首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
“Transient receptor potential” cation channels (TRP channels) play a unique role as cell sensors, are involved in a plethora of Ca2+-mediated cell functions, and play a role as “gate-keepers” in many homeostatic processes such as Ca2+ and Mg2+ reabsorption. The variety of functions to which TRP channels contribute and the polymodal character of their activation predict that failures in correct channel gating or permeation will likely contribute to complex pathophysiological mechanisms. Dysfunctions of TRPs cause human diseases but are also involved in a complex manner to contribute and determine the progress of several diseases. Contributions to this special issue discuss channelopathias for which mutations in TRP channels that induce “loss-“ or “gain-of-function” of the channel and can be considered “disease-causing” have been identified. The role of TRPs will be further elucidated in complex diseases of the intestinal, renal, urogenital, respiratory, and cardiovascular systems. Finally, the role of TRPs will be discussed in neuronal diseases and neurodegenerative disorders.  相似文献   

2.
Mammalian TRP channel proteins form six-transmembrane cation-permeable channels that may be grouped into six subfamilies on the basis of amino acid sequence homology (TRPC, TRPV, TRPM, TRPA, TRPP, and TRPML). Recent studies of TRP channels indicate that they are involved in numerous fundamental cell functions and are considered to play an important role in the pathophysiology of many diseases. Many TRPs are expressed in kidney along different parts of the nephron and growing evidence suggest that these channels are involved in hereditary, as well as acquired kidney disorders. TRPC6, TRPM6, and TRPP2 have been implicated in hereditary focal segmental glomerulosclerosis (FSGS), hypomagnesemia with secondary hypocalcemia (HSH), and polycystic kidney disease (PKD), respectively. In addition, the highly Ca(2+)-selective channel, TRPV5, contributes to several acquired mineral (dys)regulation, such as diabetes mellitus (DM), acid-base disorders, diuretics, immunosuppressant agents, and vitamin D analogues-associated Ca(2+) imbalance whereas TRPV4 may function as an osmoreceptor in kidney and participate in the regulation of sodium and water balance. This review presents an overview of the current knowledge concerning the distribution of TRP channels in kidney and their possible roles in renal physiology and kidney diseases.  相似文献   

3.
The progression of cells from a normal differentiated state in which rates of proliferation and apoptosis are balanced to a tumorigenic and metastatic state involves the accumulation of mutations in multiple key signalling proteins and the evolution and clonal selection of more aggressive cell phenotypes. These events are associated with changes in the expression of numerous other proteins. This process of tumorigenesis involves the altered expression of one or more TRP proteins, depending on the nature of the cancer. The most clearly described changes are those involving TRPM8, TRPV6 and TRPM1. Expression of TRPM8 is substantially increased in androgen-dependent prostate cancer cells, but is decreased in androgen independent and metastatic prostate cancer. TRPM8 expression is regulated, in part, by androgens, most likely through androgen response elements in the TRPM8 promoter region. TRPM8 channels are involved in the regulation of cell proliferation and apoptosis. Expression of TRPV6 is also increased in prostate cancer and in a number of other cancers. In contrast to TRPM8, expression of TRPV6 is not directly regulated by androgens. TRPM1 is highly expressed in early stage melanomas but its expression declines with increases in the degree of aggressiveness of the melanoma. The expression of TRPV1, TRPC1, TRPC6, TRPM4, and TRPM5 is also increased in some cancers. The level of expression of TRPM8 and TRPV6 in prostate cancer, and of TRPM1 in melanomas, potentially provides a good prognostic marker for predicting the course of the cancer in individuals. The Drosophila melanogaster, TRPL, and the TRPV1 and TRPM8 proteins, have been used to try to develop strategies to selectively kill cancer cells by activating Ca2+ and Na+ entry, producing a sustained increase in the cytoplasmic concentration of these ions, and subsequent cell death by apoptosis and necrosis. TRPV1 is expressed in neurones involved in sensing cancer pain, and is a potential target for pharmacological inhibition of cancer pain in bone metastases, pancreatic cancer and most likely in other cancers. Further studies are required to assess which other TRP proteins are associated with the development and progression of cancer, what roles TRP proteins play in this process, and to develop further knowledge of TRP proteins as targets for pharmaceutical intervention and targeting in cancer.  相似文献   

