XA), produced as a byproduct during the biosynthesis of insect eye pigment (ommochromes), is a strong inducer of Plasmodium gametogenesis at very low concentrations. In previous studies, it was shown that XA is present in Anopheles stephensi (Diptera: Culicidae) mosquito salivary glands and that during blood feeding the mosquitoes ingested their own saliva into the midgut. Considering these two facts together, it is therefore likely that XA is discharged with saliva during blood feeding and is swallowed into the midgut where it exerts its effect on Plasmodium gametocytes. However, the quantities of XA in the salivary glands and midgut are unknown. In this study, we used high performance liquid chromatography with electrochemical detection to detect and quantify XA in the salivary glands and midgut. Based on the results of this study, we found 0.28+/-0.05 ng of XA in the salivary glands of the mosquitoes, accounting for 10% of the total XA content in the mosquito whole body. The amounts of XA in the salivary glands reduced to 0.13+/-0.06 ng after mosquitoes ingested a blood meal. Approximately 0.05+/-0.01 ng of XA was detected in the midgut of nonblood fed An. stephensi mosquitoes. By adding synthetic tryptophan as a source of XA into larval rearing water (2 mM) or in sugar meals (10 mM), we evaluated whether XA levels in the mosquito (salivary glands, midgut, and whole body) were boosted and the subsequent effect on infectivity of Plasmodium berghei in the treated mosquito groups. A female specific increase in XA content was observed in the whole body and in the midgut of mosquito groups where tryptophan was added either in the larval water or sugar meals. However, XA in the salivary glands was not affected by tryptophan addition to larval water, and surprisingly it reduced when tryptophan was added to sugar meals. The P. berghei oocyst loads in the mosquito midguts were lower in mosquitoes fed tryptophan treated sugar meals than in mosquitoes reared on tryptophan treated larval water. Our results suggest that mosquito nutrition may have a significant impact on whole body and midgut XA levels in mosquitoes. We discuss the observed parasite infectivity results in relation to XA's relationship with malaria parasite development in mosquitoes.  相似文献   

9.
Incessant transmission of the parasite by mosquitoes makes most attempts to control malaria fail. Blocking of parasite transmission by mosquitoes therefore is a rational strategy to combat the disease. Upon ingestion of blood meal mosquitoes secrete chitinase into the midgut. This mosquito chitinase is a zymogen which is activated by the removal of a propeptide from the N-terminal. Since the midgut peritrophic matrix acts as a physical barrier, the activated chitinase is likely to contribute to the further development of the malaria parasite in the mosquito. Earlier it has been shown that inhibiting chitinase activity in the mosquito midgut blocked sporogonic development of the malaria parasite. Since synthetic propeptides of several zymogens have been found to be potent inhibitors of their respective enzymes, we tested propeptide of mosquito midgut chitinase as an inhibitor and found that the propeptide almost completely inhibited the recombinant or purified native Anopheles gambiae chitinase. We also examined the effect of the inhibitory peptide on malaria parasite development. The result showed that the synthetic propeptide blocked the development of human malaria parasite Plasmodium falciparum in the African malaria vector An. gambiae and avian malaria parasite Plasmodium gallinaceum in Aedes aegypti mosquitoes. This study implies that the expression of inhibitory mosquito midgut chitinase propeptide in response to blood meal may alter the mosquito's vectorial capacity. This may lead to developing novel strategies for controlling the spread of malaria.  相似文献   

10.
Changes in polypeptides pattern of haemolymph, midgut, ovary and salivary glands of female mosquito A. stephensi were studied when fed upon anti-mosquito haemolymph antibodies. The expression of almost all polypeptides was reduced in haemolymph and ovary of the immune fed mosquitoes as compared to control. However, there was no significant difference in case of midgut and salivary glands. Seven polypeptides 100, 90, 84, 80, 62, 19 and 12.5 kDa were absent in haemolymph and five 92, 90, 80, 60 and 55 kDa were absent in ovaries. Changes in the polypeptide pattern have been correlated with the fecundity reduction due to immunized blood feeding.  相似文献   

