首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single K+ channel currents were recorded in excised membrane patches from dispersed chemoreceptor cells of the rabbit carotid body under conditions that abolish current flow through Na+ and Ca2+ channels. We have found three classes of voltage-gated K+ channels that differ in their single-channel conductance (gamma), dependence on internal Ca2+ (Ca2+i), and sensitivity to changes in O2 tension (PO2). Ca(2+)-activated K+ channels (KCa channels) with gamma approximately 210 pS in symmetrical K+ solutions were observed when [Ca2+]i was greater than 0.1 microM. Small conductance channels with gamma = 16 pS were not affected by [Ca2+]i and they exhibited slow activation and inactivation time courses. In these two channel types open probability (P(open)) was unaffected when exposed to normoxic (PO2 = 140 mmHg) or hypoxic (PO2 approximately 5-10 mmHg) external solutions. A third channel type (referred to as KO2 channel), having an intermediate gamma(approximately 40 pS), was the most frequently recorded. KO2 channels are steeply voltage dependent and not affected by [Ca2+]i, they inactivate almost completely in less than 500 ms, and their P(open) reversibly decreases upon exposure to low PO2. The effect of low PO2 is voltage dependent, being more pronounced at moderately depolarized voltages. At 0 mV, for example, P(open) diminishes to approximately 40% of the control value. The time course of ensemble current averages of KO2 channels is remarkably similar to that of the O2-sensitive K+ current. In addition, ensemble average and macroscopic K+ currents are affected similarly by low PO2. These observations strongly suggest that KO2 channels are the main contributors to the macroscopic K+ current of glomus cells. The reversible inhibition of KO2 channel activity by low PO2 does not desensitize and is not related to the presence of F-, ATP, and GTP-gamma-S at the internal face of the membrane. These results indicate that KO2 channels confer upon glomus cells their unique chemoreceptor properties and that the O2-K+ channel interaction occurs either directly or through an O2 sensor intrinsic to the plasma membrane closely associated with the channel molecule.  相似文献   

2.
The short-time depolarization effects on the integral conductance induced by S. aureus alpha-toxin (ST) in planar lipid bilayer membranes has been studied. Ion channels formed by ST were found to have several potential-induced nonconductance (closed) states. The transitions of ion channels between the states are only through one conductance state. The transition of ST-channels from closed to open state is induced by membrane depolarization. The amplitude current after a series of voltage pulses is a function of pulse number, and is effectively independent of the time interval between the neighbouring pulses. Therefore, a membrane which contains a pool of ion channels "remembers" its previous existence. A simple model can be used to explain this phenomenon.  相似文献   

3.
P A Slesinger  J B Lansman 《Neuron》1991,7(5):755-762
Recordings of single-channel activity from cerebellar granule cells show that a component of Ca2+ entry flows through L-type Ca2+ channels that are closed at negative membrane potentials following a strong depolarization, but then open after a delay. The delayed openings can be explained if membrane depolarization drives Ca2+ channels into an inactivated state and some channels return to rest through the open state after repolarization. Whole-cell recordings show that the charge carried by Ca2+ during the tail increases as inactivation progresses, whereas the current during the voltage step decreases. Voltage-dependent inactivation may be a general mechanism in central neurons for enhancing Ca2+ entry by delaying it until after repolarization, when the driving force for ion entry is large. Modifying the rate and extent of inactivation would have large effects on Ca2+ entry through those channels that recover from inactivation by passing through the open state.  相似文献   