4.
TRP channels in cancer   总被引:1,自引:0,他引:1  
The progression of cells from a normal differentiated state in which rates of proliferation and apoptosis are balanced to a tumorigenic and metastatic state involves the accumulation of mutations in multiple key signalling proteins and the evolution and clonal selection of more aggressive cell phenotypes. These events are associated with changes in the expression of numerous other proteins. This process of tumorigenesis involves the altered expression of one or more TRP proteins, depending on the nature of the cancer. The most clearly described changes are those involving TRPM8, TRPV6 and TRPM1. Expression of TRPM8 is substantially increased in androgen-dependent prostate cancer cells, but is decreased in androgen independent and metastatic prostate cancer. TRPM8 expression is regulated, in part, by androgens, most likely through androgen response elements in the TRPM8 promoter region. TRPM8 channels are involved in the regulation of cell proliferation and apoptosis. Expression of TRPV6 is also increased in prostate cancer and in a number of other cancers. In contrast to TRPM8, expression of TRPV6 is not directly regulated by androgens. TRPM1 is highly expressed in early stage melanomas but its expression declines with increases in the degree of aggressiveness of the melanoma. The expression of TRPV1, TRPC1, TRPC6, TRPM4, and TRPM5 is also increased in some cancers. The level of expression of TRPM8 and TRPV6 in prostate cancer, and of TRPM1 in melanomas, potentially provides a good prognostic marker for predicting the course of the cancer in individuals. The Drosophila melanogaster, TRPL, and the TRPV1 and TRPM8 proteins, have been used to try to develop strategies to selectively kill cancer cells by activating Ca(2+) and Na(+) entry, producing a sustained increase in the cytoplasmic concentration of these ions, and subsequent cell death by apoptosis and necrosis. TRPV1 is expressed in neurones involved in sensing cancer pain, and is a potential target for pharmacological inhibition of cancer pain in bone metastases, pancreatic cancer and most likely in other cancers. Further studies are required to assess which other TRP proteins are associated with the development and progression of cancer, what roles TRP proteins play in this process, and to develop further knowledge of TRP proteins as targets for pharmaceutical intervention and targeting in cancer.  相似文献   

5.
Pulmonary and systemic arterial hypertension are associated with profound alterations in Ca(2+) homeostasis and smooth muscle cell proliferation. A novel class of non-selective cation channels, the transient receptor potential (TRP) channels, have emerged at the forefront of research into hypertensive disease states. TRP channels are identified as molecular correlates for receptor-operated and store-operated cation channels in the vasculature. Over 10 TRP isoforms are identified at the mRNA and protein expression levels in the vasculature. Current research implicates upregulation of specific TRP isoforms to be associated with increased Ca(2+) influx, characteristic of vasoconstriction and vascular smooth muscle cell proliferation. TRP channels are implicated as Ca(2+) entry pathways in pulmonary hypertension and essential hypertension. Caveolae have recently emerged as membrane microdomains in which TRP channels may be co-localized with the endoplasmic reticulum in both smooth muscle and endothelial cells. Such enhanced expression and function of TRP channels and their localization in caveolae in pathophysiological hypertensive disease states highlights their importance as potential targets for pharmacological intervention.  相似文献   

6.
Pulmonary and systemic arterial hypertension are associated with profound alterations in Ca2+ homeostasis and smooth muscle cell proliferation. A novel class of non-selective cation channels, the transient receptor potential (TRP) channels, have emerged at the forefront of research into hypertensive disease states. TRP channels are identified as molecular correlates for receptor-operated and store-operated cation channels in the vasculature. Over 10 TRP isoforms are identified at the mRNA and protein expression levels in the vasculature. Current research implicates upregulation of specific TRP isoforms to be associated with increased Ca2+ influx, characteristic of vasoconstriction and vascular smooth muscle cell proliferation. TRP channels are implicated as Ca2+ entry pathways in pulmonary hypertension and essential hypertension. Caveolae have recently emerged as membrane microdomains in which TRP channels may be co-localized with the endoplasmic reticulum in both smooth muscle and endothelial cells. Such enhanced expression and function of TRP channels and their localization in caveolae in pathophysiological hypertensive disease states highlights their importance as potential targets for pharmacological intervention.  相似文献   

7.
The ability to sense external temperature is assumed by somatosensory neurons, in which temperature information is converted to neural activity by afferent input to the central nervous system. Somatosensory neurons consist of various populations with specialized gene expression, including thermosensitive transient receptor potential ion channels (thermo-TRPs). Thermo-TRPs are responsible for thermal transduction at the peripheral ends of somatosensory neurons and over a wide range of temperatures. In this review, we focus on several thermo-TRPs expressed in sensory neurons: TRPV1, TRPV4, TRPM2, TRPM3, TRPM8, TRPC5, and TRPA1. TRPV3, TRPV4, and TRPC5 expressed in non-neuronal cells that are also involved in somatosensation are also discussed, whereas TRPM2 and TRPM8 are involved in thermosensation in the brain.  相似文献   