11.
12.
Malaria kills millions of people every year, and new control measures are urgently needed. The recent demonstration that (effector) genes can be introduced into the mosquito germ line to diminish their ability to transmit the malaria parasite offers new hope toward the fight of the disease (Ito, J., Ghosh, A., Moreira, L. A., Wimmer, E. A. & Jacobs-Lorena, M. (2002) Nature, 417, 452-455). Because of the high selection pressure that an effector gene imposes on the parasite population, development of resistant strains is likely to occur. In search of additional antiparasitic effector genes, we have generated transgenic Anopheles stephensi mosquitoes that express the bee venom phospholipase A2 (PLA2) gene from the gut-specific and blood-inducible Anopheles gambiae carboxypeptidase (AgCP) promoter. Northern blot analysis indicated that the PLA2 mRNA is specifically expressed in the guts of transgenic mosquitoes with peak expression at approximately 4 h after blood ingestion. Western blot and immunofluorescence analyses detected PLA2 protein in the midgut epithelia of transgenic mosquitoes from 8 to 24 h after a blood meal. Importantly, transgene expression reduced Plasmodium berghei oocyst formation by 87% on average and greatly impaired transmission of the parasite to naive mice. The results indicate that PLA2 may be used as an additional effector gene to block the development of the malaria parasite in mosquitoes.  相似文献   

13.
Knowledge of parasite-mosquito interactions is essential to develop strategies that will reduce malaria transmission through the mosquito vector. In this study we investigated the development of two model malaria parasites, Plasmodium berghei and Plasmodium gallinaceum, in three mosquito species Anopheles stephensi, Anopheles gambiae and Aedes aegypti. New methods to study gamete production in vivo in combination with GFP-expressing ookinetes were employed to measure the large losses incurred by the parasites during infection of mosquitoes. All three mosquito species transmitted P. gallinaceum; P. berghei was only transmitted by Anopheles spp. Plasmodium gallinaceum initiates gamete production with high efficiency equally in the three mosquito species. By contrast P. berghei is less efficiently activated to produce gametes, and in Ae. aegypti microgamete formation is almost totally suppressed. In all parasite/vector combinations ookinete development is inefficient, 500-100,000-fold losses were encountered. Losses during ookinete-to-oocyst transformation range from fivefold in compatible vector parasite combinations (P. berghei/An. stephensi), through >100-fold in poor vector/parasite combinations (P. gallinaceum/An. stephensi), to complete blockade (>1,500 fold) in others (P. berghei/Ae. aegypti). Plasmodium berghei ookinetes survive poorly in the bloodmeal of Ae. aegypti and are unable to invade the midgut epithelium. Cultured mature ookinetes of P. berghei injected directly into the mosquito haemocoele produced salivary gland sporozoites in An. stephensi, but not in Ae. aegypti, suggesting that further species-specific incompatibilities occur downstream of the midgut epithelium in Ae. aegypti. These results show that in these parasite-mosquito combinations the susceptibility to malarial infection is regulated at multiple steps during the development of the parasites. Understanding these at the molecular level may contribute to the development of rational strategies to reduce the vector competence of malarial vectors.  相似文献   

14.
Innate immune-related polypeptides expression in midgut in the ageing vector mosquito A. stephensi following infection by malaria parasite, Plasmodium yoelii yoelii has been studied. Twenty polypeptides were induced by an infected blood meal during various stages of adult life. A 24 kDa polypeptide was induced generally in most of the stages. Maximum parasite induced polypeptides i.e. 22, 33, 111, 122, 127, 140, 143 and 146 kDa were found in 5 days of post blood feeding (PBF) which coincides with the presence of oocysts on the midgut. However, in addition, three polypeptides in 11 days PBF and 8 polypeptides in 20 days PBF were also induced due to parasite infection in aged mosquitoes. Quantitatively, the amount of soluble proteins in the midgut in oocyst-sporozoite-positive mosquitoes was always less as compared to their normal counterparts. The parasite evidently elicits defined immune responses by inducing specific polypeptides in the midgut of the mosquito.  相似文献   