4.
Phosphorylated cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels require nucleoside triphosphates, such as ATP, to open. As the concentration of intracellular ATP increases, the probability of the channel being open (Po) increases. To better understand how ATP regulates the channel, we studied excised inside-out membrane patches that contained single, phosphorylated CFTR Cl- channels and examined the kinetics of gating at different concentrations of ATP. As the ATP concentration increased from 0.1 to 3 mM the mean closed time decreased, but mean open time did not change. Analysis of the data using histograms of open- and closed-state durations, the maximum likelihood method, and the log-likelihood ratio test suggested that channel behavior could be described by a model containing one open and two closed states (C1<==>C2<==>O). ATP regulated phosphorylated channels at the transition between the closed states C1 and C2: as the concentration of ATP increased, the rate of transition from C1 to C2 (C1-->C2) increased. In contrast, transitions from C2 to C1 and between C2 and the open state (O) were not significantly altered by ATP. Addition of ADP in the presence of ATP decreased the transition rate from C1 to C2 without affecting other transition rates. These data suggest that ATP regulates CFTR Cl- channels through an interaction that increases the rate of transition from the closed state to a bursting state in which the channel flickers back and forth between an open and a closed state (C2). This transition may reflect ATP binding or perhaps a step subsequent to binding.  相似文献   

5.
K(ATP) channels can be formed from Kir6.2 subunits with or without SUR1. The open-state stability of K(ATP) channels can be increased or reduced by mutations throughout the Kir6.2 subunit, and is increased by application of PIP(2) to the cytoplasmic membrane. Increase of open-state stability is manifested as an increase in the channel open probability in the absence of ATP (Po(zero)) and a correlated decrease in sensitivity to inhibition by ATP. Single channel lifetime analyses were performed on wild-type and I154C mutant channels expressed with, and without, SUR1. Channel kinetics include a single, invariant, open duration; an invariant, brief, closed duration; and longer closed events consisting of a "mixture of exponentials," which are prolonged in ATP and shortened after PIP(2) treatment. The steady-state and kinetic data cannot be accounted for by assuming that ATP binds to the channel and causes a gate to close. Rather, we show that they can be explained by models that assume the following regarding the gating behavior: 1) the channel undergoes ATP-insensitive transitions from the open state to a short closed state (C(f)) and to a longer-lived closed state (C(0)); 2) the C(0) state is destabilized in the presence of SUR1; and 3) ATP can access this C(0) state, stabilizing it and thereby inhibiting macroscopic currents. The effect of PIP(2) and mutations that stabilize the open state is then to shift the equilibrium of the "critical transition" from the open state to the ATP-accessible C(0) state toward the O state, reducing accessibility of the C(0) state, and hence reducing ATP sensitivity.  相似文献   

6.
The temperature and voltage dependence of gating and conductance of sarcoplasmic reticulum K+ channels (S-R K+) isolated from adult canine hearts were studied using the reconstituted bilayer technique. Fusion of vesicles from this preparation frequently resulted in the incorporation of a single channel. Only bilayers into which a single S-R K+ channel had fused were studied. The three conductance states of the channel, fully open (O2), substate conductance (O1), and closed (C) were studied as a function of voltage (-50 to +50 mV) and temperature (16 to 37 degrees C). Permeation through the O1 state showed the same temperature dependence as the O2 state corresponding to an enthalpy of permeation of 4.1-4.2 kcal/mol, which is similar to that for K+ diffusion through water. As expected, increased temperature increased the frequency of gating transitions and shortened the average dwell time spent in any conductance state. Over the range of 25 to 37 degrees C, the average dwell time spent in the O1, O2, and C states decreased by 44 +/- 11, 36 +/- 13, and 78 +/- 7% (n = 3 to 4 channels), respectively. The ratio of probabilities between the various conductance states was not strongly temperature sensitive. Analysis of the voltage dependence of this channel was carried out at 37 degrees C and revealed that the dwell times of the O1 and O2 states were voltage insensitive and the probability ratio (PO2:PO1) was approximately 7 and was voltage insensitive.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Measurements of single channel currents were performed on isolated membrane patches from osmotically swollen thylakoids of the Charophyte alga Nitellopsis obtusa. A channel with a high selectivity for anions over cations and a conductance of 100 to 110 pS (114 mM Cl–) was revealed. The channel has a bells-haped voltage-dependence of the open probability, with a maximum at about 0 mV. This dependence was explained by two gating processes, one causing channel closure at positive and one at negative potentials. The steepness of the voltage-dependence corresponded to approximately 2 elementary charges to be transferred across the entire membrane in each of the two gating processes. The analysis of the anion channel kinetics in the millisecond time domain revealed an e-fold increase of mean open and decrease of mean closed times when the membrane voltage was made more positive by 20 and 36 mV, respectively. Concert transitions of two identical anion channels between open and long inactivated states were observed, while the millisecond closed-open transitions of the two channels within a burst of activity were kinetically independent.This work was financially supported by the Deutsche Forschungsgemeinschaft (SFB 176 TP B11) and by a research fellowship from the Alexander von Humboldt Foundation to I.I. Pottosin.  相似文献   