8.
Channels of the TRP superfamily have sensory roles in a wide variety of receptor cells, especially in mechanosensation. In some cases, the channels appear to be directly activated by mechanical force; in others, they appear to be downstream of a messenger pathway initiated by force on a non-channel sensor. A remaining challenge for most of these mechanosensory TRPs is to clarify the specific mechanism of activation.  相似文献   

9.
Transient receptor potential (TRP) proteins are a family of ion channels central for sensory signaling. These receptors and, in particular, those involved in thermal sensing are also involved in pain signaling. Noteworthy, thermosensory receptors are polymodal ion channels that respond to both physical and chemical stimuli, thus integrating different environmental clues. In addition, their activity is modulated by algesic agents and lipidergic substances that are primarily released in pathological states. Lipids and lipid-like molecules have been found that can directly activate some thermosensory channels or modulate their activity by either potentiating or inhibiting it. To date, more than 50 endogenous lipids that can regulate TRP channel activity in sensory neurons have been described, thus representing the majority of known endogenous TRP channel modulators. Lipid modulators of TRP channels comprise lipids from a variety of metabolic pathways, including metabolites of the cyclooxygenase, lipoxygenase and cytochrome-P450 pathways, phospholipids and lysophospholipids. Therefore, TRP-channels are able to integrate and interpret incoming signals from the different metabolic lipid pathways. Taken together, the large number of lipids that can activate, sensitize or inhibit neuronal TRP-channels highlights the pivotal role of these molecules in sensory biology as well as in pain transduction and perception. This article is part of a Special Issue entitled: Lipid–protein interactions. Guest Editors: Amitabha Chattopadhyay and Jean-Marie Ruysschaert.  相似文献   

10.
Sensing with TRP channels   总被引:1,自引:0,他引:1  
Drosophila melanogaster flies carrying the trp (transient receptor potential) mutation are rapidly blinded by bright light, because of the absence of a Ca2+-permeable ion channel in their photoreceptors. The identification of the trp gene and the search for homologs in yeast, flies, worms, zebrafish and mammals has led to the discovery of a large superfamily of related cation channels, named TRP channels. Activation of TRP channels is highly sensitive to a variety of chemical and physical stimuli, allowing them to function as dedicated biological sensors that are essential in processes such as vision, taste, tactile sensation and hearing.  相似文献   

11.
TRP channels and pain   总被引:2,自引:0,他引:2  
Since the molecular identification of the capsaicin receptor, now known as TRPV1, transient receptor potential (TRP) channels have occupied an important place in the understanding of sensory nerve function in the context of pain. Several TRP channels exhibit sensitivity to substances previously known to cause pain or pain-like sensations; these include cinnamaldehyde, menthol, gingerol, and icillin. Many TRP channels also exhibit significant sensitivity to increases or decreases in temperature. Some TRP channels are sensitized in vitro by the activation of other receptors such that these channels may be activated by processes, such as inflammation that result in pain. TRP channels are suggested to be involved in processes as diverse as sensory neuron activation events, neurotransmitter release and action in the spinal cord, and release of inflammatory mediators. These functions strongly suggest that specific and selective inhibition of TRP channel activity will be of use in alleviating pain.  相似文献   

12.
Since cloning and characterizing the first nociceptive ion channel Transient Receptor Potential (TRP) Vanilloid 1 (TRPV1), other TRP channels involved in nociception have been cloned and characterized, which include TRP Vanilloid 2 (TRPV2), TRP Vanilloid 3 (TRPV3), TRP Vanilloid 4 (TRPV4), TRP Ankyrin 1 (TRPA1) and TRP Melastatin 8 (TRPM8), more recently TRP Canonical 1, 5, 6 (TRPC1, 5, 6), TRP Melastatin 2 (TRPM2) and TRP Melastatin 3 (TRPM3). These channels are predominantly expressed in C and Aδ nociceptors and transmit noxious thermal, mechanical and chemical sensitivities. TRP channels are modulated by pro-inflammatory mediators, neuropeptides and cytokines. Significant advances have been made targeting these receptors either by antagonists or agonists to treat painful conditions. In this review, we will discuss TRP channels as targets for next generation analgesics and the side effects that may ensue as a result of blocking/activating these receptors, because they are also involved in physiological functions such as release of vasoactive neuropeptides and regulation of vascular tone, maintenance of the body temperature, gastrointestinal motility, urinary bladder control, etc.  相似文献   