15.
The midgut environment of anopheline mosquitoes plays an important role in the development of the malaria parasite. Using genetic manipulation of anopheline mosquitoes to change the environment in the mosquito midgut may inhibit development of the malaria parasite, thus blocking malaria transmission. Here we generate transgenic Anopheles stephensi mosquitoes that express the C-type lectin CEL-III from the sea cucumber, Cucumaria echinata, in a midgut-specific manner. CEL-III has strong and rapid hemolytic activity toward human and rat erythrocytes in the presence of serum. Importantly, CEL-III binds to ookinetes, leading to strong inhibition of ookinete formation in vitro with an IC(50) of 15 nM. Thus, CEL-III exhibits not only hemolytic activity but also cytotoxicity toward ookinetes. In these transgenic mosquitoes, sporogonic development of Plasmodium berghei is severely impaired. Moderate, but significant inhibition was found against Plasmodium falciparum. To our knowledge, this is the first demonstration of stably engineered anophelines that affect the Plasmodium transmission dynamics of human malaria. Although our laboratory-based research does not have immediate applications to block natural malaria transmission, these findings have significant implications for the generation of refractory mosquitoes to all species of human Plasmodium and elucidation of mosquito-parasite interactions.  相似文献   

16.
Malaria (Plasmodium spp.) kills nearly one million people annually and this number will likely increase as drug and insecticide resistance reduces the effectiveness of current control strategies. The most important human malaria parasite, Plasmodium falciparum, undergoes a complex developmental cycle in the mosquito that takes approximately two weeks and begins with the invasion of the mosquito midgut. Here, we demonstrate that increased Akt signaling in the mosquito midgut disrupts parasite development and concurrently reduces the duration that mosquitoes are infective to humans. Specifically, we found that increased Akt signaling in the midgut of heterozygous Anopheles stephensi reduced the number of infected mosquitoes by 60–99%. Of those mosquitoes that were infected, we observed a 75–99% reduction in parasite load. In homozygous mosquitoes with increased Akt signaling parasite infection was completely blocked. The increase in midgut-specific Akt signaling also led to an 18–20% reduction in the average mosquito lifespan. Thus, activation of Akt signaling reduced the number of infected mosquitoes, the number of malaria parasites per infected mosquito, and the duration of mosquito infectivity.  相似文献   

17.
Malaria parasite infection in anopheline mosquitoes induces nitrosative and oxidative stresses that limit parasite development, but also damage mosquito tissues in proximity to the response. Based on these observations, we proposed that cellular defenses in the mosquito may be induced to minimize self-damage. Specifically, we hypothesized that peroxiredoxins (Prxs), enzymes known to detoxify reactive oxygen species (ROS) and reactive nitrogen oxide species (RNOS), protect mosquito cells. We identified an Anopheles stephensi 2-Cys Prx ortholog of Drosophila melanogaster Prx-4783, which protects fly cells against oxidative stresses. To assess function, AsPrx-4783 was overexpressed in D. melanogaster S2 and in A. stephensi (MSQ43) cells and silenced in MSQ43 cells with RNA interference before treatment with various ROS and RNOS. Our data revealed that AsPrx-4783 and DmPrx-4783 differ in host cell protection and that AsPrx-4783 protects A. stephensi cells against stresses that are relevant to malaria parasite infection in vivo, namely nitric oxide (NO), hydrogen peroxide, nitroxyl, and peroxynitrite. Further, AsPrx-4783 expression is induced in the mosquito midgut by parasite infection at times associated with peak nitrosative and oxidative stresses. Hence, whereas the NO-mediated defense response is toxic to both host and parasite, AsPrx-4783 may shift the balance in favor of the mosquito.  相似文献   