8.
Xenopus oocytes express mechanosensitive (MS(XO)) channels that can be studied in excised patches of membrane with the patch-clamp technique. This study examines the steady-state kinetic gating properties of MS(XO) channels using detailed single-channel analysis. The open and closed one-dimensional dwell-time distributions were described by the sums of 2-3 open and 5-7 closed exponential components, respectively, indicating that the channels enter at least 2-3 open and 5-7 closed kinetic states during gating. Dependency plots revealed that the durations of adjacent open and closed intervals were correlated, indicating two or more gateway states in the gating mechanism for MS channels. Maximum likelihood fitting of two-dimensional dwell-time distributions to both generic and specific models was used to examine gating mechanism and rank models. A kinetic scheme with five closed and five open states, in which each closed state could make a direct transition to an open state (two-tiered model) could account for the major features of the single-channel data. Two-tiered models that allowed direct transitions to subconductance open states in addition to the fully open state were also consistent with multiple gateway states. Thus, the gating mechanism of MS(XO) channels differs from the sequential (linear) gating mechanisms considered for MS channels in bacteria, chick skeletal muscle, and Necturus proximal tubule.  相似文献   

9.
Many studies indicate that hypoxic inhibition of some K+ channels in the membrane of the pulmonary arterial smooth muscle cells (PASMCs) plays a part in initiating hypoxic pulmonary vasoconstriction. The sensitivity of the K+ current (I(k)), resting membrane potential (E(m)), and intracellular Ca2+ concentration ([Ca2+]i) of PASMCs to different levels of hypoxia in these cells has not been explored fully. Reducing PO2 levels gradually inhibited steady-state I(k) of rat resistance PASMCs and depolarized the cell membrane. The block of I(k) by hypoxia was voltage dependent in that low O2 tensions (3 and 0% O2) inhibited I(k) more at 0 and -20 mV than at 50 mV. As expected, the hypoxia-sensitive I(k) was also 4-aminopyridine sensitive. Fura 2-loaded PASMCs showed a graded increase in [Ca2+]i as PO2 levels declined. This increase was reduced markedly by nifedipine and removal of extracellular Ca2+. We conclude that, as in the carotid body type I cells, PC-12 pheochromocytoma cells, and cortical neurons, increasing severity of hypoxia causes a proportional decrease in I(k) and E(m) and an increase of [Ca2+]i.  相似文献   

10.
Sodium channel gating behavior was modeled with Markovian models fitted to currents from the cut-open squid giant axon in the absence of divalent cations. Optimum models were selected with maximum likelihood criteria using single-channel data, then models were refined and extended by simultaneous fitting of macroscopic ionic currents, ON and OFF gating currents, and single-channel first latency densities over a wide voltage range. Best models have five closed states before channel opening, with inactivation from at least one closed state as well as the open state. Forward activation rate constants increase with depolarization, and deactivation rate constants increase with hyperpolarization. Rates of inactivation from the open or closed states are generally slower than activation or deactivation rates and show little or no voltage dependence. Channels tend to reopen several times before inactivating. Macroscopic rates of activation and inactivation result from a combination of closed, open and inactivated state transitions. At negative potentials the time to first opening dominates the macroscopic current due to slow activation rates compared with deactivation rates: channels tend to reopen rarely, and often inactivate from closed states before they reopen. At more positive potentials, the time to first opening and burst duration together produce the macroscopic current.  相似文献   