13.
14.
Since the molecular identification of the capsaicin receptor, now known as TRPV1, transient receptor potential (TRP) channels have occupied an important place in the understanding of sensory nerve function in the context of pain. Several TRP channels exhibit sensitivity to substances previously known to cause pain or pain-like sensations; these include cinnamaldehyde, menthol, gingerol, and icillin. Many TRP channels also exhibit significant sensitivity to increases or decreases in temperature. Some TRP channels are sensitized in vitro by the activation of other receptors such that these channels may be activated by processes, such as inflammation that result in pain. TRP channels are suggested to be involved in processes as diverse as sensory neuron activation events, neurotransmitter release and action in the spinal cord, and release of inflammatory mediators. These functions strongly suggest that specific and selective inhibition of TRP channel activity will be of use in alleviating pain.  相似文献   

15.
Transient receptor potential (TRP) channels are a family of cation channels that play a key role in ion homeostasis and cell volume regulation. In addition, TRP channels are considered universal integrators of sensory information required for taste, vision, hearing, touch, temperature, and the detection of mechanical force. Seminal investigations exploring the molecular mechanisms of phototransduction in Drosophila have demonstrated that TRP channels operate within macromolecular complexes closely associated with the cytoskeleton. More recent evidence shows that mammalian TRP channels similarly connect to the cytoskeleton to affect cytoskeletal organization and cell adhesion via ion-transport-dependent and -independent mechanisms. In this review, we discuss new insights into the interplay between TRP channels and the cytoskeleton and provide recent examples of such interactions in different physiological systems.  相似文献   

16.
瞬时受体电位通道研究进展   总被引:5,自引:0,他引:5  
瞬时受体电位通道(TRP channels)是位于细胞膜上的一类重要的阳离子通道超家族.根据氨基酸序列的同源性,将已发现的28种哺乳动物,TRP通道分为:TRPC、TRPV、TRPM、TRPA、TRPP和TRPML 6个亚家族.所有的TRP通道都具有6次跨膜结构域.不同的TRP通道对钙离子和钠离子选择性不同.TRP通道分布广泛,调节机制各异,通过感受细胞内外环境的各种刺激,参与痛温觉、机械感觉、味觉的发生和维持细胞内外环境的离子稳态等众多生命活动.  相似文献   

17.
18.
Animals sense temperature--either cold or hot--by the direct activation of temperature-sensitive members of the TRP family of ion channels, the thermo-TRPs. To date, six TRP channels--TRPV1-4, TRPM8 and TRPA1--have been reported to be directly activated by heat and to be involved in thermosensation. Temperature sensing can be modulated by phosphorylation of intracellular residues by protein kinases or by insertion of new channels into the cell membrane. In this review we provide a brief overview of the properties of thermo-TRPs, and we summarise signalling pathways involved in their regulation.  相似文献   

19.
Transient receptor potential (TRP) ion channels are molecular sensors of a large variety of stimuli including temperature, mechanical stress, voltage, small molecules including capsaicin and menthol, and lipids such as phosphatidylinositol 4,5-bisphosphate (PIP2). Since the same TRP channels may respond to different physical and chemical stimuli, they can serve as signal integrators. Many TRP channels are calcium permeable and contribute to Ca2+ homeostasis and signaling. Although the TRP channel family was discovered decades ago, only recently have the structures of many of these channels been solved, largely by cryo-electron microscopy (cryo-EM). Complimentary to cryo-EM, X-ray crystallography provides unique tools to unambiguously identify specific atoms and can be used to study ion binding in channel pores. In this review we describe crystallographic studies of the TRP channel TRPV6. The methodology used in these studies may serve as a template for future structural analyses of different types of TRP and other ion channels.  相似文献   

20.
Intracellular trafficking of TRP channels   总被引:1,自引:0,他引:1  
Cayouette S  Boulay G 《Cell calcium》2007,42(2):225-232
Thirteen years ago, it was suggested that exocytotic insertion of store-operated channels into the plasma membrane lead to increased Ca(2+) entry in non-excitable cells upon G protein-coupled or tyrosine kinase receptor stimulation. Since the discovery of the TRP channel superfamily and their involvement in receptor-induced Ca(2+) entry, many studies have shown that different members of the TRP superfamily translocate into the plasma membrane upon stimulation. While the exact molecular mechanism by which TRP channels insert into the plasma membrane is unknown, TRP-binding proteins have been shown to directly regulate this trafficking. This review summarizes recent advances related to the mechanism of TRP channel trafficking, focusing on the role of TRP-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号