18.
Malaria is a vector-borne disease that is considered to be one of the most serious public health problems due to its high global mortality and morbidity rates. Although multiple strategies for controlling malaria have been used, many have had limited impact due to the appearance and rapid dissemination of mosquito resistance to insecticides, parasite resistance to multiple antimalarial drug, and the lack of sustainability. Individuals in endemic areas that have been permanently exposed to the parasite develop specific immune responses capable of diminishing parasite burden and the clinical manifestations of the disease, including blocking of parasite transmission to the mosquito vector. This is referred to as transmission blocking (TB) immunity (TBI) and is mediated by specific antibodies and other factors ingested during the blood meal that inhibit parasite development in the mosquito. These antibodies recognize proteins expressed on either gametocytes or parasite stages that develop in the mosquito midgut and are considered to be potential malaria vaccine candidates. Although these candidates, collectively called TB vaccines (TBV), would not directly stop malaria from infecting individuals, but would stop transmission from infected person to non-infected person. Here, we review the progress that has been achieved in TBI studies and the development of TBV and we highlight their potential usefulness in areas of low endemicity such as Latin America.  相似文献   

19.
It is estimated that every year malaria infects approximately 300 million people and accounts for the death of 2 million individuals. The Plasmodium parasites that cause malaria in humans are transmitted exclusively by mosquito species belonging to the Anopheles genus. The recent development of a gene transfer technology for Anopheles stephensi mosquitoes, using the Minos transposable element marked with the enhanced green fluorescent protein EGFP (Catteruccia, F., Nolan, T., Loukeris, T. G., Blass, C., Savakis, C., Kafatos, F. C., and Crisanti, A. (2000) Nature 405, 959--962), provides now a powerful tool to investigate the role of mosquito molecules involved in the interaction with the malaria parasite. Such technology, when further developed with additional markers and transposable elements, will be invaluable for analyzing the biology of the vector and for developing malaria-resistant mosquitoes to be used as a tool to control malaria transmission in the field. We report here the germline transformation of A. stephensi mosquitoes using a piggyBac-based transposon to drive integration of the gene encoding for the red fluorescent protein dsRED. A. stephensi embryos were injected with transformation vector pPBRED containing the dsRED marker cloned within the arms of piggyBac. Microscopic analysis of G(1) larvae revealed the presence of seven fluorescent phenotypes whose different molecular origins were confirmed by Southern blotting analysis. Sequencing of the insertion sites in two lines demonstrated that integrations had occurred at TTAA nucleotides in accordance with piggyBac-mediated transpositions.  相似文献   

20.
Anopheles albimanus and An. pseudopunctipennis differ in their susceptibilities to Plasmodium vivax circumsporozoite phenotypes. An. pseudopunctipennis is susceptible to phenotype VK247 but almost refractory to VK210. In contrast, An. albimanus is almost refractory to VK247 but susceptible to VK210. To investigate the site in the mosquito and the parasite stage at which resistance mechanisms affect VK247 development in An. albimanus, parasite development was followed in a series of experiments in which both mosquitoes species were simultaneously infected with blood from patients. Parasite phenotype was determined in mature oocysts and salivary gland sporozoites by use of immunofluorescence and Western blot assays and/or gene identification. Ookinete maturation and their densities within the bloodmeal bolus were similar in both mosquito species. Ookinete densities on the internal midgut surface of An. albimanus were 4.7 times higher than those in An. pseudopunctipennis; however, the densities of developing oocysts on the external midgut surface were 6.12 times higher in the latter species. Electron microscopy observation of ookinetes in An. albimanus midgut epithelium indicated severe parasite damage. These results indicate that P. vivax VK247 parasites are destroyed at different parasite stages during migration in An. albimanus midguts. A portion, accumulated on the internal midgut surface, is probably destroyed by the mosquito's digestive enzymes and another portion is most likely destroyed by mosquito defense molecules within the midgut epithelium. A third group, reaching the external midgut surface, initiates oocyst development, but over 90% of them interrupt their development and die. The identification of mechanisms that participate in parasite destruction could provide new elements to construct transgenic mosquitoes resistant to malaria parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号