11.
A family of auxiliary beta subunits coassemble with Slo alpha subunit to form Ca(2)+-regulated, voltage-activated BK-type K(+) channels. The beta subunits play an important role in regulating the functional properties of the resulting channel protein, including apparent Ca(2)+ dependence and inactivation. The beta3b auxiliary subunit, when coexpressed with the Slo alpha subunit, results in a particularly rapid ( approximately 1 ms), but incomplete inactivation, mediated by the cytosolic NH(2) terminus of the beta3b subunit (Xia et al. 2000). Here, we evaluate whether a simple block of the open channel by the NH(2)-terminal domain accounts for the inactivation mechanism. Analysis of the onset of block, recovery from block, time-dependent changes in the shape of instantaneous current-voltage curves, and properties of deactivation tails suggest that a simple, one step blocking reaction is insufficient to explain the observed currents. Rather, blockade can be largely accounted for by a two-step blocking mechanism (C(n) <---> O(n) <---> O(*)(n) <---> I(n)) in which preblocked open states (O*(n)) precede blocked states (I(n)). The transitions between O* and I are exceedingly rapid accounting for an almost instantaneous block or unblock of open channels observed with changes in potential. However, the macroscopic current relaxations are determined primarily by slower transitions between O and O*. We propose that the O to O* transition corresponds to binding of the NH(2)-terminal inactivation domain to a receptor site. Blockade of current subsequently reflects either additional movement of the NH(2)-terminal domain into a position that hinders ion permeation or a gating transition to a closed state induced by binding of the NH(2) terminus.  相似文献   

12.
Two-dimensional probability density analysis of single channel current recordings was applied to two purified channel proteins reconstituted in planar lipid bilayers: Torpedo acetylcholine receptors and voltage-sensitive sodium channels from rat brain. The information contained in the dynamic history of the gating process, i.e., the time sequence of opening and closing events was extracted from two-dimensional distributions of transitions between identifiable states. This approach allows one to identify kinetic models consistent with the observables. Gating of acetylcholine receptors expresses "memory" of the transition history: the receptor has two channel open (O) states; the residence time in each of them strongly depends on both the preceding open time and the intervening closed interval. Correspondingly, the residence time in the closed (C) states depends on both the preceding open time and the preceding closed time. This result confirms the scheme that considers, at least, two transition pathways between the open and closed states and extends the details of the model in that it defines that the short-lived open state is primarily entered from long-lived closed states while the long-lived open state is accessed mainly through short-lived closed states. Since ligand binding to the acetylcholine-binding sites is a reaction with channel closed states, we infer that the longest closed state (approximately 19 ms) is unliganded, the intermediate closed state (approximately 2 ms) is singly liganded and makes transitions to the short open state (approximately 0.5 ms) and the shortest closed state (approximately 0.4 ms) is doubly liganded and isomerizes to long open states (approximately 5 ms). This is the simplest interpretation consistent with available data. In contrast, sodium channels modified with batrachotoxin to eliminate inactivation show no correlation in the sequence of channel opening and closing events, i.e., have no memory of the transition history. This result is, therefore, consistent with any kinetic scheme that considers a single transition pathway between open and closed states, and confirms the C-C-O model previously inferred from one-dimensional distribution analysis. The strategy described should be of general validity in the analysis of single channel events from channel proteins in both natural and reconstituted membranes.  相似文献   

13.
The chemical gating of single-gap junction channels was studied by the dual whole-cell voltage-clamp method in HeLa cells transfected with connexin43 (HeLa43) and in fibroblasts from sciatic nerves. Junctional current (Ij), single-channel conductance, and Ij kinetics were studied in cell pairs during CO2 uncoupling and recoupling at small transjunctional voltages (Vj < 35 mV: Vj gating absent) and at high Vj (Vj > 40 mV: Vj gating strongly activated). In the absence of Vj gating, CO2 exclusively caused Ij slow transitions from open to closed channel states (mean transition time: approximately 10 ms), corresponding to a single-channel conductance of approximately 120 pS. At Vj > 40 mV, Vj gating induced fast Ij flickering between open, gamma j(main state), and residual, gamma j(residual), states (transition time: approximately 2 ms). The ratio gamma j(main state)/gamma j(residual) was approximately 4-5. No obvious correlation between Ij fast flickering and CO2 treatment was noticed. At high Vj, in addition to slow Ij transitions between open and closed states, CO2 induced slow transitions between residual and closed states. During recoupling, each channel reopened by a slow transition (mean transition time: approximately 10 ms) from closed to open state (rarely from closed to residual state). Fast Ij flickering between open and residual states followed. The data are in agreement with the hypothesis that gap junction channels possess two gating mechanisms, and indicate that CO2 induces channel gating exclusively by the slow gating mechanism.  相似文献   

14.
Inactivation of the sodium channel. I. Sodium current experiments   总被引:75,自引:39,他引:36       下载免费PDF全文
Inactivation of sodium conductance has been studied in squid axons with voltage clamp techniques and with the enzyme pronase which selectively destroys inactivation. Comparison of the sodium current before and after pronase treatment shows a lag of several hundred microseconds in the onset of inactivation after depolarization. This lag can of several hundred microseconds in the onset of inactivation after polarization. This lag can also be demonstrated with double-pulse experiments. When the membrane potential is hyperpolarized to -140 mV before depolarization, both activation and inactivation are delayed. These findings suggest that inactivation occurs only after activation are delayed. These findings suggest that inactivation occurs only after activation; i.e. that the channels must open before they can inactivate. The time constant of inactivation measured with two pulses (τ(c)) is the same as the one measured from the decay of the sodium current during a single pulse (τ(h)). For large depolarizations, steady-state inactivation becomes more incomplete as voltage increases; but it is relatively complete and appears independent of voltage when determined with a two- pulse method. This result confirms the existence of a second open state for Na channels, as proposed by Chandler and Meves (1970. J. Physiol. [Lond.]. 211:653-678). The time constant of recovery from inactivation is voltage dependent and decreases as the membrane potential is made more negative. A model for Na channels is presented which has voltage-dependent transitions between the closed and open states, and a voltage-independent transition between the open and the inactivated state. In this model the voltage dependence of inactivation is a consequence of coupling to the activation process.  相似文献   

15.
Clonal pheochromocytoma (PC-12) cells have four different types of voltage-dependent K+ channels whose activation does not require high concentrations of Ca++ on the cytoplasmic side of the membrane (Hoshi, T., and R. W. Aldrich, 1988, Journal of General Physiology, 91:73-106). The durations of open and closed events of these four different types of voltage-dependent K+ channels were measured using the excised configuration of the patch-clamp method. The open durations of a class of K+ channels termed the Kz channel, which activates rapidly and inactivates slowly in response to depolarizing pulses, had two exponential components. The closed durations of the Kz channel had at least four exponential components. The time constants of the fastest of the two exponential components in the closed durations were very similar to those of the two exponential components present in the first-latency distribution. The first latencies of the Kz channel decreased steeply with depolarization, contributing to the increased probability of the channel being open with depolarization. The Kz channel also had a very slow gating process that resulted in a clustering of blank sweeps. A gating scheme containing two open states and five closed states is consistent with the observations. The Ky channel had one exponential component in the open durations and three exponential components in the closed durations. The first latencies varied greatly depending on the prepulse voltage and duration. The results were consistent with a sequential model with a large number of closed states and one open state. The Kx channel, which required large hyperpolarizing prepulses to remove steady state inactivation and did not show inactivation with maintained depolarization, had two exponential components in the open durations and three exponential components in the closed durations. The burst behavior of the Kx channel involved many more than two states. The transient Kw channel had one exponential component in the open durations and the mean open time increased with depolarization. The first latencies of the Kw channel were steeply dependent on the voltage, decreasing with depolarization.  相似文献   

16.
Activation of large conductance Ca(2+)-activated K(+) channels is controlled by both cytoplasmic Ca(2+) and membrane potential. To study the mechanism of voltage-dependent gating, we examined mSlo Ca(2+)-activated K(+) currents in excised macropatches from Xenopus oocytes in the virtual absence of Ca(2+) (<1 nM). In response to a voltage step, I(K) activates with an exponential time course, following a brief delay. The delay suggests that rapid transitions precede channel opening. The later exponential time course suggests that activation also involves a slower rate-limiting step. However, the time constant of I(K) relaxation [tau(I(K))] exhibits a complex voltage dependence that is inconsistent with models that contain a single rate limiting step. tau(I(K)) increases weakly with voltage from -500 to -20 mV, with an equivalent charge (z) of only 0.14 e, and displays a stronger voltage dependence from +30 to +140 mV (z = 0.49 e), which then decreases from +180 to +240 mV (z = -0.29 e). Similarly, the steady state G(K)-V relationship exhibits a maximum voltage dependence (z = 2 e) from 0 to +100 mV, and is weakly voltage dependent (z congruent with 0.4 e) at more negative voltages, where P(o) = 10(-5)-10(-6). These results can be understood in terms of a gating scheme where a central transition between a closed and an open conformation is allosterically regulated by the state of four independent and identical voltage sensors. In the absence of Ca(2+), this allosteric mechanism results in a gating scheme with five closed (C) and five open (O) states, where the majority of the channel's voltage dependence results from rapid C-C and O-O transitions, whereas the C-O transitions are rate limiting and weakly voltage dependent. These conclusions not only provide a framework for interpreting studies of large conductance Ca(2+)-activated K(+) channel voltage gating, but also have important implications for understanding the mechanism of Ca(2+) sensitivity.  相似文献   

17.
Early detection of an O2 deficit in the bloodstream is essential to initiate corrective changes in the breathing pattern of mammals. Carotid bodies serve an essential role in this respect; their type I cells depolarize when O2 levels fall, causing voltage-gated Ca2+ entry. Subsequent neurosecretion elicits increased afferent chemosensory fiber discharge to induce appropriate changes in respiratory function (1). Although depolarization of type I cells by hypoxia is known to arise from K+ channel inhibition, the identity of the signaling pathway has been contested, and the coupling mechanism is unknown (2). We tested the hypothesis that AMP-activated protein kinase (AMPK) is the effector of hypoxic chemotransduction. AMPK is co-localized at the plasma membrane of type I cells with O2-sensitive K+ channels. In isolated type I cells, activation of AMPK using 5-aminoimidazole-4-carboxamide riboside (AICAR) inhibited O2-sensitive K+ currents (carried by large conductance Ca2+-activated (BKCa) channels and TASK (tandem pore, acid-sensing potassium channel)-like channels, leading to plasma membrane depolarization, Ca2+ influx, and increased chemosensory fiber discharge. Conversely, the AMPK antagonist compound C reversed the effects of hypoxia and AICAR on type I cell and carotid body activation. These results suggest that AMPK activation is both sufficient and necessary for the effects of hypoxia. Furthermore, AMPK activation inhibited currents carried by recombinant BKCa channels, whereas purified AMPK phosphorylated thealpha subunit of the channel in immunoprecipitates, an effect that was stimulated by AMP and inhibited by compound C. Our findings demonstrate a central role for AMPK in stimulus-response coupling by hypoxia and identify for the first time a link between metabolic stress and ion channel regulation in an O2-sensing system.  相似文献   

18.
Coexpression of the beta(1) subunit with the alpha subunit (mSlo) of BK channels increases the apparent Ca(2+) sensitivity of the channel. This study investigates whether the mechanism underlying the increased Ca(2+) sensitivity requires Ca(2+), by comparing the gating in 0 Ca(2+)(i) of BK channels composed of alpha subunits to those composed of alpha+beta(1) subunits. The beta(1) subunit increased burst duration approximately 20-fold and the duration of gaps between bursts approximately 3-fold, giving an approximately 10-fold increase in open probability (P(o)) in 0 Ca(2+)(i). The effect of the beta(1) subunit on increasing burst duration was little changed over a wide range of P(o) achieved by varying either Ca(2+)(i) or depolarization. The effect of the beta(1) subunit on increasing the durations of the gaps between bursts in 0 Ca(2+)(i) was preserved over a range of voltage, but was switched off as Ca(2+)(i) was increased into the activation range. The Ca(2+)-independent, beta(1) subunit-induced increase in burst duration accounted for 80% of the leftward shift in the P(o) vs. Ca(2+)(i) curve that reflects the increased Ca(2+) sensitivity induced by the beta(1) subunit. The Ca(2+)-dependent effect of the beta(1) subunit on the gaps between bursts accounted for the remaining 20% of the leftward shift. Our observation that the major effects of the beta(1) subunit are independent of Ca(2+)(i) suggests that the beta(1) subunit mainly alters the energy barriers of Ca(2+)-independent transitions. The changes in gating induced by the beta(1) subunit differ from those induced by depolarization, as increasing P(o) by depolarization or by the beta(1) subunit gave different gating kinetics. The complex gating kinetics for both alpha and alpha+beta(1) channels in 0 Ca(2+)(i) arise from transitions among two to three open and three to five closed states and are inconsistent with Monod-Wyman-Changeux type models, which predict gating among only one open and one closed state in 0 Ca(2+)(i).  相似文献   

19.
We consider a model for voltage-dependent gating of channels in which the gating charges are on the channel wall and move only a small distance. When this movement occurs across the closed gate, the charges move through the entire transmembrane potential, which is energetically equivalent to their moving across the entire membrane. The channel exists in two open states, O1 and O2, and two closed states, C1 and C2; each open and closed configuration is divided into two states because of the two possible positions of the gating charges. An unusual property of this model is that the electrical work in going from an open to a closed configuration (for example, in going from O1 to C2) is path dependent, and net work can result from going reversibly around a complete cycle. The model channel, like many biological channels, shows bursting activity. This flickering on and off of the channel enables the gate to sense the electric field and decide if it should be in the open or closed configuration. We prove here some general theorms concerning the electrical work associated with the movements of the walls of channels and the movements of charges on these walls.  相似文献   

20.
Transient receptor potential (TRP) channels play critical roles in cell signaling by coupling various environmental factors to changes in membrane potential that modulate calcium influx. TRP channels are typically activated in a polymodal manner, thus integrating multiple stimuli. Although much progress has been made, the underlying mechanisms of TRP channel activation are largely unknown. The TRPM8 cation channel has been extensively investigated as a major neuronal cold sensor but is also activated by voltage, calcium store depletion, and some lipids as well as by compounds that produce cooling sensations, such as menthol or icilin. Several models of TRPM8 activation have been proposed to explain the interaction between these diverse stimuli. However, a kinetic scheme is not yet available that can describe the detailed single-channel kinetics to gain further insight into the underlying gating mechanism. To work toward this goal, we investigated voltage-dependent single-channel gating in cell-attached patches at two different temperatures (20 and 30 °C) using HEK293 cells stably expressing TRPM8. Both membrane depolarization and cooling increased channel open probability (P(o)) mainly by decreasing the duration of closed intervals, with a smaller increase in the duration of open intervals. Maximum likelihood analysis of dwell times at both temperatures indicated gating in a minimum of five closed and two open states, and global fitting over a wide range of voltages identified a seven-state model that described the voltage dependence of P(o), the single-channel kinetics, and the response of whole-cell currents to voltage ramps and steps. The major action of depolarization and cooling was to accelerate forward transitions between the same two sets of adjacent closed states. The seven-state model provides a general mechanism to account for TRPM8 activation by membrane depolarization at two temperatures and can serve as a starting point for further investigations of multimodal TRP activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号